Learning Goals

Learning Goal	Homework Problems
4.8.1 Compute general antiderivatives by inverting derivative rules.	$1-114,119-131$.
Verify that an antiderivative is correct by differentiating.	$89-130$.
4.8.2 Use antiderivatives to solve initial value problems.	$119-124,126,130$.
4.8.3 Construct an initial value problem to model given information.	$89,90,115-118$, $131,132$.
4.8.4 Answer conceptual questions involving antiderivatives.	

Definition: a function F is an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$ for x in I.

Examples: 1) Suppose $f(x)=x^{2}$.
Then $F(x)=\frac{1}{3} x^{3}$ is an antiderivative of f since

$$
F^{\prime}(x)=\frac{1}{3} 3 x^{2}=x^{2} .
$$

The functions $F_{1}(x)=\frac{1}{3} x^{3}+4$ and $F_{2}(x)=\frac{1}{3} x^{3}-11$ are also antiderivatives of f since $F_{1}^{\prime}(x)=F_{2}^{\prime}(x)=x^{2}$.
2) Suppose $f(x)=\sin (x)$.

Then $F_{1}(x)=-\cos (x)$ and $F_{2}(x)=-\cos (x)+7$ are antiderivatives of f since $F_{1}^{\prime}(x)=F_{2}^{\prime}(x)=\sin (x)$.

Consequence of MVT: if $F(x)$ is an antiderivative of f on
 I, then the general form of all antiderivatives of f is $F(x)+C, \quad C$ constant.
family of functions
(get one particular antiderivative by assigning a value to c.)

Notation: $\int f(x) d x=$ family of all antiderivatives of f. \rightarrow "(indefinite) integral of $f(x)$ with respect to x "

Terminology: \int is the integral sign $f(x)$ is called the integrand.

Examples: 1) We saw above that

$$
\int x^{2} d x=\frac{1}{3} x^{3}+c \text { and } \int \sin (x) d x=-\cos (x)+C
$$

2) Other basic rules for antiderivatives.

$$
\begin{aligned}
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad(n \neq-1) \text { since } \frac{d}{d x}\left(\frac{x^{n+1}}{n+1}\right)=\frac{(n+1) x^{n+1-1}}{n+1}=x^{n} \text {. } \\
& \int \frac{1}{x} d x=\ln |x|+C \text { since } \frac{d}{d x}(\ln |x|)=\frac{1}{x} \text {. } \\
& \int e^{x} d x=e^{x}+c \quad \text { since } \frac{d}{d x}\left(e^{x}\right)=e^{x} \text {. } \\
& \int \cos (x) d x=\sin (x)+c \text { since } \frac{d}{d x}(\sin (x))=\cos (x) \\
& \int \sec ^{2}(x) d x=\tan (x)+C \text { since } \frac{d}{d x}(\tan (x))=\sec ^{2}(x) \\
& \int \sec (x) \tan (x) d x=\sec (x)+C \text { since } \frac{d}{d x}(\sec (x))=\sec (x) \tan (x) \\
& \int \frac{1}{1+x^{2}} d x=\tan ^{-1}(x)+C \quad \text { since } \quad \frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}} \text {. } \\
& =\arctan (x)+C \\
& \begin{aligned}
\int \frac{1}{\sqrt{1-x^{2}}} d x & =\sin ^{-1}(x)+C \\
& =\arcsin (x)+C
\end{aligned} \quad \text { since } \quad \frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}} .
\end{aligned}
$$

\rightarrow For each derivative rule, there is a corresponding antiderivative rule.
3) $\int e^{2 x} d x \neq e^{2 x}+c$ because $\frac{d}{d x}\left(e^{2 x}\right)=2 e^{2 x} \quad$ (chain rule)

Instead, $\int e^{2 x} d x=\frac{1}{2} e^{2 x}+C \quad$ since $\frac{d}{d x}\left(\frac{1}{2} e^{2 x}\right)=\frac{1}{2} 2 e^{2 x}=e^{2 x}$.
In general, $\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
and likewise, $\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$ etc.

Similar formulas to memorize:

- Integrals involving inverse trig:

$$
\begin{aligned}
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c
\end{aligned}
$$

Indeed $\quad \frac{d}{d x}\left(\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)\right)=\frac{1}{a} \cdot \frac{1}{1+\left(\frac{x}{a}\right)^{2}} \cdot \frac{1}{a}=\frac{1}{a^{2}\left(1+\frac{x^{2}}{a^{2}}\right)}=\frac{1}{a^{2}+x^{2}}$

$$
\frac{d}{d x}\left(\sin ^{-1}\left(\frac{x}{a}\right)\right)=\frac{1}{\sqrt{1-\left(\frac{x}{a}\right)^{2}}} \cdot \frac{1}{a}=\frac{1}{\sqrt{\left(1-\frac{x^{2}}{a^{2}}\right) a^{2}}}=\frac{1}{\sqrt{a^{2}-x^{2}}}
$$

- Integrals involving exponential:

$$
\int a^{x} d x=\frac{1}{\ln (a)} a^{x}+c
$$

Indeed, $\quad \frac{d}{d x}\left(\frac{1}{\ln (a)} a^{x}\right)=\frac{1}{\ln (a)} \cdot \ln (a) a^{x}=a^{x}$.

Linearity rules for antiderivatives:

$$
\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x
$$

$\int k f(x) d x=k \int f(x) d x$ if k is a constant.

Examples: evaluate the following antiderivatives
1)

$$
\begin{aligned}
& \int\left(e^{3 x}-4 \cos (5 x)\right) d x \\
= & \int e^{3 x} d x-4 \int \cos (5 x) d x \quad \text { (linearity) } \\
= & \frac{1}{3} e^{3 x}-\frac{4}{5} \sin (5 x)+C
\end{aligned}
$$

$$
\text { 2) } \begin{aligned}
& \int \sqrt{x}\left(3 x-\frac{1}{x}\right) d x \\
= & \int\left(3 x \sqrt{x}-\frac{\sqrt{x}}{x}\right) d x=\int\left(3 x^{3 / 2}-x^{-1 / 2}\right) d x \\
= & 3 \int x^{3 / 2} d x-\int x^{-1 / 2} d x=3 \frac{x^{3 / 2+1}}{3 / 2+1}-\frac{x^{-1 / 2+1}}{-1 / 2+1}+C \\
= & 3 \frac{x^{5 / 2}}{5 / 2}-\frac{x^{1 / 2}}{1 / 2}+C=\frac{6}{5} x^{5 / 2}-2 x^{1 / 2}+C .
\end{aligned}
$$

3) $\int \frac{t^{2}-5 t+8}{t} d t$

$$
=\int\left(\frac{t^{2}}{t}-\frac{5 t}{t}+\frac{8}{t}\right) d t
$$

$$
\begin{aligned}
& =\int\left(t-5+\frac{8}{t}\right) d t \\
& =\frac{1}{2} t^{2}-5 t+8 \ln |t|+C .
\end{aligned}
$$

4)

$$
\begin{aligned}
& \int \sec (4 \theta)(\sec (4 \theta)+\tan (4 \theta)) d \theta \\
= & \int\left(\sec ^{2}(4 \theta)+\sec (4 \theta) \tan (4 \theta)\right) d \theta \\
= & \frac{1}{4} \tan (4 \theta)+\frac{1}{4} \sec (4 \theta)+C
\end{aligned}
$$

5) $\int\left(\sqrt[3]{x}+\frac{4}{1+x^{2}}\right) d x$

$$
\begin{aligned}
& =\int\left(x^{1 / 3}+\frac{4}{1+x^{2}}\right) d x \\
& =\frac{x^{1 / 3+1}}{1 / 3+1}+4 \tan ^{-1}(x)+C \\
& =\frac{3 x^{4 / 3}}{4}+4 \tan ^{-1}(x)+C
\end{aligned}
$$

6) $\int \frac{d x}{\sqrt{25-x^{2}}} \quad$ use $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)+c$.

$$
=\int \frac{d x}{\sqrt{5^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{5}\right)+C
$$

Initial Value Problems: if we know $f^{\prime}(x)$ and one point on the graph of $y=f(x)$, we can identify a specific anfiderivative and find $f(x)$.

There is a single antiderivative passing through $\underbrace{\left(x_{0}, y_{0}\right)}_{\text {initial condition }}$.

Examples: 1) Solve the initial value problem

$$
\frac{d y}{d x}=\sec ^{2}(2 x) \quad \text { and } \quad y\left(\frac{\pi}{6}\right)=4 .
$$

General antiderivative: $y(x)=\int \sec ^{2}(2 x) d x=\frac{1}{2} \tan (2 x)+C$.

Find C using initial condition $y\left(\frac{\pi}{6}\right)=4$

$$
\begin{aligned}
\frac{1}{2} \tan \left(\frac{\pi}{3}\right)+C & =4 \\
\frac{\sqrt{3}}{2}+C & =4 \Rightarrow C=4-\frac{\sqrt{3}}{2} .
\end{aligned}
$$

So the solution is $y(x)=\frac{1}{2} \tan (2 x)+4-\frac{\sqrt{3}}{2}$
2) Solve the initial value problem $\frac{d y}{d x}=\frac{1}{9+x^{2}}, y(3)=1$.

General antiderivative: $\quad y(x)=\int \frac{1}{9+x^{2}} d x=\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)+C$

Find C using initial condition $y(3)=1$

$$
\begin{gathered}
\frac{1}{3} \tan ^{-1}(1)+c=1 \\
\frac{\pi}{12}+c=1 \\
\Rightarrow \quad c=1-\frac{\pi}{12}
\end{gathered}
$$

So the solution is $y(x)=\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)+1-\frac{\pi}{12}$
3) The acceleration of a particle moving on an axis is $a(t)=-16$. We know that $v(0)=3$ and $s(0)=30$. Find the position $s(t)$.

Since $a(t)=v^{\prime}(t), \quad v(t)=\int a(t) d t=\int-16 d t=-16 t+c$.
To find c, we use the initial condition $v(0)=3$, which gives $-16 \cdot 0+c=3 \Rightarrow c=3$.
So $\quad v(t)=-16 t+3$.

Since $v(t)=s^{\prime}(t), \quad s(t)=\int v(t) d t$

$$
\begin{aligned}
& =\int(-16 t+3) d t \\
& =-8 t^{2}+3 t+D .
\end{aligned}
$$

To find D, we use the intial condition $s(0)=30$, which gives $-8.0^{2}+3.0+D=30 \Rightarrow D=30$

So $s(t)=-8 t^{2}+3 t+30$.

