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Math 151

Section 4.8: Antiderivatives - Worksheet Solutions

1. Evaluate the following antiderivatives.
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Solution. We fully distribute the integrand, then use the power rule. This gives
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Solution. Warning: an antiderivative of cos(1) is not sin(1), because cos(1) is a constant. The
correct way to integrate cos(1) with respect to = is cos(1)z. With this in mind, we have
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Solution.

2. Solve the following initial value problems.

(a) % =2 — 7z and y(2) = 0.

Solution. First, we find the general form of y(x) by integrating y'(x).
7
y(x) = /(2 — Tz)dx = 2z — 53:2 +C.
Next, we find the value of the constant C' by using the initial condition y(2) = 0. This gives
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2.2_5.22+C:O = —-10+C =0 = C=10.
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Therefore, the solution of the initial value problem is | y(z) = 22 — —z? + 10|
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I = x7 %+ g and y(1) = 3.

Solution. First, we find the general form of y(x) by integrating y'(x).
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Next, we find the value of the constant C' by using the initial condition y(1) = 3. This gives
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Therefore, the solution of the initial value problem is |y(x) = x—5 +6In|z| + 36 .
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and y(3) = —1.

Solution. First, we find the general form of y(z) by integrating y'(x).
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Next, we find the value of the constant C' by using the initial condition y(3) = —1. This gives
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Therefore, the solution of the initial value problem is | y(z) = = tan™* (E) -1 i}
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Solution. First, we find the general form of y(x) by integrating y'(x).
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and y(—4) = 0.
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Next, we find the value of the constant C' by using the initial condition y(—4) = 0. This gives
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Therefore, the solution of the initial value problem is | y(z) = sin™* (g) + % .
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Solution. We first solve the initial value problem e 3—e?* y'(0) =1 to find y'(x). The general
form of y/(z) is
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To find the value of the constant C, we use the initial condition 3’(0) = 1. This gives
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Therefore, y'(z) = 3x — - t 5 We can now find y(x) by solving the initial value problem
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To find the value of the constant D, we use the initial condition y(0) = 7. This gives
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