Sections 5.1-2: Areas Estimations and Riemann Sums - Worksheet

1. (a) Approximate the net area between the graph of $f(x)=9-x^{2}$ and the x-axis on $[-1,3]$ using 4 rectangles of equal width and (i) left endpoints, (ii) right endpoints.
(b) Approximate the net area between the graph of $f(x)=2 \cos (x)$ and the x-axis on [$\left.0, \frac{\pi}{2}\right]$ using 3 rectangles of equal width and (i) left endpoints, (ii) right endpoints.
2. Suppose that the function f has the following values.

$$
\begin{aligned}
& f(0)=3, f(1)=7, f(2)=5, f(3)=1, f(4)=2, f(5)=8 \\
& f(6)=0, f(7)=1, f(8)=5, f(9)=3, f(10)=1
\end{aligned}
$$

Approximate the net area between the graph of $g(x)=f(8 x+2)$ and the x-axis on the interval $[0,1]$ using a midpoint sum with 4 rectangles of equal width.
3. Evaluate the following sums.
(a) $\sum_{k=0}^{5} \frac{k(k-1)}{2}$.
(b) $\sum_{j=1}^{4} \cos (j \pi) j$.
(c) $\sum_{n=1}^{5}\left(\frac{1}{n}-\frac{1}{n+1}\right)$.
4. Consider the sum $2+4+8+16+32+64$.
(a) Write the sum in sigma notation with the index starting at the value 1.
(b) Write the sum in sigma notation with the index starting at the value 0 .
(c) Write the sum in sigma notation with the index starting at the value 3 .
5. Use the common sum formulas

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2}, \quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

to evaluate the following sums.
(a) $\sum_{k=1}^{136}(2 k-3)$.
(b) $\sum_{j=2}^{20} j^{2}(j-4)$.

