Learning Goals

Lear	Learning Goal											Homework Problems					
5.3.1	.3.1 Express limits of Riemann sums as definite integrals.												1-8.				
5.3.2 prope	5.3.2 Evaluate definite integrals using either a limit of a Riemann sum, properties of definite integrals, or known area formulas												9-54, 63-70.				
5.3.3	5.3.3 Find average values of functions.											55-62.					
5.3.4 and p	Use t	he pro relatio	perties nships	s of th relati	e defii ng the	nite in m.	tegral	to ana	lyze i	ntegra	ls	71-8	35.				-

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(a+kbx) \delta x$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} f(a+kbx) \delta x$$

$$\int_{a}^{b} f(x) dx = \lim_{\|\|P\| \to 0} \sum_{k=1}^{n} f(a+bx) \delta x$$
where P denotes a partition of $[a,b]$ and $\|P\|$ is the length of the subintervals. (i.e. width of rectangles) in P.
Examples: 1) In the previous lecture, for $f(x) = x^{2}$ on $[0,2]$, we found

$$= \int_{a}^{n} \sum_{k=1}^{n} \frac{f(x+bx)}{n} = \frac{f(x+b)}{3n^{2}}$$

$$R_{n} = \sum_{k=1}^{n} \frac{f(x+bx)}{n} = \frac{f(x+b)}{3n^{2}}$$

$$R_{n} = \sum_{k=1}^{n} \frac{f(x+bx)}{n} = \frac{f(x+bx)}{3n^{2}}$$

$$R_{n} = \sum_{k=1}^{n} \frac{f(x+bx)}{n} = \frac{f(x+bx)}{n}$$

$$R_{n} = \sum_{k=1}^{n} \frac{$$

_

_

_

_

_

In general, if k is a constant, then

$$\int_{a}^{b} kdx = k(b-a) \quad (area of a rectangle).$$
a) Evaluate
$$\int_{a}^{3} \sqrt{q-x^{2}} dx$$

$$\int_{a}^{a} \sqrt{q-x^{2}} dx$$

$$\int_{a}^{a} \sqrt{q-x^{2}} dx$$

$$\int_{a}^{a} \sqrt{q-x^{2}} dx = \sqrt{q-x^{2}} \Rightarrow y^{2} = q-x^{2} \Rightarrow x^{2}+y^{2} = q.$$
a)
$$\int_{a}^{a} \sqrt{q-x^{2}} dx = area af quarter disk of redive 3$$

$$= \frac{1}{4} \cdot \pi \cdot 3^{2} = \frac{q\pi}{4}.$$
4) Find a function $f(x)$ and an interval $[a,b]$ such that
$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{k=1}^{n} (3 + \frac{4k}{n})^{2} \frac{4}{n}$$
We match with the general form of a right Riemann sum
$$\sum_{k=1}^{n} (3 + \frac{4k}{n})^{4} \frac{4}{n} = \sum_{k=1}^{n} f(a+kAx) Ax$$
We can take $a = 3$ and $Ax = \frac{4}{n} = \frac{b-3}{n}$, so $b = 7$.
Then $f(a+kAx) = f(3 + \frac{4k}{n}) = (3 + \frac{4k}{n})^{2}$

X

X

so
$$f(\mathbf{x}) = \mathbf{x}^2$$
 on $[3,7]$

Note: We can choose a different interval if we 'shift"
$$f(x)$$
.
If $a = 0$, then $\Delta x = \frac{4}{n} = \frac{b-0}{n}$ so $b = 4$.
Then $f(a + k\Delta x) = f(\frac{4k}{n}) = (3 + \frac{4k}{n})^2$
so $f(x) = (3 + x)^2$ on $[0, 4]$ also works
5) Find a function $f(x)$ and a value of b so that
 $\int_0^0 f(x) dx = \lim_{n \to \infty} \sum_{k=1}^{\infty} \ln(\frac{6k}{n} + 5) \frac{3}{n}$
We try to match the sum with a Riemaan sum:
 $\sum_{k=1}^{\infty} \ln(\frac{6k}{n} + 5) \frac{3}{n} = \sum_{k=1}^{\infty} f(a + k\Delta x) \Delta x$
We have $a = 0$ and $\Delta x = \frac{3}{n} = \frac{b-0}{n}$, so $[b = 3]$.
Then $f(a + k\Delta x) = f(\frac{3k}{n}) = \ln(\frac{6k}{n} + 5) = \ln(2, \frac{3k}{n} + 5)$
so $f(x) = \ln(\frac{6k}{n} + 5) = \ln(2, \frac{3k}{n} + 5)$
6) Find a function $f(x)$ and a value of b so that
 $\int_0^0 f(x) dx = \lim_{n \to \infty} \sum_{k=1}^{\infty} \arctan(\frac{50k^2}{n^2} - \frac{15k}{n} - 8) \frac{5}{n}$

We try to match the sum with a Riemann sum:

$$\sum_{k=1}^{n} \arctan\left(\frac{50k^2}{n^2} - \frac{15k}{n} - 8\right) \frac{5}{n} = \sum_{k=1}^{n} f(a + k\Delta x) \Delta x$$
We have $a = 0$ and $\Delta x = \frac{5}{n} = \frac{5-0}{n}$ so $b = 5$.
Then $f(a + k\Delta x) = f(\frac{5k}{n}) = \arctan\left(\frac{50k^2}{n^2} - \frac{15k}{n} - 8\right)$

$$= \arctan\left(2(\frac{5k}{n})^2 - 3\frac{5k}{n} - 8\right)$$
so $f(x) = \arctan\left(\frac{3k^2 - 3x - 8}{n}\right)$.
Photom is $av(f) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$
Calculate the average value of $f(x) = 1 \times 1 - 1$ on $[-1, +]$.
 $3^{4} y = |x| - 1$
 $A_1 = \frac{1}{2} base. beight = \frac{1}{2} \cdot 3 \cdot 3 = \frac{9}{2}$
So $av(f) = \frac{1}{4-(1)} \int_{-1}^{4} f(x) dx = \frac{1}{5} = \frac{7}{2} = \frac{7}{10}$.

