Section 5.3

Definite Integrals

Learning Goals

Learning Goal	Homework Problems
5.3.1 Express limits of Riemann sums as definite integrals.	$1-8$.
5.3.2 Evaluate definite integrals using either a limit of a Riemann sum, properties of definite integrals, or known area formulas.	$9-54,63-70$.
5.3.3 Find average values of functions.	$55-62$.
5.3.4 Use the properties of the definite integral to analyze integrals and prove relationships relating them.	$71-85$.

Recall: Net area between graph and x-axis on $[a, b] \simeq R_{n}$.

$$
R_{n}=\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}
$$

Riemann sum with n rectangles

To find the exact net area, we take the limit as the number of rectangles n goes to ∞.

Definition: the definite integral of f on $[a, b]$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}
$$

Remarks: - This limit may or may not exist. We say that f is integrable on $[a, b]$ when it does. All functions which are continuous (except at finitely many points) are integrable.

- The value of $\int_{a}^{b} f(x) d x$ is the net area between the graph of f and the x-axis on $[a, b]$.
- We will usually work with equal length subintervals and right sums. Then

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f(a+k \Delta x) \Delta x \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(a+\frac{k(b-a)}{n}\right) \frac{b-a}{n}
\end{aligned}
$$

- MyLab writes the definition in the equivalent form:

$$
\int_{a}^{b} f(x) d x=\lim _{\|p\| \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}
$$

where P denotes a partition of $[a, b]$ and $\|P\|$ is the length of the subintervals. (i.e. width of rectangles) in P.

Examples: 1) In the previous lecture, for $f(x)=x^{2}$ on

And $\lim _{n \rightarrow \infty} R_{n}=\frac{8}{3}$
So $\quad \int_{0}^{2} x^{2} d x=\frac{8}{3}, \quad A=\frac{8}{3}$ square units.
2) Evaluate $\int_{-1}^{3} 2 d x$.

$$
\begin{aligned}
& \begin{array}{rl}
2_{2}^{y} & y=2 \quad \int_{-1}^{3} 2 d x=\text { net area between } y=2 \\
\text { and } x \text {-axis on }[-1,3]
\end{array} \\
& \text { and } x \text {-axis on }[-1,3] \\
& =\text { height. base (rectangle) } \\
& =2 \cdot(3-(-1))=8 \text {. }
\end{aligned}
$$

In general, if k is a constant, then
$\int_{a}^{b} k d x=k(b-a) \quad$ (area of a rectangle).
3) Evaluate $\int_{0}^{3} \sqrt{9-x^{2}} d x$.

$$
y=\sqrt{9-x^{2}} \Rightarrow y^{2}=9-x^{2} \Rightarrow x^{2}+y^{2}=9 .
$$

So $y=\sqrt{9-x^{2}}$ is a semi-circle of radius 3 centered at $(0,0)$.
$\int_{0}^{3} \sqrt{9-x^{2}} d x=$ area of quarter disk of radius 3

$$
=\frac{1}{4} \cdot \pi \cdot 3^{2}=\frac{9 \pi}{4}
$$

4) Find a function $f(x)$ and an interval $[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(3+\frac{4 k}{n}\right)^{2} \frac{4}{n}
$$

We match with the general form of a right Riemann sum

$$
\sum_{k=1}^{n}\left(3+\frac{4 k}{n}\right)^{2} \frac{4}{n}=\sum_{k=1}^{n} f(a+k \Delta x) \Delta x
$$

We can take $a=3$ and $\Delta x=\frac{4}{n}=\frac{b-3}{n}$, so $b=7$

Then $\quad f(a+k \Delta x)=f\left(3+\frac{4 k}{n}\right)=\left(3+\frac{4 k}{n}\right)^{2}$

So $f(x)=x^{2}$ on $[3,7]$

Note: we can choose a different interval if we "shift" $f(x)$. If $a=0$, then $\Delta x=\frac{4}{n}=\frac{b-o}{n}$ so $b=4$.

Then $f(a+k \Delta x)=f\left(\frac{4 k}{n}\right)=\left(3+\frac{4 k}{n}\right)^{2}$
so $f(x)=(3+x)^{2}$ on $[0,4]$ also works
5) Find a function $f(x)$ and a value of b so that

$$
\int_{0}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \ln \left(\frac{6 k}{n}+5\right) \frac{3}{n}
$$

We try to match the sum with a Riemann sum:

$$
\sum_{k=1}^{n} \ln \left(\frac{6 k}{n}+5\right) \frac{3}{n}=\sum_{k=1}^{n} f(a+k \Delta x) \Delta x
$$

We have $a=0$ and $\Delta x=\frac{3}{n}=\frac{b-0}{n}$, so $b=3$.
Then $\quad f(a+k \Delta x)=f\left(\frac{3 k}{n}\right)=\ln \left(\frac{6 k}{n}+5\right)=\ln \binom{\left.2 \cdot \frac{3 k}{n}+5\right)}{x}$

$$
\text { so } f(x)=\ln (2 x+5)
$$

6) Find a function $f(x)$ and a value of b so that

$$
\int_{0}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \arctan \left(\frac{50 k^{2}}{n^{2}}-\frac{15 k}{n}-8\right) \frac{5}{n}
$$

We try to match the sum with a Riemann sum:

$$
\sum_{k=1}^{n} \arctan \left(\frac{50 k^{2}}{n^{2}}-\frac{15 k}{n}-8\right) \frac{5}{n}=\sum_{k=1}^{n} f(a+k \Delta x) \Delta x
$$

We have $a=0$ and $\Delta x=\frac{5}{n}=\frac{5-0}{n}$ so $b=5$.
Then $\quad f(a+k \Delta x)=f\left(\frac{5 k}{n}\right)=\arctan \left(\frac{50 k^{2}}{n^{2}}-\frac{15 k}{n}-8\right)$

$$
=\arctan \left(2\left(\frac{5 k}{n}\right)^{2}-3 \frac{5 k}{x}-8\right)
$$

So $\quad f(x)=\arctan \left(2 x^{2}-3 x-8\right)$.
7) The average value of a function f on an interval $[a, b]$ is

$$
\operatorname{av}(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Calculate the average value of $f(x)=|x|-1$ on $[-1,4]$.

$$
\begin{aligned}
& \int_{-1}^{4}(|x|-1) d x=A_{1}-A_{2}=\frac{9}{2}-1=\frac{7}{2} \\
& A_{1}=\frac{1}{2} \text {.base. height }=\frac{1}{2} \cdot 3 \cdot 3=\frac{9}{2} \\
& A_{2}=\frac{1}{2} \text {.base. height }=\frac{1}{2} \cdot 2 \cdot 1=1
\end{aligned}
$$

So $\quad \operatorname{ar}(f)=\frac{1}{4-(-1)} \int_{-1}^{4} f(x) d x=\frac{1}{5} \cdot \frac{7}{2}=\frac{7}{10}$.

Properties of definite integrals:
i) $\int_{a}^{a} f(x) d x=0$

ii) Reverse bounds: $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
iii) Additivity / subdivision

$$
\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x
$$

iv) Linearity:

$$
\begin{aligned}
& \int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x \\
& \int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x \quad(k \text { constant })
\end{aligned}
$$

v) Domination:

If $f(x) \geqslant g(x)$ on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x \geqslant \int_{a}^{b} g(x) d x \text {. }
$$

vi) Parity:

If f is even, $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$

Examples: 1) Suppose that $\int_{-1}^{3} f(x) d x=6$ and $\int_{2}^{3} f(x) d x=2$.
Evaluate $\int_{-1}^{2}(2 f(x)-5) d x$.

$$
\int_{-1}^{2}(2 f(x)-5) d x=2 \int_{-1}^{2} f(x) d x-\int_{-1}^{2} 5 d x
$$

We know that $\int_{-1}^{3} f(x) d x=\int_{-1}^{2} f(x) d x+\int_{2}^{3} f(x) d x$

$$
6=\int_{-1}^{2} f(x) d x+2 \Rightarrow \int_{-1}^{2} f(x) d x=4
$$

So $\int_{-1}^{2}(2 f(x)-5) d x=2 \int_{-1}^{2} f(x) d x-\int_{-1}^{2} 5 d x$

$$
=2.4-5 \cdot 3=-7 .
$$

2) Use the graph of f to calculate each integral (Each piece of the graph is either a straight line or a circle are.)

a) $\int_{4}^{\prime \prime} f(x) d x$
b) $\int_{0}^{9}(f(x)-3) d x$
c) $\int_{11}^{2} f(x) d x$
d) $\int_{0}^{7}|f(x)| d x$
e) $\int_{2}^{4}(x-f(x)) d x$

a) $\int_{4}^{\prime \prime} f(x) d x=2 \pi-3$.
b) $\int_{0}^{9}(f(x)-3) d x=\int_{0}^{9} f(x) d x-\int_{0}^{9} 3 d x$

$$
=(4+1-1-3+\pi)-3 \cdot 9=\pi-26 .
$$

c) $\int_{11}^{2} f(x) d x=-\int_{2}^{11} f(x) d x=-(1-1-3+2 \pi)=3-2 \pi$.
d) $\int_{0}^{7}|f(x)| d x=4+1+1+3=9$.

$$
\begin{array}{ll}
\text { e) } \int_{2}^{4}(x-f(x)) d x=\int_{2}^{4} x d x-\int_{2}^{4} f(x) d x=6-(1-1)=6 . \\
& \int_{2}^{4} x d x=4+2=6
\end{array}
$$

