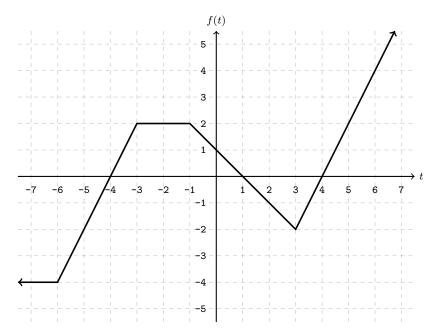
Rutgers University Math 151

Section 5.4: Fundamental Theorem of Calculus - Worksheet


1. Evaluate the following definite integrals.

(a)
$$\int_{1}^{3} \frac{3x^{2} - 2x + 1}{x} dx$$
 (d) $\int_{\pi/30}^{\pi/20} \sec^{2}(5\theta) d\theta$ (g) $\int_{1}^{4} \sqrt{x} \left(x - \frac{4}{x}\right) dx$
(b) $\int_{0}^{1/2} \frac{dt}{\sqrt{1 - t^{2}}}$ (e) $\int_{-3}^{\sqrt{3}} \frac{4}{x^{2} + 3} dx$ (h) $\int_{0}^{2\pi} \left(\sin\left(\frac{x}{3}\right) + 1\right) d\theta$
(c) $\int_{0}^{\ln(2)} (e^{x} + 1)^{2} dx$ (f) $\int_{0}^{5} \frac{dz}{4z + 7}$ (i) $\int_{\sqrt{2}}^{2} \frac{5}{3x\sqrt{x^{2} - 1}} dx$

2. Evaluate the following derivatives.

(a)
$$\frac{d}{dx} \left(\int_{4}^{x} \sqrt{t^{4} + 1} dt \right)$$
 (c) $\frac{d}{dx} \left(\int_{1}^{2x} \frac{dt}{t^{3} + t + 1} \right)$ (e) $\frac{d}{dx} \left(\int_{\tan(2x)}^{\sec(2x)} \cos(\sqrt{t}) dt \right)$
(b) $\frac{d}{dx} \left(\int_{x}^{0} \sec(5t^{2}) dt \right)$ (d) $\frac{d}{dx} \left(\int_{3x^{2}}^{7} (t^{4} + 2)^{3/4} dt \right)$ (f) $\frac{d}{dx} \left(\int_{0}^{\sin^{-1}(3x)} t^{t} dt \right)$

3. For the function f(t) sketched below, let $F(x) = \int_{-3}^{x} f(t)dt$.

(a) Evaluate the following.

- (i) F(3) (ii) F(-6) (iii) F'(-2) (iv) F'(4)
- (b) Find an equation of the tangent line to the graph of y = F(x) at x = 6.
- (c) Find the critical points of F.
- (d) Find the intervals on which F is increasing and the intervals on which F is decreasing.
- (e) Find the x-values at which F(x) has a local maximum or a local minimum.
- (f) Find the intervals on which F is concave up and the intervals on which F is concave down.
- (g) Find the x-values at which F(x) has an inflection point.

4. Let
$$f(x) = 7 + \int_{13}^{x} t(t-14)^{2/5} dt$$
.

- (a) Find an equation of the tangent line to the graph of y = f(x) at x = 13.
- (b) Find the critical points of f.
- (c) Find the intervals on which f is increasing and the intervals on which F is decreasing.
- (d) Find the x-values at which f(x) has a local maximum or a local minimum.
- (e) Find the intervals on which f is concave up and the intervals on which F is concave down.
- (f) Find the x-values at which f(x) has an inflection point.