Rutgers University
Math 151

Section 5.4: Fundamental Theorem of Calculus - Worksheet

1. Evaluate the following definite integrals.
(a) $\int_{1}^{3} \frac{3 x^{2}-2 x+1}{x} d x$
(d) $\int_{\pi / 30}^{\pi / 20} \sec ^{2}(5 \theta) d \theta$
(g) $\int_{1}^{4} \sqrt{x}\left(x-\frac{4}{x}\right) d x$
(b) $\int_{0}^{1 / 2} \frac{d t}{\sqrt{1-t^{2}}}$
(e) $\int_{-3}^{\sqrt{3}} \frac{4}{x^{2}+3} d x$
(h) $\int_{0}^{2 \pi}\left(\sin \left(\frac{x}{3}\right)+1\right) d \theta$
(c) $\int_{0}^{\ln (2)}\left(e^{x}+1\right)^{2} d x$
(f) $\int_{0}^{5} \frac{d z}{4 z+7}$
(i) $\int_{\sqrt{2}}^{2} \frac{5}{3 x \sqrt{x^{2}-1}} d x$
2. Evaluate the following derivatives.
(a) $\frac{d}{d x}\left(\int_{4}^{x} \sqrt{t^{4}+1} d t\right)$
(c) $\frac{d}{d x}\left(\int_{1}^{2 x} \frac{d t}{t^{3}+t+1}\right)$
(e) $\frac{d}{d x}\left(\int_{\tan (2 x)}^{\sec (2 x)} \cos (\sqrt{t}) d t\right)$
(b) $\frac{d}{d x}\left(\int_{x}^{0} \sec \left(5 t^{2}\right) d t\right)$
(d) $\frac{d}{d x}\left(\int_{3 x^{2}}^{7}\left(t^{4}+2\right)^{3 / 4} d t\right)$
(f) $\frac{d}{d x}\left(\int_{0}^{\sin ^{-1}(3 x)} t^{t} d t\right)$
3. For the function $f(t)$ sketched below, let $F(x)=\int_{-3}^{x} f(t) d t$.

(a) Evaluate the following.
(i) $F(3)$
(ii) $F(-6)$
(iii) $F^{\prime}(-2)$
(iv) $F^{\prime}(4)$
(b) Find an equation of the tangent line to the graph of $y=F(x)$ at $x=6$.
(c) Find the critical points of F.
(d) Find the intervals on which F is increasing and the intervals on which F is decreasing.
(e) Find the x-values at which $F(x)$ has a local maximum or a local minimum.
(f) Find the intervals on which F is concave up and the intervals on which F is concave down.
(g) Find the x-values at which $F(x)$ has an inflection point.
4. Let $f(x)=7+\int_{13}^{x} t(t-14)^{2 / 5} d t$.
(a) Find an equation of the tangent line to the graph of $y=f(x)$ at $x=13$.
(b) Find the critical points of f.
(c) Find the intervals on which f is increasing and the intervals on which F is decreasing.
(d) Find the x-values at which $f(x)$ has a local maximum or a local minimum.
(e) Find the intervals on which f is concave up and the intervals on which F is concave down.
(f) Find the x-values at which $f(x)$ has an inflection point.
