Rutgers University
Math 151

Section 5.4: Fundamental Theorem of Calculus - Worksheet Solutions

1. Evaluate the following definite integrals.
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2. Evaluate the following derivatives.
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3. For the function f(t) sketched below, let F'(z) = / f(t)dt.
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(a)

Evaluate the following.
Solution.

(i) F(3)=[4] (i) F(-5)=[-3] (i) F'(-2)=[2]  (iv) F'(4) =[0]

Find an equation of the tangent line to the graph of y = F(z) at x = 6.

Solution. We have F(6) = 7 and F'(6) = f(6) = 4, so an equation of the tangent line to the graph
pfy = F(x) atszis‘y—7:4(m—6)‘.

Find the critical points of F'.

Solution. We have F'(z) = f(x). Observe that f(x) is never undefined, and the solutions of f(x) =0

Find the intervals on which F' is increasing and the intervals on which F' is decreasing.

Solution. F is increasing on | [—4,1],[4,00) | F is decreasing on ‘ (—o0, —4],[1,4] ‘

Find the z-values at which F'(z) has a local maximum or a local minimum.

Solution. The location of the local maxima of F' is . The location of the local minima of F

Find the intervals on which F' is concave up and the intervals on which F'is concave down.

Solution. F is concave up when F’ = f is increasing, which happens on ‘ [—6,—3],[3,0) ‘ Fis

concave down when F’ = f is decreasing, which happens on | [—1, 3] |.




(g) Find the z-values at which F(z) has an inflection point.

Solution. The inflection points of F' are located where the concavity changes, which is at .
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4. Let f(z) = 7+/ t(t —14)%/°dLt.
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(a) Find an equation of the tangent line to the graph of y = f(z) at x = 13.

Solution. We have
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So an equation of the tangent line to the graph of y = f(z) at = 13 is ‘ y—T7=—-13(z — 13) ‘

(b) Find the critical points of f.

Solution. The derivative of f is f'(x) = x(x — 14)%/® so the critical points of f are .

(c¢) Find the intervals on which f is increasing and the intervals on which F' is decreasing.

Solution. Let us test for the sign of f/(z) in between the critical points.
e On (—o0,0), the sign of f'(x) is (=)(+) = (—).

e On (0,14) the sign of f/(z) is (+)(+) = (+).

e On (14,00), the sign of f/'(z) is (+)(+) = (+).

Hence, f is increasing on | [0, 00) | and decreasing on | (oo, 0] |.

(d) Find the z-values at which f(z) has a local maximum or a local minimum.

Solution. Based on our findings in the previous question, we can deduce that f does not have a local
maximum and has a local minimum at .

(e) Find the intervals on which f is concave up and the intervals on which F' is concave down.

Solution. We'll need a sign chart for f”/(x) to determine this. We have
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Let us analyze the sign of f”(x). The points where f”(x) is zero or undefined are = = 10, 14.
e On (—o0, 10), the sign of f"(z) is =3 = (+).
e On (10,14), the sign of f"(z) is & = ().



e On (14,00), the sign of f"(z) is % = (+).

Hence, f is concave up on ‘ (—00,10], [14, 00) ‘ and concave down on | [10,14] |.

(f) Find the z-values at which f(x) has an inflection point.

Solution. Based on our previous answer, we can deduce that f has inflection points at | x = 10,14 |.



