Rutgers University
Math 151

Section 5.4: Fundamental Theorem of Calculus - Worksheet Solutions

1. Evaluate the following definite integrals.
(a) $\int_{1}^{3} \frac{3 x^{2}-2 x+1}{x} d x$

Solution.

$$
\begin{aligned}
\int_{1}^{3} \frac{3 x^{2}-2 x+1}{x} d x & =\int_{1}^{3}\left(3 x-2+\frac{1}{x}\right) d x \\
& =\left[\frac{3 x^{2}}{2}-2 x+\ln |x|\right]_{1}^{3} \\
& =\left(\frac{3 \cdot 3^{2}}{2}-2 \cdot 3+\ln (3)\right)-\left(\frac{3}{2}-2+\ln (1)\right) \\
& =\ln (3)-1
\end{aligned}
$$

(b) $\int_{0}^{1 / 2} \frac{d t}{\sqrt{1-t^{2}}}$

Solution.

$$
\begin{aligned}
\int_{0}^{1 / 2} \frac{d t}{\sqrt{1-t^{2}}} & =\left[\sin ^{-1}(t)\right]_{0}^{1 / 2} \\
& =\sin ^{-1}\left(\frac{1}{2}\right)-\sin ^{-1}(0) \\
& =\frac{\pi}{6}
\end{aligned}
$$

(c) $\int_{0}^{\ln (2)}\left(e^{x}+1\right)^{2} d x$

Solution.

$$
\begin{aligned}
\int_{0}^{\ln (2)}\left(e^{x}+1\right)^{2} d x & =\int_{0}^{\ln (2)}\left(e^{2 x}+2 e^{x}+1\right) d x \\
& =\left[\frac{e^{2} x}{2}+2 e^{x}+x\right]_{0}^{\ln (2)} \\
& =\left(\frac{e^{2 \ln (2)}}{2}+2 e^{\ln (2)}+\ln (2)\right)-\left(\frac{e^{0}}{2}+2 e^{0}+0\right) \\
& =\frac{7}{2}+\ln (2) .
\end{aligned}
$$

(d) $\int_{\pi / 30}^{\pi / 20} \sec ^{2}(5 \theta) d \theta$

Solution.

$$
\begin{aligned}
\int_{\pi / 30}^{\pi / 20} \sec ^{2}(5 \theta) d \theta & =\left[\frac{1}{5} \tan (5 \theta)\right]_{\pi / 30}^{\pi / 20} \\
& =\frac{1}{5} \tan \left(\frac{\pi}{4}\right)-\frac{1}{5} \tan \left(\frac{\pi}{6}\right) \\
& =\frac{1}{5}-\frac{\sqrt{3}}{15} \\
& =\frac{3-\sqrt{3}}{15}
\end{aligned}
$$

(e) $\int_{-3}^{\sqrt{3}} \frac{4}{x^{2}+3} d x$

Solution.

$$
\begin{aligned}
\int_{-3}^{\sqrt{3}} \frac{4}{x^{2}+3} d x & =\left[\frac{4}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)\right]_{-3}^{\sqrt{3}} \\
& =\frac{4}{\sqrt{3}}\left(\tan ^{-1}(1)-\tan ^{-1}(-\sqrt{3})\right) \\
& =\frac{4 \sqrt{3}}{12}\left(\frac{\pi}{4}-\left(-\frac{\pi}{3}\right)\right) \\
& =\frac{28 \sqrt{3} \pi}{144}
\end{aligned}
$$

(f) $\int_{0}^{5} \frac{d z}{4 z+7}$

Solution.

$$
\begin{aligned}
\int_{0}^{5} \frac{d z}{4 z+7} & =\left[\frac{1}{4} \ln |4 z+7|\right]_{0}^{5} \\
& =\frac{1}{4}(\ln (27)-\ln (7)) \\
& =\frac{1}{4} \ln \left(\frac{27}{7}\right)
\end{aligned}
$$

(g) $\int_{1}^{4} \sqrt{x}\left(x-\frac{4}{x}\right) d x$

Solution.

$$
\begin{aligned}
\int_{1}^{4} \sqrt{x}\left(x-\frac{4}{x}\right) d x & =\int_{1}^{4}\left(x^{3 / 2}-4 x^{-1 / 2}\right) d x \\
& =\left[\frac{x^{5 / 2}}{5 / 2}-4 \frac{x^{1 / 2}}{1 / 2}\right]_{1}^{4} \\
& =\left(\frac{4^{5 / 2}}{5 / 2}-4 \frac{4^{1 / 2}}{1 / 2}\right)-\left(\frac{1}{5 / 2}-\frac{4}{1 / 2}\right) \\
& =\left(\frac{64}{5}-16\right)-\left(\frac{2}{5}-8\right) \\
& =\frac{22}{5}
\end{aligned}
$$

(h) $\int_{0}^{2 \pi}\left(\sin \left(\frac{x}{3}\right)+1\right) d \theta$

Solution.

$$
\begin{aligned}
\int_{0}^{2 \pi}\left(\sin \left(\frac{x}{3}\right)+1\right) d \theta & =\left[-3 \cos \left(\frac{\theta}{3}\right)+\theta\right]_{0}^{2 \pi} \\
& =\left(-3 \cos \left(\frac{2 \pi}{3}\right)+2 \pi\right)-(-3 \cos (0)+0) \\
& =\frac{3}{2}+2 \pi+3 \\
& =\frac{9}{2}+2 \pi
\end{aligned}
$$

(i) $\int_{\sqrt{2}}^{2} \frac{5}{3 x \sqrt{x^{2}-1}} d x$

Solution.

$$
\begin{aligned}
\int_{\sqrt{2}}^{2} \frac{5}{3 x \sqrt{x^{2}-1}} d x & =\left[\frac{5}{3} \sec ^{-1}|x|\right]_{\sqrt{2}}^{2} \\
& =\frac{5}{3}\left(\sec ^{-1}(2)-\sec ^{-1}(\sqrt{2})\right) \\
& =\frac{5}{3}\left(\frac{\pi}{3}-\frac{\pi}{4}\right) \\
& =\frac{5 \pi}{36}
\end{aligned}
$$

2. Evaluate the following derivatives.
(a) $\frac{d}{d x}\left(\int_{4}^{x} \sqrt{t^{4}+1} d t\right)$

Solution. $\frac{d}{d x}\left(\int_{4}^{x} \sqrt{t^{4}+1} d t\right)=\sqrt{x^{4}+1}$
(b) $\frac{d}{d x}\left(\int_{x}^{0} \sec \left(5 t^{2}\right) d t\right)$

Solution. $\frac{d}{d x}\left(\int_{x}^{0} \sec \left(5 t^{2}\right) d t\right)=-\frac{d}{d x}\left(\int_{0}^{x} \sec \left(5 t^{2}\right) d t\right)=-\sec \left(5 x^{2}\right)$.
(c) $\frac{d}{d x}\left(\int_{1}^{2 x} \frac{d t}{t^{3}+t+1}\right)$

Solution. $\frac{d}{d x}\left(\int_{1}^{2 x} \frac{d t}{t^{3}+t+1}\right)=\frac{1}{(2 x)^{3}+2 x+1}(2)=\frac{2}{8 x^{2}+2 x+1}$.
(d) $\frac{d}{d x}\left(\int_{3 x^{2}}^{7}\left(t^{4}+2\right)^{3 / 4} d t\right)$

Solution. $\frac{d}{d x}\left(\int_{3 x^{2}}^{7}\left(t^{4}+2\right)^{3 / 4} d t\right)=-\frac{d}{d x}\left(\int_{7}^{3 x^{2}}\left(t^{4}+2\right)^{3 / 4} d t\right)=-\left(\left(3 x^{2}\right)^{4}+2\right)^{3 / 4}(6 x)=-6 x\left(81 x^{8}+2\right)^{3 / 4}$.
(e) $\frac{d}{d x}\left(\int_{\tan (2 x)}^{\sec (2 x)} \cos (\sqrt{t}) d t\right)$

Solution.

$$
\begin{aligned}
\frac{d}{d x}\left(\int_{\tan (2 x)}^{\sec (2 x)} \cos (\sqrt{t}) d t\right) & =\frac{d}{d x}\left(\int_{0}^{\sec (2 x)} \cos (\sqrt{t}) d t-\int_{0}^{\tan (2 x)} \cos (\sqrt{t}) d t\right) \\
& =\cos (\sqrt{\sec (2 x)}) \sec (2 x) \tan (2 x)(2)-\cos (\sqrt{\tan (2 x)}) \sec ^{2}(2 x)(2)
\end{aligned}
$$

(f) $\frac{d}{d x}\left(\int_{0}^{\sin ^{-1}(3 x)} t^{t} d t\right)$

Solution. $\frac{d}{d x}\left(\int_{0}^{\sin ^{-1}(3 x)} t^{t} d t\right)=\sin ^{-1}(3 x)^{\sin ^{-1}(3 x)} \frac{3}{\sqrt{1-(3 x)^{2}}}$.
3. For the function $f(t)$ sketched below, let $F(x)=\int_{-3}^{x} f(t) d t$.

(a) Evaluate the following.

Solution.
(i) $F(3)=4$
(ii) $F(-5)=-3$
(iii) $F^{\prime}(-2)=2$
(iv) $F^{\prime}(4)=0$
(b) Find an equation of the tangent line to the graph of $y=F(x)$ at $x=6$.

Solution. We have $F(6)=7$ and $F^{\prime}(6)=f(6)=4$, so an equation of the tangent line to the graph pf $y=F(x)$ at $x=6$ is $y-7=4(x-6)$.
(c) Find the critical points of F.

Solution. We have $F^{\prime}(x)=f(x)$. Observe that $f(x)$ is never undefined, and the solutions of $f(x)=0$ are $x=-4,1,4$.
(d) Find the intervals on which F is increasing and the intervals on which F is decreasing.

Solution. F is increasing on $[-4,1],[4, \infty)$. F is decreasing on $(-\infty,-4],[1,4]$.
(e) Find the x-values at which $F(x)$ has a local maximum or a local minimum.

Solution. The location of the local maxima of F is $x=1$. The location of the local minima of F are $x=-4,4$.
(f) Find the intervals on which F is concave up and the intervals on which F is concave down.

Solution. F is concave up when $F^{\prime}=f$ is increasing, which happens on $[-6,-3],[3, \infty)$. F is concave down when $F^{\prime}=f$ is decreasing, which happens on $[-1,3]$.
(g) Find the x-values at which $F(x)$ has an inflection point.

Solution. The inflection points of F are located where the concavity changes, which is at $x=3$.
4. Let $f(x)=7+\int_{13}^{x} t(t-14)^{2 / 5} d t$.
(a) Find an equation of the tangent line to the graph of $y=f(x)$ at $x=13$.

Solution. We have

$$
f(11)=7+\int_{13}^{13} t(t-14)^{2 / 5} d t=7+0=7
$$

and

$$
f^{\prime}(11)=\frac{d}{d x}\left(\int_{13}^{x} t(t-14)^{2 / 5} d t\right)_{\mid x=13}=\left(x(x-14)^{2 / 5}\right)_{\mid x=13}=13(13-12)^{2 / 5}=-13 .
$$

So an equation of the tangent line to the graph of $y=f(x)$ at $x=13$ is $y-7=-13(x-13)$.
(b) Find the critical points of f.

Solution. The derivative of f is $f^{\prime}(x)=x(x-14)^{2 / 5}$ so the critical points of f are $x=0,14$.
(c) Find the intervals on which f is increasing and the intervals on which F is decreasing.

Solution. Let us test for the sign of $f^{\prime}(x)$ in between the critical points.

- On $(-\infty, 0)$, the sign of $f^{\prime}(x)$ is $(-)(+)=(-)$.
- On $(0,14)$ the sign of $f^{\prime}(x)$ is $(+)(+)=(+)$.
- On $(14, \infty)$, the sign of $f^{\prime}(x)$ is $(+)(+)=(+)$.

Hence, f is increasing on $[0, \infty)$ and decreasing on $(\infty, 0]$.
(d) Find the x-values at which $f(x)$ has a local maximum or a local minimum.

Solution. Based on our findings in the previous question, we can deduce that f does not have a local maximum and has a local minimum at $x=0$.
(e) Find the intervals on which f is concave up and the intervals on which F is concave down.

Solution. We'll need a sign chart for $f^{\prime \prime}(x)$ to determine this. We have

$$
f^{\prime \prime}(x)=(x-14)^{2 / 5}+\frac{2 x}{5(x-14)^{3 / 5}}=\frac{5(x-14)+2 x}{5(x-14)^{3 / 5}}=\frac{7 x-70}{(x-14)^{3 / 5}}=\frac{7(x-10)}{(x-14)^{3 / 5}}
$$

Let us analyze the sign of $f^{\prime \prime}(x)$. The points where $f^{\prime \prime}(x)$ is zero or undefined are $x=10,14$.

- On $(-\infty, 10)$, the sign of $f^{\prime \prime}(x)$ is $\frac{(-)}{(-)}=(+)$.
- On $(10,14)$, the sign of $f^{\prime \prime}(x)$ is $\frac{(+)}{(-)}=(-)$.
- On $(14, \infty)$, the sign of $f^{\prime \prime}(x)$ is $\frac{(+)}{(+)}=(+)$.

Hence, f is concave up on $(-\infty, 10],[14, \infty)$ and concave down on $[10,14]$.
(f) Find the x-values at which $f(x)$ has an inflection point.

Solution. Based on our previous answer, we can deduce that f has inflection points at $x=10,14$.

