Rutgers University
Math 151

Section 5.6: Areas Between Curves - Worksheet

1. For each of the regions described below (i) sketch the region, clearly labeling the curves and their intersection points, (ii) calculate the area of the region using an x-integral and (iii) calculate the area of the region using a y-integral.
(a) The region to the right of the parabola $y=1-(x-2)^{2}$, below the line $y=1$ and to the left of the line $x-2 y=3$.
(b) The region bounded by the curves $y=2 x$ and $y=\sqrt[3]{32 x}$.
(c) The region bounded by the curves $y=\frac{4}{x+2}$ and $y=3-x$.
2. Calculate the area of the regions described below.
(a) The region bounded by the parabola $x=(y+3)^{2}-4$ and the line $x=3 y+9$.
(b) The region bounded by $y=\frac{4}{3+x^{2}}$ and $y=1$.
(c) The region bounded by $y=2 \ln (x+1)$, the x-axis and the line $x=4$.
(d) The region to the right of the y-axis, above the graph of $y=\sec (x)^{2}$ and below the graph of $y=2 \sec (x)$.
