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Chapter 1: Review of Algebra & Precalculus - Worksheet Solutions

1. Composite functions: recall that given two functions f and g, the function f o g (called f composed
with g) is

(f o g)(x) = f(g(x))-
(a) Given f(z) = /x and g(z) = (z — 3)?, find and simplify the following.
L (feg)(x)

Solution.

f((@=3)?) = /(@ =3)? =[|= - 3]}
ii. (gof)(x)

Solution.

iii. (fofof)(z)

Solution.
(fofof)@)=[(f(f(z)) = W: ((Qg;)é)é IS |

(b) Let H(x) = cos(32z?) + 1. Complete the table below to find pairs of functions f(x) and g(x) such
that H(z) = f(g(z)).

| fo)= | gl@)=
i. | cos(z)+1
ii. x?
iii. cos(3z?)
iv. T
v cos(3x?) + 7
Solution.
| f@)= | gl@)=
i. | cos(z)+1 3z?
ii. | cos(3z) 4+ 1 z?
iii. x+1 cos(3z?%)
iv. x cos(3z%) + 1
V. x—6 cos(3z?) + 7




2. Trigonometry:

(a) Suppose that cos(a) = 2 and 2 < 6 < 27. Evaluate the following.
i. tan(a)

Solution. We start by using the Pythagorean identity cos(a)? + sin(a)? to find sin(a). We get

(§>2 +sin(a)? =1

4 21
. 2 = 44
sin(e) =1-2r =35
121
- 5_ 2L
V/sin(a) 55
) 21
sin(a)] = *o-
V21
sin(a) = +——.
5
To determine which sign is appropriate, we use the fact that 37" < 0 < 27 (quadrant IV), which
implies sin(a) < 0. Therefore, sin(a) = —@. Now
sin(a) @ V21
tan(a) = == = i
cos(a) 2 2
ii. sin(2a)
Solution. We use a double-angle identity to get
V21 2 44/21
Sin(2a) = QSin(a) COS(CL) =2 <—5> 5 —T .

iii. cos(2a)

Solution. We use a double-angle identity to get

2
2 8 17
cos(2a) = 2cos(a)? —1 =2 ( ) -1 5% 55 |

(b) Evaluate the following.

1. sec (4?”) iii. cos—1 <_§> v. sin (sin_1 (0.8))
ii. tan=! (1) iv. csc™1(2) vi. sin™! (sin (27))
Solution.



iii. cos™!

iv. csc™1(2)

v. sin (sinf1 (0.8)) =

(-4

5
1

)

= vi. sin™! (sin( =

T
4

(¢) Simplify the following. Your answers should be algebraic expressions of = (not involving any trigono-

metric or inverse trigonometric functions).

i. cos (cos™!(z))

Solution. By definition of the inverse function,

ii. cos (sin™'())

of sin™!

To determine which sign is appropriate, recall that 0 = sinfl(x) is an angle in [—

=X |

cos (cos ™ (z))

. We get

2.3, 50

)

cos(f) > 0. Hence

cos(sin ! (z)) = /1 — 22|,

iii. sin (cos™(z))

Solution. We use the Pythagorean identity cos()?+sin(#)? = 1 with § = cos~!(z). By definition

of cos™!

, we know that cos(f) = x and 6 is in [0, 7]. We get

2 +sin(h)? =1
sin(f)? =1 — 22
Vsin(6)2 = /1 — 22
|sin(8)] = v/1— 22

sin(f) = £/1 — a2

To determine which sign is appropriate, recall that § = cos™!(z) is an angle in [0, 7], so sin(6) > 0.

Hence

sin(cos () = V1 — 22|




iv. sec (tan™! (4z))

Solution. We use the Pythagorean identity 1 + tan()?

sec(0)? =1+ (4z)? =1+ 1627
Vsec(0)? = /1 + 1622
|sec(f)| = V1 + 1622

sec(f) = £V 1+ 1622

= sec(f)? with § = tan—!
definition of tan™!, we know that tan(f) = 4z and 6 is in (—%,%). We get

(4z).

To determine which sign is appropriate, recall that § = tan=!(z) is an angle in [—g

sec(d) > 0. Hence

sec(tan™'(4x)) = /1 + 1622 |.

v. tan (cos*1 (%))

)

By

],so

Solution. We start by using the Pythagorean identity cos(6)? + sin(#)? = 1 with 6 = cos™* (%)

to find sin(#). By definition of cos™!, we know that cos(d) = £ and 6 is in [0,7]. We get

(3)2 +sin(9)” = 1

24— x2
0)=1-" =

sin(6) 1

/4
Sm

— 2

[sin(0)] = =5
— 2

sin(6) = vy

To determine which sign is appropriate, recall that § = cos™! (%) is an angle in [0, 7], so

sin(f) > 0. Hence sin(f) = ¥ 45I2 and

5in 4
tn (eos™" (5)) = 2@ =

22| /4 — 22

T

SIS

vi. csc (cot_1 (%T))

Solution. We use the Pythagorean identity 1 + cot(6)? = csc(d)? with § = cot™" (32).

definition of cot™!, we know that cot(f) = 3 and 6 is in (0, 7). We get

3 92 25 4 922
csc(6)? —1—&-(;) =1 927 _ 2o+ 9

25 25
25 + 92
CSC E—
V25 + 92
Jese(6)] = —; !

By



V25 + 9z2
csc(f) = :I:#
5
To determine which sign is appropriate, recall that § = cot™! (3?”) is an angle in (0,7), so

csc(6) > 0. Hence

csce (cot_1 (333)) _ V254922
5 ) -

3. Exponential and Logarithmic Functions:

(a) Evaluate the following.

i e1n(75) —21In(5)

Solution.

61n(75)721n(5) _ 61n(5%) = E = '

ii. log1(32)

Solution. Recall that by definition of logarithms, log 1 (32) is the exponent to which the base %

must be raised to obtain 32. Therefore |logs1(32) = =5|

iii. In(9e?) + In(v/9e) — In(27¢!/3)

Solution.
9¢21/9e e2el/?
2 _ 1/3y _ _ 241/2-1/3 13/6
In(9e*)+In(v9e)—In(27¢*/°) = In < 3701/ ) =In < YE ) =In (e ) =In (e ) =

b) Solve the following equations.
( g
i. 25x71 — 473x

Solution.

5r— 1= —6x
11z =1

1
T=—|

11

ii. logy(z +5) —logy(z) =2
Solution.

logy(z +5) — logy(z) = 2




5
log, <x1_ ):2

x+5:42
T
Tz +5=16x

152 =5

iii. €2* —3e* —10=10
Solution.
e —3e* —10=0

(€")* —3e" =10 =0
(e —=5)(e” +2)=0

e =5ore*=-2

x = In(5)

4. Inverse Functions: each function below is one-to-one. Find the inverse function.

(a) f(z) = (z+8)""

Solution.
fly) ==z
(y+8)7" ==
4/7
((y+8)7/4> — .’1,‘4/7
y+8=2at"
y =27 -8
fla)=a""—8
3 —2x
b pr—
b) fo) =
Solution.
fly) ==
3—2y .
4y +7

3—2y=x(dy+7)
3—2y=day+Tx



(©) f(x) =5+ 2+

Solution.

(d) f(z) =1 — arcsin(x?)

Solution.

Solution.

doy+2y=3—"Tzx
ydx +2)=3—-Tx
3—Tx
:4x+2
3—Tx
T Az +2

Y

@)

fly) ==

1 — arcsin(y®) = =
arcsin(y®) =1 -z
y® =sin(l — x)

y = v/sin(l — x)

fHx) = {/sin(1 — x)




Solution.

fly) ==
2y

w3

2Y =2(2Y +3)

2Y = x2Y + 3x

2Y — x2Y = 3z

(1 —z) =3z
3x
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Section 2.1: Introduction to Limits - Worksheet Solutions

1. Calculate the average rate of change of the following functions on the given intervals.

(a) f(xz) =2In(5z + 1) on the interval [0, 3].

Solution.

Af _ f3) = f(0)
Az 3-0
2In(16) — 21In(1)
3
81n(2
R
(b) f(z) = sin(4x) on the interval [, Z].
Solution.
Af _f(fH) -1 (5)
Ax 15~ 91
sin (%) — sin (%)
21
v3 _ 1
_ 2 2
21
125y

(¢) f(x)=arctan (3z) on the interval [—3, 1]

Solution.

1
3 ( 5)
arctan(1) — arctan(—1)
3

i)
2
3

_[&=

4




2. The graph of the function y = f(x) is given below.

Y

Evaluate f(a) and lim f(z) for the following values of a, or say if the quantity does not exist.
r—ra

(a) a=-3

Solution. | f(—3) = 1| and limgf(:v) does not exist |.

z——

(b) a=-2

Solution. | f(—2) = —4|and | lim f(z) =0}

T——2

(c) a=1

Solution. ‘f(l) is undeﬁned‘ and lim1 f(z) does not exist |.
z—>

(d) a=2

Solution. ‘f(?) is undeﬁned‘ and | lim f(x) =3/

z—2

(e) a=4

Solution. | f(4) =5|and | lim f(z) = —1]|

r—5

3. The following table of values are given for the functions f(z) and g(z). Use these to estimate lin% f(z)
T—

and lin% g(z) or say if a limit does not exist.
T—r



x 2.9 | 3.01 | 2.999 | 3.0001 | 2.99999
f(z) | 415 | 3.95 | 4.05 | 3.9993 | 4.0005
g(x) | 7.98 | 1.001 | 7.997 | 1.0002 | 7.99992

Solution. | lim f(x) =4|and | lim g(z) does not exist |.
r—3 r—3

4. Using a limit of average rates of change, find the instantaneous rate of change of the following functions
at the given value of x.

(a) f(z) =22 -3z +Tatx=0.

Solution.
_ 2 _ o
L O J(O) R 3h 47T
h—0 h h—0 h
i h* — 3h
a5 h
=limh-3
h—0
(b) f(x) = —atz=-1
Solution.
lim f(=1+h)—f(-1) iy oA (—3)
h—0 h h—0 h
= lim 761:rhh +%
h—0 h
_ iy 8L R +6—h
h—0 6h(6 — h)
~ fipg 2
o h—0 6h(6 — h)
= lim L
~ h—06(6 — h)
_| 5
36
(c¢) [Advanced] f(x) ! at 4
Vi €T = —/]/m— xr = 4.
V2r +1
Solution.

11
lim fd+h)— f(4) _ iy Y02 3
h—0 h h—0 h

B th—\/9+2h 3+V9+2h
h—0 3h/9+2h 3+ 9+ 2h




. 9— (9 +2h)
= lim
h=0 3h\/9 + 2h (3 + v/9 + 2h)
. —2h
= lim
h=0 3h\/9 + 2R (3 + /9 + 2h)
—2
= 1.
H50 379+ 25 (3 + /9 + 2h)
—2
C3V9+0(3+V9+0)
L
27 |

5. The position of an object moving along an axis is given by the function s(t) = 6+/x + 1.

(a) Find the average velocity of the object between t = 0 and ¢ = 15.

Solution.

As  s(15) —s(0)

At 15-0
_6VI5+1-6V0+1
N 15

(b) Find the position and instantaneous velocity of the object at t = 3.

Solution. At t = 3, the position is
s(3) =6v3+1=[12]

The velocity is
s(34+h) —s(3)

v(3) = Jim h
. 6V4+h—12
= hm —_—

h—0 h

6\/4—|—h—2 Va+h+2

= lim .
h—0 h VA+h+2
lim 6 44 h—4
= 1m —_————
h=0 "R (V/A+h+2)
h

= lim 6 ————

h—0 h(\/4+h+2)
lim 6 L

= lim 6 ——
h—0 4+ h+2



. —
V4+0+2

]
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Section 2.2: Calculating Limits - Worksheet Solutions

1. Evaluate the following limits. If a limit does not exist, explain why.

. 22—z —6
@t
Solution.
lim 22—z -6 ~ lim (x=3)(z+2)
z—3 9r—2 -1 z—3 :792 -1
. rz—3)(x+2
-ty (2
$2
~ lim (v —3)(x + 2)a?
a—=3  (3—12)(3+ )
oy @ +2)2?
z—3 3+
_ (3+2)32
343
_|_ 15
= 5 |
. VR +12 -2t
(b) lim —.
t—2 2 —t
Solution.
V2 +12 -2t V2412 -2t V2 +124 2t
im ——————— = |l1im .
t—2 2—t t—2 2—1t 2 4+124 2t

I (R 12)” — (2t)2
T2 (VR 12+ 20)

i 12 + 12 — 4¢2

= 1m

=2 (2 —t) (VI2 + 12+ 2t)
) 12 — 3¢2

= lim
=2 (2 — 1) (V2 + 12 + 2t)

4 —¢2
= lim 3( )

=2 (2 —t) (VI2 + 12 4 2t)
32—+
=2 (2 — 1) (V2 + 12 + 2t)
. 3(241)
=lim ———
=2 /12 412+ 2t




_3(2+42)
V22 £ 1244

_|3
=I5}

(c) lim g cot(5y).

Solution

ycos(5y) 5y

y—0 sin(5y) Sy
ycos(by) 5y

= lim - —
y—0 5y sin(5y)

. cos(5y) . 5y
= [ lim lim —
y—0 5 y—0 sin(5y)

_ cos(0)

|1
=5}

_9)3 —
(@) Tim (x—2) —28 121,"

x—0 €T

Solution. Recall that (a + b)® = a® + 3a®b + 3ab® + b3. Using this, we get

I (x—2)3+8—12x_1, 23 — 622+ 120 — 8 +8 — 127
750 22 ~ 250 o2
. 3 — 62
x—0 x
=lim -6
z—0
-4
(e) lim “ .
u=4 \2u+1—+vu+5

Solution.

lim u—d = lim u—4 m+\/m
w4 \2u+1—+vu+5 w4 \J2u+1—+vu+5 V2u+l++u+5b
lim (u—4) (V2u+1+Vu+5)
w1 (VT D - (Var o)

(u—4) (V2u+1++u+5)

= lim

u—>4 2u+1—(u+5)

. (u—4) (V2u+1++Vu+5)
= lim

u—4 u—4



= 1inr1l V2u+1++vVu+5
u—

=2
:@,

A+1+V4+5

-2 4
(6) tim SO
=0 zsin(3x)
Solution.
.2 .2 2
i S (4x) iy SR (4z) (42)* 3z
=0 xsin(3z) -0 xsin(3r) (47)? 3z
. 2 2
 lim sin(4z) \© .33: ~(4x)
T—0 dx sin(3z) x(3x)
_ sin(42)\’ /.. 3z 16
= [ lim lim — im —
z—0 4x 20 sin(3x) z—0 3
—12.1 E
3
[16
13

o VATV +10
(g) lim 1
T _

rx—1

Solution. Direct substitution gives %, so we rewrite the expression by rationalizing the numerator

and canceling out common factors.

V42 4T -2+ 10
m

VAzZ +7 -z +10 V42 +7+Vx + 10

li = lim .
o1 r—1 z—1 r—1 Vaz? + 7+ /x +10
— lim 422 + 7 — (z + 10)
=1 (2 —1)(vV422 + 7+ z + 10)
. 422 —x — 3
= lim
=1 (2 —1)(V422 + 7+ Vz + 10)
~ fim (z — 1)(4z + 3)
=1 (2 —1)(V422 + 7+ Vz + 10)
. 4r + 3
= lim
=1 \/A4x2 + 7+ /o + 10
T
S 2vin|
6
£ _9
h) 1 3+7h
( ) hl—>InO h



Solution. Direct substitution gives %7 so we rewrite the expression as a simple fraction and cancel

the common factors.

6 _o 6—2(3+7h)
. 3+7h 1 3+7h
L W h
= lim _tan
~ h—=0 h(3+7h)
. —-14
= lim
h—0 3+ Th
_|_ 1
3
(i) Tim J:Slr21(5x)
=0 tan?(3x)
Solution.
. . 2 2
lim x51r21(5:5) ~ lim xsm({:')acz) cos®(3z) bz (3x)
z—0 tan®(3z) 2—0 sin”(3z) S5z (3x)2
. sin(bx) 3¢\ z(5z)cos?(3z)
= lim . - .
z—0  br sin(3x) (3x)2
. 2 2
— (tim sin(bx) \ lim — 3x A tim 5 cos®(3x)
z—0  bx =0 sin(3x) z—0 9
2
112 5 cos®(0)
9
_|?
=151
[Advanced]

) sin(36)2
W) 60 cos(50) — 1°
Solution.

. sin(36)2 . sin(30)% (360
lim ————— = lim .
0—0 cos(hf) —1  9—0 cos(50) —1 (36

(30)?

. sin(360)\ >
= lim .
00 30 cos(50) — 1 (56)?

(. sin(30)\? (.. (50)2 9
_ng(l) 30 ) ((glg%)_l—cos(W) %lg(l)%

— | S— | —
o
o~
ot
e
=
[

9

=1%2(-2) —

(=2) 5
_|_18
| 25




(k) ilg%) zsin (In |z]).
Solution. We use the Squeeze Theorem. For any x # 0, we have
—1<sin(lnlz|) < 1,

S0
—lz| < zsin(ln |z]) < |z

Since lim —|z| = lim |z| = 0, we conclude that
z—0 z—0

31?1_% zsin(ln|z]) =0

1) lim Vh -1

h>1 h—1"
Solution. We would like to rationalize the numerator to be able to simplify the A in the denominator.
To this end, we will want to use the identity

a® —b® = (a — b)(a® + ab+ V?)

with a = V/h and b = 1. Therefore, we will multiply the numerator and denominator by a?+ab+b* =
Vh2 + Vh + 1. This gives
Vh-1_ . Vh—1 VR4 Vh+1
h—1 h—1 =1 h—1 ¥Yn24+ Jha1
. (Vh)? — 13
= lim
A= (p ) (\3/h2 + R+ 1)

= lim h—1

=1 (1) (VR4 1)
= lim h—1

h1 (hf1)(\3/hf2+€/ﬁ+1)
= lim 1

h=1 /h2+ Vh+1
1

VLIl
1

3|

2. Suppose that f is a function such that for any number z, we have
r—8< flr) <a® -3z — 4.

For which values of a can you determine lim f(x)? For these values of a, evaluate lim f(z).
Tr—ra r—a



Solution. We have limz — 8 = a — 8 and lim 2? — 3z — 4 = a? — 3a — 4. The Squeeze Theorem will
r—a r—a

guarantee that lim f(z) exists when a — 8 = a® — 3a — 4, that is a®? — 4a + 4 = 0. This equation gives
r—a

(a—2)% or . For a = 2 we will have
lim f(2) =2 —-8=[—6]

3. [Advanced] Suppose that f is a function such that
f(z)

z—0 sin(3z)

Evaluate the following limits.
() lim f(x)

Solution.
sin(3x)
sin(3x)

- (1 iy ) (B ento)
= 2 -sin(0)
=0.

lim f(z) = lim f(x)

(b) lim M

x—0 x
Solution.
i 1@ @) sin@e) e
=0 T z—0 x  sin(3z) 3z
= [ lim f(a:) lim sin(3z) lim 3£
0 sin(3x) z—0 3z z—0
-2.1-3
. 1—cos(x)
I e
Solution.
1 — cos(z) 1 —cos(z) 22 (2x)?

5a) ()

Il
VRS
8=
LE
_
5,08
wn
—~
8
N—
N——
T
1
o
~
—~
[\
S
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Section 2.4: One-Sided Limits - Worksheet Solutions

1. Evaluate the following limits. If a limit does not exist, explain why.

22 —dx +3
li _
(a) lim — 5
Solution. When  — 37, we have £ < 3,s0 x —3 <0 and |z — 3| = —(z — 3). So
2 _ _ _
im © dr+3 lim (x=3)(z—-1)
z—3- |z —3] T3~ —(z—13)
=1 —(r—1
Jim (1)
- G-
]
(b) lm =423
r—3 ‘I — 3|

Solution. We have already computed the left limit in the previous question. Let us compute the
right limit. This time, when z — 3%, we have z > 3, so z —3 > 0 and |z — 3| =  — 3. Tt follows that

2 _ _ _

lim © dr+3 lim (x—3)(x—1)

z—3+ |z — 3| z—3+ x—3
= i -1

S, (@)
=(3-1)
=2.
2443 24z +3 24z +3
Since lim T odres # lim w, we conclude that | lim T otres does not exist |
e—3- |z —3| z—3+  |x — 3| =3 |z — 3|

1= (1 h)?
1 _
© Jm =

Solution. When h — 0~, we have h < 0, so |h| = —h. Therefore

_ _ 3 _ 3
lim 1—(1-1hn|) ~ im 1—-(1+4+h)
h—0- h h—0- h
. 1—(1+3h+3h%+h3)
= lim
h—0— h
. —3h —3h% —h3
= hm —_—
h—0— h



= lim —3—3h—h?
h—0—

3]

3 —2t2 ¢
() lim =R
t—1 |t — 1|

Solution. Let us compute the left limit and the right limit. For the left limit, we have t < 1, so
[t—1]=—(t—1). So

. =22 4t . t(t—1)?
hm —_— = hm —
t—1— ‘t — 1‘ t—1— —(t — 1)
= lim —t(t—1
Am il =)
=-1(1-1)
=0.

For the right limit, we have t > 1 so |t — 1| =t — 1. Therefore
t3— 262 +1 . tt—1)2

li —_— =
el [t — 1] t—1+  t—1
= lim ¢(t—1)
t—1—
=1(1-1)
=0.
3 — 22+t 3 — 22+t 3 — 22+t
Since lim roer = lim roar =0, it follows that | lim roartt =0\
t—1— |t— 1| t—1+ ‘t— 1‘ t—1- |t— 1|
3xr+8 if z < -2
1' h — 8 lfJC = —2-
© Jim, fo) whore S0 =08, L, e
o > —
vVe+3-—1

Solution. We have
lim f(z)= lim 324+8=3(-2)+8=2

r——27 r——27

and

. . T+ 2 ve+3+1
lim f(z)= lim .
r——2+ z——2+% Jr+3—-1 Vr+3+1
~ lim (z+2)Vz+3+1)
z——21 (\/J? + 3)2 —12
— lim (z+2)(Vx+3+1)
el o+ r—2

= lim Vr+3+1

r——21

=2

n
=}
Q
@
=
=)
K’ﬁ
—~
&
~
I
=
g
&
~
Il
»N

it follows that | lim f(x) =2/

T——2" z——2+ z——2




sin(3x)

(f) lim f(z) where f(z) ={ & ifw <0
w0 2e°5®=1if 1 >0
Solution. We have
lim f(z)= lim sin(3z) 3z
r—0— r—0— X 3z
_ g S 3z) 3z
T a0 3x T
_ < . s1n(3x)) ( I 3)
x—0— 3z x—0—
=1-3
=3

and

lim f(z) = lim 2ec0s(®)—1 —

z—0t z—0t1

262080 =1 — 9¢171 — 960 — 9,

Since lim f(x)

# lim f(x), we conclude that
z—0~ z—0+t

lim f(z) does not exist |
z—0

_ tan(8x)
 2a]

2. Consider the function f(x)

and suppose that the graph of another function g is given below.

o

VA

(a) Find lir% f(x) and lim0 g(z) or explain why it does not exist.
z— z—

Solution. We have

) ) sin(8x) 8z .
1 = lim ——m% 8
o0 /(@) os0- —22 cos(8z) 8z (;pi)%l—
and
lim f(z)= lim _sin(8z) 8z = | lim
0+ e—0+ 2z cos(8z) 8z 0+

sin(8z) 8x

lim —— )= — 4

8x ) (mgg— —2z cos(Sx)) cos(0)

sin(8x) lim 8x __4 _4
8x z—0+ 2z cos(8z) cos(0)

Since lim f(x)

# lim f(x), we conclude that
z—0~ z—0t

lim f(z) does not exist |
z—0




By inspection of the graph, we see that

lim g(x)=3, lim g(z)=-1.

z—0— z—0t

Since lim g(z) # lim g(x), we conclude that | lim g(z) does not exist |
z—0~ z—0+ z—0

Find lim |f(z)| and lim |g(z)| or explain why it does not exist.
z—0 z—0

Solution. We have

lim [f(z)| = | lim f(z)| =|-4]=4,
r—0— r—0—
and
li = |l = 4| = 4.
Jim [f(@) = | . f(@)| = |4

Since lim |f(z)| = lim |f(z)| =4, we conclude that | lim |f(z)| =4]|
z—0~ z—0+t

x—0
We have
lim |g(z)| = | lim g(z)| = [3] =3,
r—0— x—0—
and
1' = 1. = | — ]_ - ]..
Jim |g(z)| = | lim g(z)| = |~ 1

Since lim [g(x)| # lim |g(z)|, we conclude that | lim |g(z)| does not exist |.
z—0~ —0+ z—0

Find 1ir% f(z) + 2g(x) or explain why it does not exist.
r—
Solution. We have
lim f(z)+2¢(z) = ( lim f(z:)) +2 < lim g(m)) =—-44+2-3=2
z—0~ rz—0~ x—0~

nd lim f(z) +29(x) = (Ji,%ﬂ f(x)> +2 (lliff)h g(x)) =4+2-(-1)=2

Since lim f(x)+ 2¢g(z) = lirgl+ f(x) + 2¢g(x) = 2, we conclude that lin%) flx) +2¢g(x) = 2|
T— T—

rz—0~

[Advanced] Find the value of the constant a for which lin%) (g()xj— exists. For this value of a,
xT— X a

find the value of the limit.

Solution. We have

)
9@ - 9) _ 3

e—0- f(z) +a ( 11%17 f(:r)) N ( 11%17 a) —4+a’




and I
9@ gy 9 -1
im

0t fl)+a <lir{)1+f(x)>+<lim a> d+ta

z—0t

The two-sided limit exists when both one-sided limits are equal. This gives the condition 11a-
—4+4a

-1
ita that is 3(44+a) = —(—4 +a), or 12+ 3a = 4 — a. Solving this for a gives . Then we

have

=2 T 12
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Section 2.5: Continuity - Worksheet Solutions

1. For each function, find the values of the constants a, b that make it continuous.

3x—0b ifz<1
(a) f(x)=Cax+4 ifl<xz<3.
br —2a ifx>3

Solution. Each piece of f being continuous, it suffices to test for continuity at the transition points
x=1and x = 3. At x = 1, we have

lim f(z)= lim 3z—-b=3-0,

r—1— z—1-

lim f(z) :gclinll+ ar+4=a-+4,

z—1+

f(H)y=31)—-b=3-0».
So the continuity test gives the condition 3 —b=a+4, or a+b = —1. At x = 3, we have

lim f(z)= lim ax+4=3a+4,
r—3~ r—3~

lim f(z)= lim bz —2a=3b— 2aq,
r—3t r—3t
f(3) =3a+4.

So the continuity test gives the condition 3a + 4 = 3b — 2a, or 5a — 3b = —4. Therefore, for f to be
continuous, the constants a, b must satisfy the equations

a+b=-1,
5a — 3b = —4.
To finish, we need to solve this system of two linear equations. Adding 3 times the first equation to

15
the second one gives 8¢ = —7, so|a = 3l Then we get |b = 3|

br +4 ifz<l1

®) fl@)=q - Hr=l
r -1
o ifx>1

Solution. Each piece of f is continuous. This is obvious for the piece for x < 1, as it is a linear
function. For the piece for x > 1, observe that the roots of the denominator are x = —1, 1. Therefore,
the denominator does not cancel for z > 1 and the piece is a well-defined rational function (therefore
continuous). So it suffices to test for continuity at = 1. We have

lim f(z)= lim br+4=0>b+4,

r—1— r—1—



11 1~z 1 1

x
li =l —— =1 — =z  — - - _Z
S @ = T = e T aern Y
f) =a.
1
So the continuity test gives the condition b + 4 = —% = a. This gives the values |a = —5 and
9
b=—=1|
2
sin(az) if <0
3z
(c) [Advanced] f(z) =< b ifz=0.
2% + 52 .
ifx>0

ve+4-2

Solution. The pieces for z < 0 and x > 0 are both continuous (well-defined common functions). So
it suffices to test for continuity at x = 0. We have

) . sin(az) ax . sin(ax) . ax a
— R lim &) =2
lim f(z)= lim 3 (m_lgl_ > ( im 33:) 3

x—0— x—0— axr axr r—0—

> +5r Vo +4+2 x(x+5) (Vo +4+2)
i = i . = 1 = 1 5 4+2) =20
Jm o f@) = i e e a e e T etd—4d Jim (@45) (Ve +4+2)

f) =0

So we get the conditions % = 20 = b. This gives the solutions ‘ a = 60 ‘ and ‘ b=20 ‘

22 4+4x+5 if v < -2

3 ifox=-2
2. Consider the function f(x) = ¢ cos(wz) if —2<a2<3.
T+ 2 if3<e<4

6 —In(x—3) ifz>4

(a) Find the values of a for which li_r>n f(x) does not exist.

Solution. Since each piece of f is continuous (therefore has a limit at every point of its domain), it
suffices to test the transition points. At x = —2, we have

lim  f(z)= lim 2°+4z+5=(-27+4(-2)+5=1,

T——2" T——2
li = i = —2m) = 1.
lim f(z) lim cos(mx) = cos(—2m)

Since lim f(x)= lim f(z), lim f(z) exists.
r——27 x——2% z——2

At x = 3, we have

lim f(z) = lim cos(wz) = cos(3w) = —1,
T—3~ r—3~
li =1 2=05.



Si li li li d t exist.
ince lim f(z) # im f(z), lim f(x) does not exis

At z = 4, we have

lim f(z)= lim x4+ 2=06,

r—4- r—4-
li = 1l 6—1 —3)=6—1In(1) =6.
Jim f(@) = Tim 6 —In(z—3) = 6—In(1)

Since wlirzrll_ flz) = wlirih f(z), alclir}l f(z) exists.

I lusion, li d t exist f =3
n conclusion, lim f(x) does not exist for

(b) Find the values of & where f is discontinuous.

Solution. Since each piece of f is continuous, it suffices to test the transition points. We already

know f is discontinuous at = = 3 since it does not have a limit at this point by part (a). At © = —2
we have lim2 f(z) = 1 and f(—2) = 3, so f is discontinuous at * = —2. At x = 4, we have
T——

lirI}l f(z) =6 and f(4) =6, so f is continuous at x = 6.
r—r
In conclusion, f is discontinuous at m

3. Show that each equation has a solution in the given interval.

(a) 23 =14+ 2y/z in [0,4].

Solution. We start by writing the equation as 2% — 2\/z = 14. This has the form f(z) = yo with
f(x) = 23 — 2¢/7 — 14 and yo = 14. The function f is continuous on [0, 4]. We have

£(0) = 0% = 2v/00 < 14,

f(4) =4 —2V4 =60 > 14.
Therefore, the value yo = 14 is an intermediate value between f(0) and f(4). By the IVT, it follows
that the equation has a solution in [0, 4].

(b) In(z) =2— 2 in [1,€].

Solution. We start by writing the equation as In(z) + « = 2. This has the form f(z) = yo with
f(z) =1In(z) + x and yo = 2. The function f is continuous on [1,e]. We have

fA) =) +1=1<2,
fle)=In(e)+e=1+e> 2.

Therefore, the value yo = 2 is an intermediate value between f(1) and f(e). By the IVT, it follows
that the equation has a solution in [1,€].



(c¢) [Advanced] cos(z) = arcsin(z) in [0, 1].

Solution. We start by writing the equation as cos(x) — arcsin(z) = 0. This has the form f(z) = yo
with f(z) = cos(z) — arcsin(x) and yo = 0. The function f is continuous on [0,1]. We have

f(0) = cos(0) — arcsin(0) =1—-0=1>0,

f(1) = cos(1) — arcsin(1) = cos(1) — g
Observe that cos(1) < 1 since the range of cos is [~1,1] and § > 1 since 7 > 2. Thus, cos(1) =5 < 0.

It follows that the value yo = 0 is an intermediate value between f(0) and f(1). By the IVT, it
follows that the equation has a solution in [0, 1].
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Section 2.6: Limits Involving Infinity - Worksheet

1. Evaluate the following limits. If a limit does not exist, explain why. If a limit is infinite, specify it and
determine if it is co or —oo.

(@) lim 22 4+ 3z +2
z——1-  (x+1)2

Solution. Substitution gives 2

o> S0 we need more analysis. We have

. 22 + 3z + 2 . (x+1)(z +2) : z+2

im ——= lim —————= lim ——.

a——1-  (x+1)2 z——1- (x +1)2 z——1- x+1

In this simplified form, substitution gives % so the one-sided limit is infinite. To determine if the
limit is co or —oo, we use a sign analysis. Asz — —17, z+2>0and z+1 < 0, so i—ﬁ < 0.
Therefore

. 2243z +2
lim —— =—-00
a——1-  (x+1)2

3z\/x + 2
b) lim ——.
(b) z—00 /43 + 1

Solution. Observe that x+/x = Va3 when z > 0. So

=

lim 3x\/5+2: lim 3z +2 UF
oo VA1 e VA A1 b
_m I
340
440

Il

lim ————.
(c) w55 cos(z) — 1

Solution. Substitution gives %”, so both one-sided limits are infinite. We need a sign analysis to
determine if the limit is co or —oco on each side. Observe that cos(z) — 1 < 0 for all x since the
range of cos is [—1,1]. It follows that as x — 27" and x — 27—, the values of ﬁ are negative
(positive numerator and negative denominator). Hence,

. T
lim

— = —0|
z—2r cos(x) — 1




(d) lim 2=

=2 12 — 21"

Solution. Substitution gives %3, so both one-sided limits are infinite. We need a sign analysis
to determine if the limit is co or —oo on each side. When z — 27, we have 0 < z < 2 so

2? =2z = z(x — 2) < 0 and x(ﬁ;i_f)z) > 0. Therefore,

. r—>5
lim o =
rz—2— T2 —2x

When z — 27, we have 0z > 2 so 22 — 2z = z(z — 2) > 0 and % < 0. Therefore,

. r—5
lim - = —0.
z—2+ T2 — 21

r—5
We conclude that | lim ————— does not exist |.
=2 12— 21

349
() lim ——

e==c0 /1628 +1

Solution. Observe that Va6 = 23| = —2% when z < 0. So

I x3 + 2 y 3 + 2
m —= lim —
T——00 ,/16336 + 1 T——00 /1'6 (].6 + LG)
. 2342 &
= lim —e—5
Tr—r— 00 _1.3 /16+ ?16 F
, 1+ 2%
= lim
140
—+/16 +0
1
=-3t

(f) lim V2 + 8t — \/9t2 — 5t.

Solution.

V9t2 + 8t + V982 — 5t
lim /922 + 8¢ — /92 — 5t = lim ( 9¢2 + 8t — \/912 — 5t)
t—o0 v v t—o0 v v VOt2 + 8t + /912 — 5t

_ (VeE s’ - (Vo —5t)

= lim
t—oo V92 + 8t + V9t2 — 5t

. 9t* + 8t — (9t — 5t)
lim
t—oo /912 + 8¢ + /912 — 5t
lim 13t
t—oo /912 + 8¢ + /912 — 5t

rh\)—l‘w\b—‘



9+8+,/9-2
B 13
vI+0++v/94+0
HEE
=5 |
[Advanced]
20+ 5sin(30)
LU
Solution. Observe that
20 +5sin(30) _ 2 n 5sin(36)
70 7 0
Since —1 < sin(36) < 1, we have —5 < 5sin(36) < 5 and 77% < 551%30) < %. Additionally, we have
. . 5
GEIEIOO 7% - HEEHOO % =0
So by the Squeeze Theorem, lim 5Sir71é30) = 0. Therefore
60— —o0
) 20 +5sin(360) 2 5sin(30) 2 |2
N TRERLLN R et At ]

1 1
b) 1l —_—— .
(b) i, (ﬁ ﬁ)
Solution. For x > 0, we have

1 1 1 1 x1/6 1 x1/6 1 zt/6 1

T\/E a ﬁ TSB g2 T pBHL6 g1/2 T g2 g2 gl)2

Substituting = = 0 in this expression would give _Tl, so we know that the one-sided limit is infinite.

To determine if the limit is oo or —oo, we look at the sign of the expression. For x > 0, \/x > 0. As

1/6 _ 1
z — 01, z is close to 0 so /6 — 1 < 0. Tt follows that wiz < 0 and

xl/

lim

= ()]

t arctan(3t)
im ———=
t—00 2 +1

Solution.

. tarctan(3t) . tarctan(3t)
hrn —_— = hm _ .
t—o0 t2+1 t—o0 t2+1

o= =



— lim arctan(3t)
t—o0 /1+ %2

VITO

NE

T
5

2. Find the vertical and horizontal asymptotes of the following functions, if any. Also, determine the limit
to the left and right of any vertical asymptote.

(a) f(z) =

2?2 — 3z —4
V-2
Solution. To find potential vertical asymptotes, we set the denominator equal to 0. This gives

Vx —2 = 0, that is z = 4. Substituting 4 in f(z) gives %, so we need to do more analysis to
determine if x = 4 is indeed a vertical asymptote. The limit at 4 is

tim 2 \}324 . giz ~ lim (z — 4>(~””;7131(\/5+2) = lim (z + 1)(vZ +2) = (4+ 1) (VE+2)20.

Since the limit as x — 4 is finite, z = 4 is not a vertical asymptote. So ‘ f has no vertical asymptote ‘

To find the horizontal asymptotes, we compute the limits at co and —oo. Note that f is undefined
for z < 0, so only the limit at co makes sense. We have

2 _ —4 2 _ —4 1
lim roor—2 3z = lim roor—2 3z - @
r—00 \/E -9 T—00 \/> -2 ﬁ
23/2 _3,1/2 _ 4
= lim 1 5 Ve
T—00 v
_ too
1
= OQ.

Therefore, ‘ f has no horizontal asymptote |

2 -1
0= 55
Solution. To find potential vertical asymptotes, we set the denominator equal to 0. This gives
|z 4+ 1|* = 0, that is # = —1. Substituting —1 in f(z) gives §, so we need to do more analysis to
determine if z = —1 is indeed a vertical asymptote. The left and right limit at —1 are
| -1 1 -1
m S L gy, @oDeEr) o @)
sm—1t |z + 12 as—o1t (x +1)3 z——1+ (x4 1)2
2.1 —1 1 —1
m STl gy o MeED oD
r——1— |ZL' + 1‘3 r——1— *(l’ =+ 1)3 r——1- (l’ + 1)2
So |z = —1 is the one vertical asymptote of f ‘




To find the horizontal asymptotes of f, we compute the limits at co and —co. We have

| L 1= 0-0
I | e A, | x z _ =0,
00 |z 4+ 1|3 300 (z+1)3 % 2100 (1+;)3 (1+0)3
2 -1 x? -1 L 1_ 1L 0-0
potoo r 1P et —(@ 418 L e (1+1)° (1+0)3

So ‘ y = 0 is the one horizontal asymptote of f ‘

7+ 2e”
(©) fla) = .
Solution. To find potential vertical asymptotes, we set the denominator equal to 0. This gives
4
5e® —4 =0, that is e = %, soz =In (%) Substituting this value in f(x) gives 7+§ 5. This has the

4
form w, so|x =1In (5> is the one vertical asymptote of f|.

To find the horizontal asymptotes of f, we compute the limits at oo and —oco. Recall that lim e* = oo
Tr—r0o0

and lim e® = 0. Therefore

r—r—00

I 7T+2" T+2-0 7

im = =—-
z—>—o0 he* —4 5-0—4 4’

iy TH2e" L i L+2 042 2
im - £ = lim =— =
v 5e? —4 L wseo 54 5-0 5
7 2 .
So|y = 1 and y = E are the two horizontal asymptotes of f|.

_ Va? 425+ 3z

d x
(@ sy = Y
Solution. To find potential vertical asymptotes, we set the denominator equal to 0. This gives
2 +5=0,0r x = —%. Substituting this value in f(z) gives the form %‘m“‘ber. It follows that
2
x = —— is the one vertical asymptote of f|.

To find the horizontal asymptotes of f, we calculate the limits at co and —oco. We have

Vi %43c . PP+ E)+3e
lm ——————— = lim

Z——00 2r+5 T——00 2¢+5
i lz|\/1+ 25 + 32
T——00 2¢+5
o\ 1+ 5 +3z 1L
= hm wis 1 @<0
= lim ——\/@4-3
z——00 2+2



 —V1I+0+3
- 240
=1

)

VaZ 25 + 3z 22 (1+23) + 32
lim — = lim

lz|\/14 2% + 32
= lim =
x@/l—i—i—g—l-iix
= lim —m———
T—00 2¢ +5
V1I+23+3
= lim —_—
T—00 2+5

V1I+0+3
240

(x >0)

8|8 =

=2.

So ‘ y =1 and y = 2 are the two horizontal asymptotes of f ‘

sin(7x)

o) =

Solution. To find potential vertical asymptotes, we set the denominator equal to 0. This gives
z(x +3) = 0, or x = —3,0. Substituting x = —3 in f(x) gives %, which has the form
, 80 x = —3 is indeed a vertical asymptote of f. Subsituting z = 0 gives %, so we need
more analysis to determine whether = = 0 is a vertical asymptote or not. We have
in(7 in(7 7
sin(7z) lim sin(7z)  Tx

1m -
2—0 22 +3x 10 z(x+3) Tz

non-zero number

. sin(7z) Tx
= lim .
=0  Tr  z(x+3)
= ( lim sin(7z) lim ’
z—0 Tx =02 + 3
7
= ]_ . —
3
_7
=3
so z = 0 is not a vertical asymptote of f. In conclusion ‘ x = —3 is the one vertical asymptote of f ‘

To find the horizontal asymptotes of f, we calculate the limits at oo and —co. We have —1 <
sin(7z) < 1 so
1 sin(7x) 1
- < < .
22+3x 22+ 3x 2243z

sin(7z)
243z 0

Additionally, 1irﬂr:1
T—r

1 1 _ :
i EEIEOO 7435 = 0. So by the Squeeze Theorem, IEI:E

oo

In conclusion, | y = 0 is the one horizontal asymptote of f ‘




(f) f(z) = 2 cos (i)

Solution. The function f is continuous on its domain, that is (—oo,0) U (0, c0). Therefore, the only
potential vertical asymptote is x = 0. For any = # 0, we have

2
—z? < 22 cos <> < :v2,
T

and lim —22 = lim 22 = 0. So by the Squeeze Theorem, lim z2 cos (2) = 0. Hence, ‘ f has no vertical asymptote |
z—0 z—0 z—0 T

To find the horizontal asymptotes, we must compute the limits at oo and —oo. We have

2
lim 2?2 cos () =o00-cos(0) =o00-1=o00,
x

rT——00

lim 22 cos (2) =00-cos(0) =00-1= 0.
x

Tr—r 00

So ‘ f has no horizontal asymptote ‘

[Advanced]

_ 3xarctan(x) + 7
B x—1 ’

(g) f(=)

Solution. To find potential vertical asymptotes, we set the denominator equal to 0. This gives
37
x—1=0, or x = 1. Substituting x = 1 in f(x) gives 40+7. This has the form %ﬂummr, SO

‘x =1 is the one vertical asymptote of f ‘

To find the horizontal asymptotes, we must compute the limits at oo and —oo. Recall that lim arctan(z) =

T——00
s _ T

—Z and lim arctan(z) = Z, so we have
2 T—r00 27

. 3rarctan(z) +7 1 . 3arctan(z) + L 3. (=%)+0 3
lim ———"—— 7 = lim - = ==,
T——00 rx—1 =z T——00 1—; 1-0 2
I 3rarctan(z) +7 1 3arctan(z) + L 3-Z+0 3r
im — - £ = = =7
3T 3m )
Hence, |y = — 5 and y = - are the two horizontal asymptotes of f |

3e?® — be™®
h =
) ) =5

Solution. Since the denominator of f(z) is positive for any value of z, the function f is continuous

on R. Hence, ‘ f has no vertical asymptote ‘

To find the horizontal asymptotes, we must compute the limits at oo and —oo. We have

. 3e* —per L . 3 -5 3.0-5 5
lim ————— %5~ = lim = = )
z——oco 2e7T 4 i 5 a——o0 24 ed7 2+0 2

e~




i 3e2 — 5e— L i 372 —5¢75  3.0-5-0 0
m —-—- = 1m = = U.
zo0 et fele L 20 2e =5 +1 2-04+1

5
Hence, |y = —5 and y = 0 are the two horizontal asymptotes of f |

1 — cos(bx)
2 + 3

(i) flz) =

Solution. To find potential vertical asymptotes, we set the denominator equal to 0. This gives
2?(x+1) =0, or = —1,0. Subsituting x = —1 in f(z) gives the form Zon-zerenumber “gq o — 1 jg

0
a vertical asymptote of f. Subsituting x = 0 gives %, so we need more analysis. We have

1 — cos(5zx) y 1 —cos(5z) (5z)

ilg%) 2123 asb 22(x+1) (5x)?

— lim 1—cos(bz) (5 z)?

=0 (Hz)2 2z +1

( . 1—cos( 556 > < )
= [ lim

—0 :1:~>O x+1
125
2 0+1
25
=5
So x = 0 is not a vertical asymptote of f. It follows that |z = —1 is the one vertical asymptote of f ‘

To find the horizontal asymptotes, we must compute the limits at co and —oco. We have —1 <
cos(5x) < 1,80 0 < 1—cos(b5x) < 2 and

<1—cos(5x) 2
T2 4a3 T x2 43

L0 — 0. So

i 2
Also, acEI:Itloo z?+zd

lim 0= 0. By the Squeeze Theorem, it follows that lirjrtl

r—to0 T—r 00

y = 0 is the one horizontal asymptote of f ‘
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Section 3.1-2: Derivatives and Tangent Lines - Worksheet Solutions

1. For the functions below, find the value of the derivative and an equation of the tangent line at the point
indicated. (You must use the limit definition of the derivative in this problem - you cannot use derivative

rules.)

3

- =1
1_2z 7

(a) f(z)

Solution. We have f(1) = —3 and

f+h) = f1)

, .
(1) = Jimy h
= lim —% — (3
h—0 h
_ gy iz td
h—0 h
. 3+3h+3(—-1-2h)
= lim
h—0 h(—l — Qh)
~ lim 3+3h—3—6h
h—0  h(—=1—2h)
. L
h—0 h(—1—2h)
~ lim —
h—0 —1 —2h
B -3
~ i 30

=[3]

So the tangent line passes through (1, —3) and

(b) f(z) =+bx—1at x=2.

Solution. We have f(2) =3 and

has slope 3. Therefore, it has equation’ y=3z—-1)—-3 ‘

I+ - f2)

/ .
f(2):}lzl—>o h
- 5(2+Z)—1—3
. VI+5h—3 VO+5h+3
h—0 h V9 +5h+3
N CE R Dk &
h—=0 h(v/9+5h + 3)



9+5h -9

=0 h(y/9 + 5h + 3)
5h

h—=0 h(\/9+5h +3)
5
h=0 \/9+ 5h + 3
5

VO+5-0+3
5
=

5
So the tangent line passes through (2, 3) and has slope %. Therefore, it has equation |y = g(x —2)+3|

(c) f(x) =18z~2 at z = —3.

Solution. We have f(—3) =2 and

f(=3+h) - f(=3)

"(—3) = I
fi(=3) = lim Y
18
18 9
. (—3+h)2
P 1 ——————————————————
hlgb h
i 1823+ h)?

h—0  h(—=3+ h)?
18 — 2(9 — 6h + h?)
T o0 h(—=3+ h)?
18 — 18 + 12h — 2h?
© h—0 h(—=3+ h)?
~ lim 12h — 2h?
h—0 h(—3 4+ h)?
lim 12 — 2h
h—0 (73 =+ h)2
12-2-0
~ (=3+40)2

4
So the tangent line passes through (—3, 2) and has slope %. Therefore, it has equation |y = 3 (x+3)+2|

(d) f(z)=22>+5r+3atx=—1.

Solution. We have f(—1) = —4 and

f1(=1) = lim

f(=1+h) - f(=1)
h



. 2(=1+h)P+5(—14h)+3—(—4)
= lim

h—0 h

. 2(-1+4+3h—3h*+h3) —5+5h+3+4
= lim

h—0 h
oy —2F6h—6R7 4217 —5+45h+3+4
o h—0 h

. 11h —6h2 + 2R3
= hm —_—

h—0 h
= lim 11 — 6h + 2h?

h—0

:.

So the tangent line passes through (—1, —4) and has slope 11. Therefore, it has equation’ y=11(x+1)—4 ‘

[Advanced]
(e) f(x) =3tan(4x) at = 0.

Solution. We have f(0) =0 and
fO+h) = f(0)

/ T
F1(0) = lim h
~ lim 3tan(4h) — 0
h—0 h
_ lim 3sin(4h) 4h

h—0 hcos(4h) 4h
3sin(4h) 4h

— i )
ey 4h hcos(4h)

B . sin(4h) ) 4
=3 (%13% 4h ) (%13% cos(4h))
—3.1-4

_Mm2)

So the tangent line passes through (0,0) and has slope 12. Therefore, it has equation .

(f) f(z) =22/ at x =8,

Solution. We have f(8) = 4. To compute f’(8), we will make use of the identity (a—b)(a®+ab+b*) =
a® —b3. We get

f8+h) - f(8)

/ _

F2) = Jim, h
b Bt h)*/% —4 (84 h)"% +4(8 4+ h)*/% +16
T o0 h (8 + h)4/3 + 4(8 + h)2/3 + 16

; (8 +n)2/3)" — a3
= 11m
h=0 h ((8+ h)*/3 4+ 4(8 + h)?/3 4 16)




. (8 +h)? — 64

h—=0 h ((8+ h)*/3 4+ 4(8 + h)?/3 4 16)
i 64 + 16h + h* — 64

h=0 h ((8 + h)*/3 4+ 4(8 + h)?/3 4 16)
 lim 16h + h?

h=0 h ((8+ h)*/3 4 4(8 + h)?/3 4 16)

. 16+ h

= lim

h—0 (84 h)%/3 4 4(8 4+ h)2/3 4 16

16
84/3 + 4(8)2 + 16
1

3

1
So the tangent line passes through (8, 4) and has slope % Therefore, it has equation |y = g(x —8)+4|
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Sections 3.3, 3.5: Differentiation Rules - Worksheet Solutions

1. Calculate the derivatives of the following functions.
(a) f(z) =5zt —8yx — et

Solution.

—(e*) = (2023 — %x_4/5 -0l

(b) f(z) = 7xcos(x)e”.

Solution.

flz)= i(7:1:) cos(x)eﬂ—?x% (cos(z)) e"+Tx cos(a:)% (%) = ‘ 7cos(x)e” — T sin(x)e” 4 7 cos(x)e” ‘

dz
(¢) f(z)=ex®+4 \/E .
sin(x)
Solution.
sin(x)
oood, d (v \ | 5. 5y — VT cos(z)
i) = “dx (@) + 4dw (sin(m)) =| ¢t 44 sin(x)? i
3
(d) f(z)= 5424
Solution. p J
o g @6 =3 (5at) [T s
Je) = (5+at)2 TGt

(e) f(z)=3sin(1)7® — 2*/3.

Solution.

fl(z) = 3sin(1)% (7%) — % (3;4/3) = | 3sin(1) In(7)7° — gxl/?’ :




J(@) = ze® —1
Solution.
d 2 T 2 d T
) — . (2%) (we® = 1) —x . (xe® — 1) _ 2z(ze® — 1) — a2(e” + we?)
(ze” —1)? (ver —1)2
f(x) = 2%22.
Solution.
fl(x) = % (2%) z? + QI% (2?) = In(2)272” + 2°(22) =|In(2)2"2* + 2"z |.
_ cos(x)
f@) = sin(z) +1°
Solution.
d : d .
) — e (cos(x)) (sin(z) + 1) — cos(m)% (sin(x) + 1) |- sin(z) (sin(z) + 1) — cos(z)?
(sin(z) + 1) (sin(z) 4+ 1)? '
_xcos(x)sin(x)
fley= 2=
Solution.
L % (z cos(z) sin(x)) 5* — x cos(x) sin(x)% (5%)
(cos(z) sin(x) — x sin(x)? + x cos(x)?)5% — In(5)z cos(z) sin(z)5%

521;

Find the points on the graph of f(z) = 2sec(x) + tan(z), fg < x < %, where the tangent line is

horizontal.

Solution. The tangent line is horizontal when f’(z) = 0. Here, we have f'(x) = 2sec(z) tan(x) +
sec(z)? = sec(x) (2 tan(z) + sec(z)). So we get the equation

sec(z)(2tan(z) + sec(z)) =0

which produces sec(z) = 0 or 2tan(z) + sec(x) = 0. The equation sec(z) = 0 has no solution, while
the other equation gives

2tan(x) + sec(z) =0



2sin(z) +1
cos(r)
sin(x) = —%

For this value of x, we have y = 2sec (—%) + tan (—%) = % — % = 3 = /3, so we have obtained

the point (—%,\@) .

S

(b) Find the points on the graph of f(z) = where the tangent line passes through the origin.

1—-2x
Solution. The tangent line to the graph of f at x = a passes through (a, 1_—12(1) and has slope

, _ —2 _ 2
Fa) =~ 52 = G207

So the equation of the tangent is y — ﬁ = ﬁ(x —a). The tangent line passes through the
origin if this equation is satisfied for (z,y) = (0,0), which gives the condition

1 2

0= 12 = G=2a20 %

1 2a
1-2a  (1-2a)2
1—2a=2a
4da=1

1
a= 7.

1
For this value of a, we have y = m = 2, so we have obtained the point (4, 2) .

(c¢) [Advanced] Find the values of the constant @ for which the tangent lines to the graph of f(z) =
24+ 322 + 5z at © = a and = = a + 1 are parallel.

Solution. We have f'(z) = 322 + 6x. The tangent lines to f at © = a and z = a + 1 are parallel
when f’(a) = f'(a + 1), which gives

3a*> 4+ 6a = 3(a+1)*+6(a + 1)

3a® 4+ 6a = 3a® + 6a + 3 + 6a + 6

6a = —9
gz 3
=5t

3. Find the second derivative of the functions below.



(a) f(x) = x3e”.

Solution.
f'(x) = 32%e” 4+ 2% = (322 + 23)e”,
f(x) = (62 + 3z%)e” + (322 + 2%)e” :‘ (62 4 622 + 2°)e” |.
() fla) = 512
Solution.
oy 322 +7)—2QBx+5) 1
fla)= (22 +7)? T (2z+5)?
() = _(O)(2m+5)2—1(2(2x+5)+(2x+5)(2)) B 4
® = (22 + 5)4 2z +5)3 |
(©) 5= "=,
Solution.
Fla) = 7= sin(x);— cos(x),
F(x) = 7(_ cos(z)z — sin(z) + sin(m)LiQ — (—sin(z)z — cos(z))(2x) _ _7cos(;1c):v2 -2 siarjl?fm)m + 2 cos(z) .

4. Suppose that f is a differentiable function such that y = —2x + 1 is tangent to the graph of f at z = 3.
Evaluate the following

(a) f(3).

Solution. | f(1) = —2(3) + 1 = =5

(b) f'(3).

Solution. m

(©) - (2 () ~ ),y

Solution.

% (2f(z) = a%) ,_y = (2f'(2) = 327),_; = 2/'(3) = 3-3° = 37|



0% (7)o

Solution.
t N EC) LTS G O E O
|z=3

dx 2 lz=3 32 9

xT

(e) [Advanced] % (e””f(;v)2)|x:3.

Solution.

e @) 1))y

= (e"f(z) f(z) + " f'(x) f(z) + e [(2) f'(2)) =5
= ¢’ ( )2 4267 (3)£(3)

d T
%(e f(l‘) >|a: 3
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Section 3.4: Rates of Change - Worksheet Solutions

”
1. The position of a body moving an axis is given by s(t) = i 2t3 + 8.

(a) Find the body’s displacement and average velocity on the time interval [0, 2].
Solution. The displacement is As = s(2) — s(0) = —12 — 0 = | —12|. The average velocity is
As  s(2)—s(0) —12
At 2-0 2 =6}

(b) Find the velocity and acceleration of the body.

d d
Solution. The velocity is v(t) = d—i = . The acceleration is a(t) = dit) = .

(¢) When does the body change direction?

Solution. The body changes direction when the velocity changes sign. Factoring the velocity, we get
v(t) = t2(t — 6). This polynomial changes sign at .

2. A projectile is thrown at ¢t = 0 straight up in the air from an altitude of 99 m at a speed of 24 m/sec. The
projectile being subject to gravity only, physicists tell us that the elevation of the projectile is subject to
a law of the form h(t) = at? + bt + ¢, where a, b, c are unspecified constants.

(a) Find b and c using the information given.

Solution. We know that 2(0) = 99, so a- 02 +b-0+c = 99, giving us ¢ = 99] Also, v(0) = 24,

which gives (2at 4 b)|;—o = 24, so .

(b) Suppose that the projectile reaches its maximum elevation 4 seconds after being thrown. Find the
value of the constant a.

Solution. We know that v(4) = 0 since the velocity is 0 at the instant the projectile reaches its
maximum elevation. Therefore, (2at + 24)—4 = 0, that is 8a + 24 = 0, so .

(¢) When will the projectile hit the ground?

Solution. The projectile hits the ground when h(t) = 0, that is —3t + 24t + 99 = 0. This gives the
solutions t = —3,11. Since the motion of the object is for ¢ > 0, the only solution that makes sense

is [ £ = 11 sec}



3. The graph below shows the velocity v of an object moving along an axis.

The

—— . >
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Section 3.6: Chain Rule - Worksheet Solutions

1. Calculate the derivatives of the following functions.

(a) f(z) = 2sec(4x® +7)

Solution.

f'(x) = 2sec(4z® + 7) tan(4z® + 7)(122%) = ‘ 24z% sec(4x® + 7) tan(4a® + 7)(122?) ‘

(b) f(z) =14{/4x — sin(5z)

Solution.

2(4 — 5 cos(bx))
(4x — sin(5x))8/7 |

f(z) = 14;(455 — sin(5z))Y 71 (4 — 5cos(5z)) =

(c) f(z) = cos(z?) — cos(z)?

Solution.

f'(x) = —sin(2?)(2x) — 2 cos(z)(—sin(z)) = ‘ —2xsin(2?) + 2 cos(z) sin(z) ‘

(d) f(z) =3 (tan (%) +1)*

Solution.

f(z)y=3-21 (tan (%) + 1)20 sec (%)2

—|9 (tan (%) + 1)20 sec (%)2 .

| =

(e) f(x) =+v25—4a?

Solution.

4z

o) = %(25 —art) e ) = | - |

(f) f(x) = edeos32)

Solution.

f'(z) = e2°B0)5(_3sin(3x)) = | —15€> 537 sin(3z) |




(g) fla)=a5>"

Solution.

f(@) =1-5 + 2. 1n(5)5%" (62) =| 5% (1 4 61n(5)z?) |

(h) f(z) = 6cos(z3sin(1 — 2x))

Solution.
f'(z) = —6sin(2” sin(1 — 2z)) (32 sin(1 — 2z) + 2° cos(1 — 2z)(—2))
=| —6sin(z? sin(1 — 22)) (32” sin(1 — 2z) — 22° cos(1 — 22)) |.
(i) flz) = 29”(3 )
Solution.
F(a) = 24/cos(3z) — 221 (cos(3z)) ~1/2(—3sin(3x)) _ | 2cos(3x) + 3wsin(3z)
(v/cos(3))? cos(3x)%/2

2. Find the z-values of the points on the graph of f(z) = (2z + 1)6*752 where the tangent line is horizontal.

Solution. We have
Fla) =2 + 2z +1)e ™ (=22) = 2" (1 + (22 + 1)(—2)) = 2% (1 — z — 22?).

The tangent line to the graph of f is horizontal when f/(z) = 0. The equation 2e=%" (1 — z — 222) = 0

*” is never zero. The solutions of this quadratic equation are

L TlEVITA2  -1E3
- 4 -—=-

gives 1 — x — 2x? = 0 since 2e~

1
~1,-|
2

3. [Advanced] Suppose that f is a differentiable function such that

fllo)y=-2 f()=4 [f2)=3 [f4)=-L

Find an equation of the tangent lines to each of the following functions at the given point.
(a) g(z) = f(—2x) at z = —1.
Solution. We have g(—1) = f(2) = —5 and

91 = 2 (f(=220)) ey = =2/ (=20)j=1 = -2f'(2) = —6.

So the tangent line has equation ‘ y=—6(r+1)-5 ‘




(b) g(z) = f(z?) at = 2.

Solution. We have g(2) = f(22) = f(4) = 7 and

d

§(2) = = (%), = 200 (tP)ms = 4 (1) = 4.

So the tangent line has equation ‘ y=—-4(x—-2)-7 ‘

(c) g(x) = sec (%(Qw)) at x = 1.

Solution. We have g(1) = sec (ﬁg”) =sec (32) =sec (%) = V2 and
ry . d [ wf(x) ~nf'(x) 7 f(x) 7 f(x) A ™ w2
g == (bec< 12 ))I_l D) beC( 12 )tan< 12 >x—1 ¢ (Z) tan (Z) T3

2
So the tangent line has equation |y = 71-\Tf(av -1)—Vv2|

(d) g(x) = f(4x)e3® at x = 0.

Solution. We have g(0) = f(4-0)e*" = —1 and

g (0) = —% (f(4x)63‘”)‘z:0 = (4f'(42)e* + 3f(4x)63‘”)‘$20 =4f'(0) + 3f(0) = —11.

So the tangent line has equation |y = —11z — 1 |.



Rutgers University
Math 151

Section 3.7: Implicit Differentiation - Worksheet Solutions

d
1. Calculate d—y for the following curves.
T

(a) €™ + 11tan(z) = y?

Solution. Differentiating both sides with respect to = gives

5™ (y 4 zy') + 11sec(z)? = 2yy’
5™y’ — 2y’ = —11sec(z)? — 5e5Vy
(5e5™x — 2y)y’ = —11sec(x)? — 5>y

—11sec(z)? — 55y
5ebryy — 2y

/

y:

(b) 23 — zsin(y) = 3zy

Solution. Differentiating both sides with respect to = gives
322 — sin(y) — z cos(y)y’ = 3y + 3xy/’
3zy’ + xcos(y)y’ = 32* — sin(y) — 3y
(3z + x cos(y))y = 3z* — sin(y) — 3y

, | 32® —sin(y) — 3y
4 3x + x cos(y)

(¢) Va2 +y?=3Y
Solution. Differentiating both sides with respect to x gives

2x 4 2yy’
2\/22 + 2
z+yy' =1n(3)3"v/a? +y*y
In(3)3YV/2% + 42y —yy' =
(ln(3)3y\/ﬂc2 +y2 - y) "=ux

z
In(3)3vy/22 +y% —y

= In(3)3%y/

/

y:




(d) z* +62y% + 52 =0
Solution. Differentiating both sides with respect to = gives

423 + 6y% + 122yy’ + 1552y’ =0
(12zy + 15y°) y' = —4a® — 6y°

;| —4a® — 6y?
Y 7| 122y + 1542

2. Consider the curve of equation 22 4 6xy —y? = 40. Find the points on the curve, if any, where the tangent
line is (a) horizontal, (b) vertical, (c¢) [Advanced] perpendicular to y = 2x + 9.

Solution. First, let us differentiate the relation with respect to x:

2z + 6y + 62y’ — 2yy’ =0
z+3y+3zy —yy =0.

(a) The tangent line is horizontal when ¢’ = 0. Using this in the previous equation, we get z + 3y = 0, or
x = —3y. Plugging this in the equation of the curve gives (—3y)? + 6(—3y)y — y* = 40, or —10y? = 40.
This equation has no solution, so there are no points on the curve where the tangent line is horizontal.

x+ 3y
3T —
Plugging this in the equation of the curve gives 22 + 6x(3x) — (32)% = 40, or 1022 = 40. We get 2?2 = 4,
that is = 2 (which gives y = 6) and x = —2 (which gives y = —6). So the points where the tangent line
is vertical are | (2,6),(—2,—6) |

(b) Solving for ¢ in the previous equation gives y' = — , 5o the tangent line is vertical when y = 3x.

(c) The tangent line is perpendicular to y = 22+9 when y’ = —3. Plugging this in 2z+6y+6zy’ —2yy’ = 0
gives 2z + 6y — 3z +y = 0, or x = Ty. Substituting x = Ty in the equation of the curve gives

(Ty)* +6(Ty)y —y* = 40
90y? = 40

2
y==3.

For y = %, we get x = 13—4 and for y = —%, we get x = —%. Therefore, the points on the curve where the

L . 14 2 14 2
tangent line is perpendicular to y = 2z + 9 are <3, 3) , (—3, —3) .
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Sections 3.8-9: Derivatives of Inverse Functions - Worksheet Solutions

1. Calculate the derivatives of the following functions.
(a) f(z) =sin"*(4x)

Solution.

1 — (4x)2 V1= 1622 |

(b) f(z) =In(2arctan(5z) + 1)

Solution.

1 1 10
2

(@) = 2arctan(5z) +1 1+ (52)2 (2arctan(5z) + 1)(1 + 2522) |

(c) f(x) = xsec™!(7x)

Solution.
1 Tz
"(z) = sec” H(T2) + 1 ———e= T =sec” ' (T2) + ————|.
Pla) = see () o e = S TR v
(d) f(z) =1In(z)? + 8arccos(—x)
Solution.
1 21In(z) 8
'(z) =21 S S +
f'(z) =2In(x) = o) - N
(e) f(x) = cot™!(e’)
Solution.
o)=L ggeg_|_ 3
fila) = 1+ (e37)2 € 3= 14+ bz [




(f) f(z) = cos(x) logz(sec(x))

Solution.

1

f'(x) = —sin(z) log, (sec(z)) + cos(z) - Tn(7) sec(z) -sec(x) tan(z) = | sin(x) log, (sec(x)) + i

(&) J(z) = gm0
Solution. With y = 231" (22) we have
In(y) = In (:v3 tan_l(%)) = 3tan"'(22) In(x).
Differentiating with respect to =, we obtain

y  6ln(z) 3tan '(2z)

y 14422 x
6In(r)  3tan~!(27)
= ¢ =
v=y (1 + 4a2 * x

_| g3tan~1(20) 61n(z) n 3tan~1(2x)
1+ 422 T

(h) f(z) = cos(z)"™
Solution. With y = cos(x)™®) we have

In(y) =1n (cos(x)ln(x)> = In(z) In(cos(x)).

Differentiating with respect to x, we obtain

/

Yy In(cos(x)) (s — sin(x)
y x +n(z) cos(z)
= In(cos(z)) In(z) tan(z)
=y =y (hl(coxs(x)) —In(z) tan(x))

xT

=| cos(z)@ (m(COS(S”’)) — In(x) tan(x))

(i) f(z) = (1-52)"
Solution. With y = (1 — 52)*" we have

In(y) =In ((1 - 5:5)952) = 22In(1 — 5z).




Differentiating with respect to =, we obtain

/
-5
L 2z1n(1 — 5z) + 2
Y

1—5z
5 2
=2zln(l — 5z) — 7 x5
— 5z
5 2
= y'y<2x1n(15:17) 1_x5m>

) 2
=|(1-5x)" <2xln(1 —5z) — 15_x5x>

2. Simplify each of the following. Your answer should not contain any trigonometric or inverse trigonometric
functions.

(a) cos (sin™' (z +1))
Solution. We use the Pythagorean identity cos(#)?4sin(#)? = 1 with 6 = sin™*(z+1). By definition
of sin™!, we know that sin(d) = = + 1 and 6 is in [—%, g] We get
cos(0)* + (x +1)> =1
cos(0)> =1— (z +1)? = -2z — 2°
cos(0)? = V=2z— a2
|cos(0)| = v/ =2z — 22
cos(f) = £/ -2z — 22

To determine which sign is appropriate, recall that § = sin_l(x + 1) is an angle in [—g, g], SO

cos(#) > 0. Hence
cos(sin () = /—2x — 22|,

(b) sin(2cos™1(3z))

Solution. We start by using the identity
sin(26) = 2sin(#) cos(6)

with @ = cos™!(3z). This means that cos(§) = 3z and that 6 is in [0, 7]. To find sin(#), we use the
Pythagorean identity cos(#)? + sin(#)? = 1, which gives

(32)% +sin(0)? = 1
sin(f)? = 1 — 92°
Vsin(6)2 = /1 — 922
[sin(9)] = v'1 — 922

sin(f) = /1 — 922 since sin(f) >0 as 0 < 0 < 7.

Therefore

sin(2cos 1(3z)) = 2v/1 — 922(3x) = |62/ 1 — 922 |.




(c) csc (tan™t (22))

Solution. Let us solve this one with a right triangle. Consider a right triangle with base angle
6 = tan~! (%g”) Then tan(f) = %””, so we can take the opposite side to be 2z and the adjacent to be

3. By the Pythagorean identity, the hypotenuse is v9 + 4z2.

V9 + 422 )
x

We get

2x

( 1 <2x>> V9 + 4a?
csc | tan ? = —

Remark: in general, this method only yields the correct answer up to a sign. Here however, there is

no sign issue as 6 is an angle in [—1 E} and csc and tan have the same sign on this interval, which

2772
is also that of z.
(d) sec(f) given that cot(f) =5 and sin(f) < 0

Solution. We use the Pythagorean identity sec(6)? = 1 + tan(6)?, which gives
1 1 26
21— =14 — ==
sec() + cot(6)? * 25 25
26
0)2 =4/—
Vsec(0)? =4/ 5%
2v/6
0) = ——
sec(s)| = 2
2
L, 2V6
25

To find the appropriate sign, observe that cot(f) > 0 and sin(#) < 0, which means that § is an angle
in quadrant III. Therefore, sec(f) < 0. So

sec(f) =

26

sec() = 3

3. Suppose that f is a one-to-one function and that the tangent line to the graph of y = f(x) at x = 3 is
y = —4x + 5. Find an equation of the tangent line to the graph of y = f~!(z) at x = f(3).

Solution. We have f(3) = —4-3+5=—7and f/(3) = —4. So

1
Hence, the tangent line has equation |y = —1(33 +7)—3|




4. Consider the one-to-one function f(z) = 3ze® ~4. Calculate f (2) and find an equation of the tangent line
to the graph of y = f~1(z) at z = f(2).

Solution. We have )
f(2) =3-22 "4 =[6].
So f71(6) = 2. To find (f~1)'(6), we will need f/(2). We have

F12) = [3e7 4 + 31:@12*429:} o=
So ) 1 1 1
PO 5w e "
Hence the tangent line has equation |y = %( 6) + 2

5. Suppose that f and g are differentiable functions such that

f(=1)=9, [f(0)=2, f(1) =4,
f[(=1)=3, f0)=-5 f(1) =8,
g(=1)=2, ¢(0) =3, g(1) = -2,
g(-1)=1740)=-4, 4¢(1)=6.
(a) For F(z) =1In(f(2?) + g(x)), evaluate F'(—1).
Solution. We have
/ _ 1 . ! {,C2 T / T fl( 2) g ( )
F@= sy g V20 @) =50 oy

So

F'(~1) = 2/ (D)D) +g'(=1) _ =2/ +g' (=) _ -2-847 |
1)) + g(—1) ) £ 9(=T) o

N W

(b) For G(x) = arctan (3\/f(x)>, evaluate G'(1).

Solution. We have

G/(.%') _ 1 / ) 3f/(1‘)
(31/“‘*)2 \/ 2/f(@)(1 +9f(x))
So
3f(1) B 3-8 |6

G0 = 2/ F()(1+9f(1)) 2V4(1+9-4) [37]




(c) For H(x) =2/ g(3z 4 1), evaluate H'(0).
Solution. We have

H'(x) = In(2)27@ f'(2)g(3z+1)+2/@ g/ (3x+1)-3 = 2@ (In(2) f'(2)g(3z + 1) + 3f(x)g' 3z + 1)) .

So

H'(0) = 27O (In(2) £/ (0)g(1) + 3£(0)g' (1)) = 22 (In(2)(=5)(=2) + 3-2-6) = |8(5In(2) + 18) |
(d) [Advanced] For K(z) = f(22)9*) evaluate K'(0).
Solution. We have

Taking derivatives with respect to x, we get

K'(x)

) )l 20) +olo) g (20) -2
iy 5. 200 (2a)
=g'(z) In(f(22)) + f(22)

S 20(a) /(20

= K'0) = K) (o 0 h(size) + L)

K'(0) = f(0)9© <g’(0) In(£(0)) + W) =23 <—4ln(2) L 3(5)> = ] —8(41n(2) + 15) \
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Section 3.10: Related Rates - Worksheet Solutions

1. How fast is the shadow cast on level ground by a pole 50 feet tall lengthening when the angle a of elevation
of the sun is 45° and is decreasing by i radian per hour? (See figure below.)

Solution. If we call x the length of the shadow and « the elevation angle of the sun, we have

cot(a) = 50

Differentiating this relation with respect to the time ¢, we get

da 1 dx
i 27 = ——
e G = 50 d
. . o . do 1. . o
We will now substitute the given information, o = 7 and Tt in these equations. This gives us

dx .
We want to solve for —. For this, the second equation is enough, and we get

dt
s (5 (1) - 2

2. A sphere of radius 5 in fills with water at a rate of 4 in®/min. When the water level inside the sphere is
6 in, how fast is it increasing? (Hint: the volume of a spherical cap of height h in a sphere of radius r is
V =Z(3rh*—h?).)

Solution. If we call h the height of water inside the sphere and V the volume of water, we have the
relation V' = Z(15h* — h?) (the formula given with the radius of the sphere being r = 5, a constant).
Differentiating the relation with respect to the time ¢, we obtain

v« dh dh dh
dt 3

—_— 2 — — 2 R
30h— —3h dt) 7 (10h h)dt'



If we now substitute the information, % =4 and h = 6, we get

V= 2(15(6)2 - 6°),
4= (10(6) — (6)%) 4.

We want to solve for 2L For this, we need only the second equation and we get

dh 4 4 L
dt 7 (10(6) — (6)2) 24w |6 L

. A particle travels toward the right on the graph of the implicit function 4 cos(z + y) + 5y = 2, see the
figure below.

[}

4cos(x+y) =

INNNN

When the particle first crosses the positive x-axis (at the point P on the figure), its z-coordinate increases
at 6 units/sec. At what rate is the y-coordinate of the particle changing at that time?

Solution. We have the relation 4 cos(z + y) + 5y = 2. Differentiating this with respect to the time ¢, we

get
. der dy dy
4sin(z + y) (dt + dt) 5& 0.

We now need to plug in the information given. When the particle passes through the point P, we have
y = 0 and we also know that ‘fl—“t’ = 6. This gives us

4cos(x +0) +5(0) =2
—4sin(z +0) (6 + %) +5% =0.

We need to solve these relations for 4 %¢. We will start by solving the first equation for z, and we’ll then
1

use this to solve for ¢ % in the second equation. The first equation gives 4 cos(z) = 2, that is cos(z) = 3.
The first positive solution to this equation is z = %. Plugging this in the second equation gives

dy dy
—4sm(3) (6+dt)+5dt 0

746 (6+dy>+5dyo

dt dt

dy dy

—9 hatd
f(6+dt>+5dt 0
—12v3 - Q\TdersE 0



(5— 2\/5)% =12V3

dy 123 .
— = units/sec |

dt  5-23

4. A 5-foot person is walking toward a 20-foot lamppost at the rate of 6 feet per second. How fast is the
length of their shadow (cast by the lamp) changing?

Solution. We call ¢ the length of the shadow and = the distance between the person and the lamppost,
see figure below.

20

{ l+zx
Similar triangles give us the relation 5= ;;) . Differentiating this relation with respect to t gives

lde 1 (e do
5dt 20 \dt dt )’

d ¢
We can now plug in the information, that is dfstc = —6, and solve for o We get

Lde 1 (e
5dt 20 \ dt

lae 1dt 3
5dt  20dt 10

3dt_ 3
20dt 10
Z—f = —2 ft/sec|.

5. The legs of an isosceles triangle of base 6 cm are increasing at a rate of 14 cm/hour, causing the vertex
angle to decrease. When the legs are 4 cm, how fast is the vertex angle decreasing?

Solution. Call ¢ the length of the legs of the triangle and « the vertex angle, see figure below.



@
6

Let us consider the right triangle formed by the height, one of the legs and half of the base of the isosceles
triangle, see figure below.

N]]e)

Then we have the relation sin (%) = %. Differentiating with respect to the time ¢ gives
(a) 1da 3 dl
cos|=)=—=—5—
2/ 2dt 02 dt

al
We can now plug in the information, £ = 6 and o= 14 in these equations to get

We solve for Cé—‘;‘. We have

cos(%)Q—&—sin(%)Q:l = cos(%) :\/1—sin(§>2:\/1—196:\f.

Using this in the second equation, we get

Yida 21
8 dt 8
da _ 21

i 7 =| —3V/7 rad/sec |

. [Advanced] An object moves along the graph of a function y = f(x). At a certain point, the slope of
the graph is —4 and the y-coordinate of the object is increasing at the rate of 3 units per second. At that



point, how fast is the z-coordinate of the object changing?

Solution. Differentiating the relation y = f(x) with respect to the time ¢ gives

dy ., . dz
. . . , dy . . . . .
We are given the information f’(z) = —4 and i 3. Plugging this in the previous equation gives
dx dx 3
= —4— _— = —— 1 .
3 prilindl om 1 units/sec
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Section 3.11: Linear Approximations - Worksheet Solutions

1. Use a well-chosen linear approximation to estimate the following quantities.

(a)

V62
Solution. For f(x) = /z at x = 64, we have f(64) =4 and f/(64) = %64‘2/3 = 15, 80
1
L(z) = @(x —64) +4.
3 1 95
Therefore, /62 ~ L(62) = @(62 —64) +4= %

670.8

Solution. For f(x) = e® at x = 0, we have f(0) =1 and f’(0) = €” = 1, so L(x) = x + 1. Therefore,
e 08 ~ L(~0.8) = —08 + 1 =[0.2]

1/49.6

Solution. For f(z) = \/z at x = 49, we have f(49) = 7 and f/(64) = $4971/2 = L so

14>

L(z) = i(m _49) 4 7.

1 493

Therefore, v/49.6 ~ L(49.6) = 14 (49.6 —49) 4+ 7 = =0 |

In(1 + 5sin(0.06))

Solution. For f(x) = In(1+5sin(z)) at = 0, we have f(0) = 0 and f'(0) = (m) =5,
in |2=0

S0
L(z) = 5.

Therefore, In(1 + 5sin(0.06)) ~ L(0.06) = 5(0.06) =[0.3]

cot (% + 0.02) —3

() =v3and f' (§) = —csc? (%) = —4. So
%) Az = —4(0.02) =[0.08]

Solution. For f(x) = cot(x) at x = §, we have f
f

cot (%+0.02) ~V3=Af~



(f) /7 — V16

Solution. For f(z) = ¢/z at « = 16, we have f(16) =2 and f'(4) = 11673/ = L. So

4 4 _ ~ f! fi 7i
V17 \EfAfff(lfi)Axng I=|%t

2. Suppose that f is a function such that f(3) = —7 and f/(3) = 2. Use a linear approximation to estimate
the following quantities.

(a) f(3.07)
Solution. The linearization of f at x =3 is L(z) = f'(3)(z — 3) + f(3) =2(x — 3) — 7. So

£(3.07) ~ L(3.07) = 2(3.07 — 3) — 7 =[ —6.86 |

(b) [Advanced] f(1+ cos(0.1) + €%2)
Solution. Put g(x) = f(1 + cos(x) + €2¥). We have g(0) = f(1 + cos(0) + €°) = f(3) = —7 and
g (z) = f'(1 + cos(z) + **) (—sin(z) + 2¢*7) ,
so ¢'(0) = f'(3)(2) = 4. Hence the linearization of g at x =0 is L(z) = 4z — 7. So

F(1+cos(0.1) +€*2) = g(0.1) ~ L(0.1) = 4(0.1) = 7 = 6.6 |

3. Find the differential dy of the following functions.

(a) y = arcsin(3z2)

1 6x
Solution. dy = ——————=(6x)dr = | ——=dx
Y 1- (3x2)2( ) V1 —9z4

5
(b) y:4\3/5*p+63

4
Solution. dy = (31.—2/3 + 105(}_3) dz |

(c) y = csc(b0)

Solution. ‘ dy = —5csc(50) cot(50)db ‘

Solution. | dy = 1n(5)53’7t2 (—2t)dt|.




cos(2x)

(e) y==x

Solution. We have y = ec5(22)In(z) g¢

2
dy = °03(22) In(=) (—2sin(ac) In(x) + COSW)) i
X

(f) y = sin(3e~7?)

Solution. ‘ dy = —21cos(3e™"%)e” *dz ‘

4. The volume of a sphere is computed by measuring its diameter.

(a) Suppose that the diameter of the sphere is measured at 5 cm with a precision of 0.2 cm. What is
the percentage error propagated in the computation of the volume?

Solution. Call x the diameter of the sphere. We have V = %7‘(‘ (%)3 = %xg. From this we deduce

av = gm2dm,

dv  Zz%d
= — = Qf v _gdr
\% a3 T

The relative error propagated is

which means that the pencentage error is .

(b) [Advanced] Suppose that we want a measurement of the volume with an error of at most 1.5%.
What is the maximum percentage error that can be made measuring the diameter?

Solution. We want to have AV—V = 0.015, so
dr 1AV
— ~ ——— =0.005.
T 3V

Therefore, the maximum percentage error that can be made measuring the diameter is .
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Section 4.1: Extreme Values - Worksheet Solutions

1. Find the absolute extrema of the following functions on the given interval.

(a)

f(z) =223 +32? — 12z + 1 on [-1,2].

Solution. First, we find the critical points of f in [-1,2]. We have f'(z) = 62 4+ 6z — 12 =
6(x +2)(z—1).

o f'(x) =0 gives z = =2, 1.

e f/(x) undefined: no z-values.

So the critical point in [-1,2] is # = 1. Now, we evaluate f(z) at the endpoints and the critical
point.

| -1 1 |2]
fla) ] 14 ] -6 5]

Therefore, the absolute maximum of f(z) on [—1,2] is (reached at * = —1) and the absolute
minimum is (reached at z = —1).

f(z) = (7 —2)%/° on [1,6].

Solution. First, we find the critical points of f in [1,6]. We have

/ - oN2/5 2x _5(7—$)—2$_ 35 —Tx
Pla)= ooy - 2o, D ol B

o f'(x) =0 gives 35 — Tx =0, so x = 5.
e f/(x) undefined gives z = 7.

So the critical point in [1,6] is z = 5. Now, we evaluate f(z) at the endpoints and the critical point.

v 1| 5 o

fl) || 6%5 | 5-4175 | 6 |

We need to determine which of these is the largest and which is the least. First, observe that 6 > 62/°

since % < 1. Next, we have 6 < 5-41/%. To see this, we can compare the 5th power of these numbers

to see that 6° = 7776 < 5°-4 = 12500. Therefore, the absolute maximum of f(x) on [1, 6] is
(reached at x = 5) and the absolute minimum is (reached at = = 1).

f(z) =3z* — 1023 4+ 622 — 7 on [-2,1].
Solution. First, we find the critical points of f in [~2,1]. We have f’(z) = 1223 — 30z + 12z =

6x(2x — 1)(x — 2).
e f'(xz) =0 gives z =0, %,2.



e f/(x) undefined: no z-values.
So the critical points in [-2,1] are z = 0, 2. Now, we evaluate f(z) at the endpoints and the critical
point.

z| 2] 0| 3 \ 1
(z) || 145 | =7 | —

Therefore, the absolute maximum of f(z) on [—2,1] is (reached at x = —2) and the absolute
minimum is E (reached at = = 1).

(d) f(z) = (e” =2)*/7 on [0,In(3)].

4 x
Solution. First, we find the critical points of f in [0,In(3)]. We have f'(z) = W.
eZE —
e f'(x) =0 gives 4e” = 0, which has no solution.
e f/(x) undefined gives e* — 2 =0, so z = In(2).

So the critical point in [0,1n(3)] is = In(2). Now, we evaluate f(z) at the endpoints and the critical

point.
o L0 ] 1) | 3) |
fe@) I 1] ; 1
Therefore, the absolute maximum of f(x) on [0,1n(3)] is (reached at © = 0 and = In(3)) and

the absolute minimum is @ reached at z = In(2)).

n [1,e4].

1 1 2-1
Solution. First, we find the critical points of f in [1,e*]. We have f/(x) = ey R ;;(3:2 = 2;1;;(296)
o f'(z) =0 gives 2 — In(x) =0, so z = €2.

e f'(z) undefined gives no solution in the domain of f, which is (0, c0).

So the critical point in [1,e%] is # = €2. Now, we evaluate f(z) at the endpoints and the critical
point.
rfe o]
@ ol [zl

It is clear that the smallest of these values is @, which is the absolute minimum of f on [1,¢?].
To find the largest value, observe that ;% = (%)2 Since % <1, (%)2 < % Therefore, the absolute

2
maximum of f(z) on [1,e%] is .

vance x) = 2arctan(3xz) — 3z on |0, —==]. int: use the approximations m ~ 3.1 an
f) [Ad d] f 2 3 3 0 \}g H. h 3.1 and
V3~1.7).)

6 3_3—273:2
1+ 922 149227

Solution. First, we find the critical points of f in [ , f} We have f'(z) =

o f'(z) =0gives 3—272? =0,s0 ¢ = &, — 1.
e f/'(z) undefined gives 1 + 922 = 0, which has no solution.



So the critical point in

—

0, %} is © = . Now, we evaluate f(z) at the endpoints and the critical

point.

It is clear that the smallest of these values is @, which is the absolute minimum of f on [0, %]

To find the largest value, observe that 7 — 1 ~ 0.5 using the approximation 7 ~ 3.1, and 2?“ -3~

— . 1 . ™
2 —1.7=0.3. So the absolute maximum of f on [O, ﬁ] is 5~ 1|
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Sections 4.2-3: Mean Value Theorem and First Derivative Test - Worksheet Solutions

1. Find the values of the constants A, B for which the following function satisfies the assumptions of the
Mean Value Theorem on the interval [—2, 2].

£ edrtB ifx>0
xTr) =
arctan(Az +1) ifx <0

Solution. To satisfy the assumptions of the MVT, f must be continuous on [—2,2] and differentiable on
(—2,2). Each piece of f is differentiable (therefore also continuous) so we only need to check for continuity
and differentiability at = 0. For continuity, we will want

lim f(z) = lim f(x)= f(0).

z—0t z—0—

This gives e = arctan(1) = %, so|B=In (%) .

For differentiability at z = 0, we start by computing the derivative of each piece of f:

5e5+B ifx >0
fl@) = A ,
2 5f
15 (Az +1)° ifz <0
. . . , . , . . B A
For f to be differentiable at 0, we need hI(I)lJr fl(z) = hrg f'(z), which gives 5e” = 3 Therefore,
xr—r x—0—
5T
A=10e8 =105 =| 22|
Oe O4 5

2. Suppose that f is continuous on [—2,4], that f(4) = 1 and that f'(x) > 3 for « in (—2,4). Find the
largest possible value of f(—2).

Solution. We use the MVT: there exists a point ¢ in (—2,4) such that

fA) - f(=2)
4_7(_2) = f'(c).
This gives %(_2) = f’(¢), which is f(—=2) = 1 — 6f'(¢). By assumption, we have f’(c) > 3, so

6f'(c) > 18 and f'(2) =1 —6f'(c) < —17. So the largest possible value of f/(2) is .

3. Find and classify the critical points of the following functions.



(a) f(z) = 2%7(72 - 2?)

Solution. We have
(72 — 22) o117 _ 4072 — 2?) — 142% 288 — 1827  18(4 —z)(4 + )

4
TN
f(@) 723/7 T3/7 T3 Tx3/7

The critical points of f are x = 4, —4 (where f’ is 0) and x = 0 (where f’ is undefined). We now
test the sign of f/ between each critical point.

(=)
(=)
o On (—4,0), f'is (JE)_()J’) — (-
() _

(++)
. ()
e On (—oo,—4), f'is = (-).
(moe =), 1 is L2 = ()

So f has local maxima at x = —4,4 (f’ changes from + to -) and a local minimum at = = 0 (f’
changes from - to +).

e On (—o0,—4), f'is = (+).

e On (0,4), f'is (+).

(b) f(z) = 2°In(z)
Solution. Note that the domain of f is (0,00). We have

f/(x) = 5x*In(x) + 2° - = = 5z In(x) + 2* = 2*(51In(x) + 1).

8=

The critical point of f is 2 = e~ /% (where f’ is 0). We now test the sign of f’ on either side of the
critical point.

e On (0,e~1/%), f" is negative.
e On (e7/5,00), f’ is positive.

So f has a local minimum at 2 = e~'/® (f’ changes from - to +).

(¢) f(x) = + cos(2x) on [0, %}

Solution. We have
f(xz) =1—2sin(2x).

v
Solving f’(z) = 0 gives sin(2z) = %, which gives the solutions z = 75, 2% on the interval [0, 5} We
now test the sign of f’ between each critical point.
e On (0, %), 1! is positive since sin(2z) < %

e On (&, 52), f is negative sincesin(z) > 3.

120 12
e On (33,%), ' is positive since sin(2z) < 3.
So f has a local maximum at z = {5 (f' changes from + to -) and a local minimum at z = %T (f'

changes from - to +).



(d) f(z) =sin"! <e*¢v2>

Solution. We have

, _ 1 a2, _ 2z~
Fe = e T = e

The critical point of f is = 0 (where f’ is undefined). We now test the sign of f’ on either side of
the critical point.

s (D)
e On (—00,0), f'is S (+)-
e On (0,00), f'is ) = (-
on (0.00), 15 I - ),

So f has a local maximum at z = 0 (f’ changes from + to -).

(z +3)(z — 5)°

4. Suppose that f is continuous on (—o0,00) and that f/(z) = T2 — 1)
x2/3(x —

(a) Find the critical points of f.

Solution. We have f'(z) = 0 when x = —3,5. We have f'(z) undefined when = = 0, —. Therefore,

the critical points of f are|x = —3,0,1,5|

(b) Find the intervals where f is increasing and the intervals where f is decreasing.

Solution. We test for the sign of f’ between the critical points.

(=)()

O (mo0,—8): (5= (1)
o

e On (0,1): Eiitg — ()

e On (1,5) EBEB — )

e On (5,00): m — ()

So f is increasing on (—oo, —3] and [1, 00), and decreasing on [—3,1].
(c) Find the location of the local extrema of f.

Solution. Based on our previous analysis, we can conclude that f has a local maximum at x = —3
and a local minimum at xz = 1.

5. Suppose that f is a differentiable function. The graph of the derivative of f, y = f/(z), is sketched
below.



(a)

6

5

4 !

. y=f'(x)
2

1

X
-2 - 1 2 4 5 6 7 8 9

-3

-4

-5

-6

Find the critical points of f.

Solution. Using the graph, we see that f'(x) = 0 when z = —7,—1,3 and f’(x) is undefined when
x = —4. Therefore, the critical points of f are ’ rx=-7,—4,—-1,3 ‘

Find the intervals where f is increasing and the intervals where f is decreasing.

Solution. Using the graph, we see that f/(z) > 0on (=7, —4),(—4,—1) and (3,00). So f is increasing
on [—7,—1] and [3, 00). Likewise, f’(x) < 0 on (—oo0, —7) and (—1,3). So f is decreasing on (—oo, —7]
and [—1, 3].

Find the location of the local extrema of f.

Solution. f has a local maximum at x = —1 (f’ changes from + to -) and local minima at x = —7,3
(f' changes from - to +).
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Sections 4.4: Concavity and Curve Sketching - Worksheet Solutions

1. Find the intervals where the functions below are concave up, concave down and find the inflection points.

1

(a) f(z) = 2112

Solution. We need to find the second derivative of f. We have

fx) = *m
f(x) = =2(2® +12)72 — 22(—2) (2 + 12)73(22)
= —2(2% +12)7? ((2? + 12 — 42?))
12 — 322
(2 4+12)3
2-2)(2+2)
(x2+12)3

(22) = —2x(2® 4+ 12) 72,

We now use a sign analysis to determine the intervals on which f”(z) is positive and negative.

e On (—o0,—2), the sign of f"(x) is (—)%JS) = (4).

e On (~2,2), the sign of f"(z) is (—) %25 = ().

e On (2,00), the sign of f"(x) is (—)% = (+).

Therefore f is‘ concave up on (—oo, —2), (2, 00) ‘and‘ concave down on (—2,2) ‘ The inflection points

of f are (—2, 1> , (2, 1> .
16 16

(b) f(z) =ate

Solution. We need to find the second derivative of f. We have

fl(x) = 4a3e™3% — 32te 3% = 737 (423 — 32%),
f(x) = e 3*(122% — 1223) — 3737 (42 — 32)
= e 371222 — 1203 — 1223 + 92%)
= e %7 (1227 — 242° + 92%)

= 32%e73%(4 — 8z + 327%)
= 32%e 73 (32 — 2)(x — 2).

We now use a sign analysis to determine the intervals on which f”(z) is positive and negative.
e On (—00,0), the sign of f”(x) is (+).



e On (0,2), the sign of f(z) is (+).
2), the sign of f”(z) is (—).

2 2
Therefore f is | concave up on (—o0,0), (0, 3) ,(2,00) | and | concave down on (3, 2) . The inflec-

2 16e~2
tion points of f are (3, 861 > ,(2,16e7°) |

2. Sketch the graphs of the following functions. Your graph should clearly show any asymptotes, local

extrema and inflection points of the functions.

Solution.
e Horizontal asymptotes: none since lim f(z) = —co= lim f(z).
T—00 r—r—00
e Vertical asymptotes: = = 0.
e Info from first derivative: f/(z) = -5 — 2z = —24}?3. The critical point of f is x = —4'/3,

and f'(z) is positive on (—oo, —4/3) and negative on (—4'/3,0), (0,00). So f is increasing
on (—oo,—4'/3) and decreasing on (—4'/3,0), (0,00). Therefore, f has a local maximum at
x = —41/3,

e Info from second derivative: f”(z) = 1% —2 = 28;333. The sign of f”(x) is positive on (0,2) and
negative on (—o0,0), (2,00). Therefore, f is concave up on (0,2) and concave down on (—o0, 0),
(2,00), and f has an inflection point at = = 2.

\
+
)
w
1
»




(b) f(z) =tan(2z) — 8z on (—%, %)

Solution.

¢ Horizontal asymptotes: none since we are graphing on a bounded interval.

e Vertical asymptotes: © = §, v = —7 (since tan(z) has infinite discontinuities at » = +7).

e Info from first derivative: f/(z) = 2sec?(2z) — 8 = 2(sec(2z) — 2)(sec(2z) + 2). To find the
critical points of f, we need to solve f’(z) = 0, which gives sec(2z) = —2 (no solution in the
interval) and sec(2x) = 2 (solutions in the interval are 2 = +%). The sign of f'(x) is positive
(so f is increasing) on (—%, —%) and (6, 4) and negative (so f is decreasing) on (—%, %) So

us s

[ has a local maximum at * = —% and a local minimum at z = —%.

e Info from second derivative: f”(x) = 4sec(2z)sec(2x) tan(2x)(2) = 8sec?(2z) tan(2z). We see
that f”(z) > 0 (so f is concave up) on (—%,0) and f”(z) < 0 (so f is concave down) on (0, ).
Therefore, f has an inflection point at x = 0.

~

-

-

Y= ton(Jx) ~ 8
locs] oy

— — )
E X T E x
& I 12 &
loeal m‘m
=T X‘.:.'_‘-
2 12
3. Suppose that f is continuous on (—oo, ), that f/(z) = m and that f"(z) = m.

(a) Find the critical points of f.

Solution.
e f'(x) =0 when z = 0.
e f/(x) is undefined when z = —4.

Therefore, the critical points of f are .



(b) Find the intervals where f is increasing and the intervals where f is decreasing.

Solution. f'(x) > 0 on (—o0,—4), (0,00), and f'(x) < 0 on (—4,0). Therefore, f is increasing on
‘ (=00, —4], [0, 00) ‘ and decreasing on |[—4,0] |

(c¢) Find the location of the local extrema of f.

Solution. Based on our previous answer, f has a local maximum at and a local minimum

at [z =0}

(d) Find the intervals where f is concave up and the intervals where f is concave down.

Solution. f"(x) > 0 on (—6,00) and f"”(xz) < 0 on (—oo,—6). So f is concave up on | [—6,00) | and
concave down on .

(e) Find the z-coordinates of the inflection points of f.
Solution. The only place where f changes concavity is .

4. Suppose that f is a differentiable function. The graph of the derivative of f, y = f'(x), is sketched
below.

N W OO

ey

-9 -8 -7 -6 -5 -4 -3 -2 —}}\

(a) Find the critical points of f.

Solution.
e f(z) =0 when z = —1,2,5.
e f/(z) is undefined when z = —2.

Therefore, the critical points of f are ‘ r=-2,-1,2,5|




(b)

Find the intervals where f is increasing and the intervals where f is decreasing.

Solution. f'(x) > 01is positive on (—2,—1) and (2, 5), so f is increasing on | [-2, —1],[2,5] | f/(z) <0

on (—oo0,—2),(—1,2) and (5,00), so f is decreasing on ‘ (—o0,-2],[-1,2],[5,00) |

Find the location of the local extrema of f.

Solution. f has local maxima at (f' changes from positive to negative) and local minima

at (f' changes from negative to positive).

Find the intervals where f is concave up and the intervals where f is concave down.

Solution. f is concave up when f’ is increasing, which happens on ‘ (=00, —3],[0,4] ‘ f is concave

down when [’ is decreasing, which happens on ’ [-3,-2],[-2,0], 4, ) ‘

Find the z-coordinates of the inflection points of f.

Solution. f has inflection points at .
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1. Evaluate the following limits. Note: L’Hopital’s Rule is not possible/necessary for every limit.

(a) lim Y22

8 64 — 22

Solution. We can compute this limit using L’Hopital’s Rule twice with the indeterminate form

This gives

i In(z)?

Solution. We can compute this limit using L’Hopital’s Rule twice with the indeterminate form

This gives

T _ Qr
(c) li -3

Solution. This limit is an indeterminate form g.
L’Hopital’s Rule, remembering that for a positive constant a, we have

250 sin(2x)

Section 4.5: L’Hoépital’s Rule - Worksheet Solutions

S — 2
lim Vo

z—8 64 — (ﬂz

2
lim In(z)
T—00 T

4,
dzx

1,-2/3

lim
r—8 —2x
1 _
3" 8 2/3
—16
1
192 |

[
sl

1
L’H .. 21n(;v)5
= lim T
o gy -
= 7% &
41n(x)
= lim
z=y00 /T
L'H 4
= lim —
X r—o0 ——
had 2v/x
. 8
= lim —
T—00 /2

* =1In(a)a”.

0

0"

>

U We can resolve the indeterminate form using



We obtain

57— 3% pm . In(5)5% — In(3)3"

alclg%J sin(2z) ? z—0 2 cos(2x)
~ In(5)5 —1In(3)°
 2cos(2-0)
| In(5) — In(3)
= | ==

) 1 — csc(0)
(d) elg% 1 —sec(40)

Solution. Solution. We can compute this limit using L’Ho6pital’s Rule twice with the indeterminate
form %. This gives

fust

lim 1—csc(f) 1

lim csc(0) cot ()
0% 1 —sec(46)

0—% —4sec(46) tan(40)

lim —csc(f) cot(6) cot(0) + csc(8)(— csc?(0))
0% —16sec(40) tan(46) tan(40) — 16 sec(46) sec?(40)
— csc(f) cot?(0) — csc3(6)

clo ||

£
s

clo ||

- 011—% —16sec(40) tan?(46) — 16 sec3(40)
—-1-02-13
T 16-1-02-16-13
1
=%t

(e) lim In(bz + 1) —In(z)

Tr—00

Solution. This limit is an indeterminate form oo — co. It can be evaluated by combining the
logarithms and evaluating the limit of the inside. This gives

lim In(bx +1) —In(x) = lim In <5$ + 1)

T—00 T—00 X
= lim In <5 + 1>
—00 €T
=In(5+0)

_ )]

: 2\"
® Jm (1+3)

Solution. This limit is an indeterminate power 1°°. Warning: limits of the form 1°° need not be
equal to 1! This is because the base is not equal to 1, it is approaching 1. We can resolve the
indeterminate form by rewriting the power with an exponential using the formula

Clb — ebln(a)



and applying L’Hopital’s Rule in the resulting exponent. This gives

2 x
lim (1+> — lim e"™0+3)
€T

. m(1+2)
lim T
_2 1
lim 2
L’H .
e T —r o0 12

2sin(a:) -1

li —_—
() 250 sin~ ! (5z)

Solution. This limit is a % indeterminate form, which we can evaluate using L’Hopital’s Rule. We
obtain

2sin() _ 1 .y In(2)252(*) cos(z)

S0 sin(5r) § a0 e
| In(2)

(h)  lim 2z + 3 cos(z)

T——00 5x

Solution. This limit is an indeterminate form 2. However, we cannot use L’Hopital’s Rule here.

This is because L’Hopital’s Rule only applies if the resulting limit exists or is infinite, but here, the
resulting limit

lim 2 — 3sin(x)
T——00 5

does not exist. The Squeeze (or Sandwich) Theorem will work for this limit. Since —1 < cos(z) < 1
for all x, we have

2z -3 o 2z + 3 cos(z) < 20 +3

5r %4 ox
for any = # 0. Furthermore, we have

. 2z — 3 .2 3 2

lim =lim - — — =,

r——0co DT z—00 b 5x 5

2 2 2

lim x+3:hmf—|—i:f

r——0co DT z—00 b 5 5

Since the two limits are equal, we conclude that

2z + 3cos(z) 2

T—=00 5z 5/




ANEE 1/x

0 5=

Solution. This limit is an indeterminate power oo®. Warning: limits of the form co® need not be
equal to 1! We can resolve the indeterminate form by rewriting the power with an exponential using
the formula

ab — ebin(a)

and applying L’Hopital’s Rule in the resulting exponent. This gives

In(z)

lim 2% = lim e =
Tr—r 00 xTr—r 00
lim 2@
= g z—o x
LH  lim M=
= g z—o>™
=
=

[1]

() lim a3edet2

Tr—r—00

Solution. This limit is an indeterminate form oo - 0. We can resolve the indeterminate form by

rewriting the expression as a fraction of the form 2 and applying L’Hopital’s Rule 3 times. This
gives
3
3 . X
lim 2%¢°*? = lim =
T——00 T——o00 T2
A gim 3°
% z——00 —He—9T—2
LH .. 6x
= lim ———
2 z——o0 25e—5c—2
L’'H 6

lim ———
10 —125¢ 572

~ 0]

gR Il

(k) lim /Flog,(x)

z—0*t

Solution. This limit is an indeterminate form 0 - co. We can resolve the indeterminate form by

rewriting the expression as a fraction of the form 22 and applying L’Hopital’s Rule. This gives
. _ logy(z)
lim ¢zl =1 2
A, Vrloga(®) = i 221
1
L’H .. In(2)x
= 1 _—
= wir{)l‘*' 7%I74/3
L'H —3z1/3

S )

_ [0}

Al



) lim ——
( ) T——00 /2 +4

Solution. This limit is an indeterminate form 22, but using L’Hopital’s Rule would result in an
infinite loop and would not help evaluate the limit. Instead, we use algebra to cancel out the highest

powers of z. We have

x x
lim ——= lim ——
T—=—00 \/x2 4+ 4 T——00 /IEQ (1 + 3%)
= lim —
= lim — e (2<0)
-0 _ . /1+%

= lim

1
1:—)—00_ /1+;i2
]

: 1/x>
(m) %1_% cos(3x)
Solution. This limit is an indeterminate power 1°°. Warning: limits of the form 1°° need not be
equal to 1! This is because the base is not equal to 1, it is approaching 1. We can resolve the

indeterminate form by rewriting the power with an exponential using the formula

ab — ebin(a)

and applying L’Hopital’s Rule in the resulting exponent. This gives

lim COS(3$)1/12 = lim e(cos(3x))/2”
z—0 z—0

Now we calculate the limit of the exponent using L’Hopital’s Rule and we obtain

1 .
lim In(cos(3z)) LH 7(;05(395)(*5111(395))3
z—0 T 9 =0 2x
— lim —3tan(3x)
x—0 2x
oy 9560
% x—0 2
_ 9
= -5

Going back to the original limit, we obtain

lim (:05(333)”””2 = lim eM(eosBa)/e® - .

x—0 xz—0



Solution. This limit is an indeterminate power 1°°. Warning: limits of the form 1*° need not be
equal to 1! This is because the base is not equal to 1, it is approaching 1. We can resolve the
indeterminate form by rewriting the power with an exponential using the formula

() lim (:c + 5)‘”

Clb — ebln(a)

and applying L’Hopital’s Rule in the resulting exponent. This gives

4x
lim (x+5) = lim 64731“(212).

We now compute the limit of the exponent using L’Hépital’s Rule:

lim 4zln <$+5> = lim 4ln(x+5) Iln(x+3)
x+3

T—r00 Tr—r0o0 5
11
L/:H 4 r+5 11+3
0 - =
0 x2
e g2 @+3) = (@+5)
200 (x4 5)(z + 3)
I 82 ;12
= lim ———— - %~
w00 (x+5)(z+3) 5
= lim 8
 aoo (1+5/2)(1+3/2)
=8.
So (=)
. 4z In( Z — |8
Jim () =[]
: 1/In(z+1)
©) I,

Solution. This limit is an indeterminate power co®’. Warning: limits of the form oc® need not be
equal to 1! We can resolve the indeterminate form by rewriting the power with an exponential using
the formula

ab _ eb In(a)

and applying L’Hopital’s Rule in the resulting exponent. This gives

In(x)

lim zY/"EFD = Jim eWGE+D
Tr—r00 Tr—r00

We now compute the limit of the exponent using L’Hopital’s Rule, an we obtain

1 ' 1
711(36) L lim —%—
oo x+1
= lim
r—o00 I
= 1.

Therefore o)

lim z'/PEFD = Jim emGiD = el = [e]

T—r 00 Tr—00
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Section 4.6: Optimization - Worksheet Solutions

1. Farmer Brown wants to enclose rectangular pens for the animals on her farm. The three parts of this
problem are independent.

(a)

(b)

Suppose that Farmer Brown wants to enclose a single pen alongside a river with 300 ft of fencing.
The side of the pen alongside the river needs no fencing. What dimensions (length and width) would
produce the pen with largest surface area?

Solution. Call w the width and h the height of the pen, see figure below.
h

river

The objective function is the area of the pen A = wh. To express this function in terms of a single
variable, we use the constraint given by the fact that the amount of fencing is 300. This gives the
equation 2w + h = 300, so h = 300 — 2w. Therefore, the objective function in terms of the variable
w is A(w) = w(300 — 2w) = 300w — 2w?.

To find the feasible interval, observe that lengths cannot be negative, so we need w > 0 and h > 0.
This last inequality gives 300 — 2w > 0, so w < 150. Therefore, the interval is [0, 150].

We now use calculus to find the absolute maximum of A(w) = 300w — 2w? on [0, 75]. First, we find
the critical points. We have A’(w) = 300 — 4w. The equation A’(w) = 0 gives the solution w = 75,
which is the only critical point. To find the absolute maximum, we now evaluate A(w) at the critical
point and the endpoints.

e A(0)=0
e A(75) =11250
e A(150) =0

Hence, the area of the pen is maximal when its width is and its height is h = 300 — 2w =

[508]

Suppose that Farmer Brown has 360 ft of fencing to enclose 2 adjacent pens. Both pens have the
same height, but the second one is twice as wide as the first. What is the largest total area that can
be enclosed?

Solution. Call h the height of the pens and w the width of the smaller one, see figure below.



3w

The objective function is the total area of both pens A = 3wh. To express this function in terms
of a single variable, we use the constraint given by the fact that the amount of fencing is 360. This
gives the equation 6w + 3h = 360, so h = 120 — 2w. Therefore, the objective function in terms of
the variable w is A(w) = 3w (120 — 2w) = 360w — 6w?.

To find the feasible interval, observe that lengths cannot be negative, so we need w > 0 and h > 0.
This last inequality gives 120 — 2w > 0, so w < 60. Therefore, the interval is [0, 60].

We now use calculus to find the absolute maximum of A(w) = 360w — 6w? on [0,60]. First, we find
the critical points. We have A’(w) = 360 — 12w. The equation A’(w) = 0 gives the solution w = 30,
which is the only critical point. To find the absolute maximum, we now evaluate A(w) at the critical
point and the endpoints.

e A(0)=0
e A(75) = 5400
e A(60)=0

Therefore, the maximal total area that can be enclosed is | 5,400 ft2 |

Suppose that Farmer Brown wants to enclose a total of 2,400 ft2 in two adjacent pens having the
same dimensions. What is the minimal amount of fencing needed?

Solution. Call h the height and w the width of the pens, see figure below.

w w

2w

The objective function is the amount of fencing used (or perimeter of the figure), P = 4w + 3h. To
express this function in terms of a single variable, we use the constraint given by the fact that the
total area is 2,400 ft2. This gives 2wh = 2400, so h = %. Therefore, the objective function in
terms of the variable w is P(w) = 4w + 3690,



To find the feasible interval, observe that lengths cannot be negative, so we need w > 0 and h > 0.
This last inequality gives 12

U?O > 0, so w > 0. Therefore, the interval is (0, 00).

We now use calculus to find the absolute minimum of P(w) = 4w + 2% on (0, 00). First, we find
the critical points. We have P’(w) = 4 — 3530, The equation P’(w) = 0 gives w? = 900, so w = +30.
The only critical point in the feasible interval is w = 30.

To determine if w = 30 gives a local maximum or minimum of P(w), we use the SDT. We have

P"(w) = 2% Since P"(w) > 0 on (0,00), P(w) is concave up on 0,00, and therefore w = 30 gives
a local minimum of P(w). Hence, the minimal amount of fencing needed is P(30) =240 ft |

2. A rectangular box has total surface area 216 in?, and the length of its base is 4 times its width. Find the
dimensions of such a box with largest volume.

Solution. Call w the width of the box and h its height, see figure below.

4w

The objective function is the volume of the box V = h(4w)w = 4hw?. The constraint equation is given
by the surface area being 216, which gives 2h(4w) + 2w (4w) +2hw = 216, or 2(5wh + 4w?) = 216. Solving
this for h gives bwh = 108 — 4w?, or h = %. Therefore, the objective function in terms of the
variable w is V(w) = 41085_7;}“’2102 = 827w — w?).

To find the feasible interval, we observe that lengths cannot be negative, so we need w > 0 and h > 0.
2
This last inequality gives 1085;7;““ > 0, which gives 0 < w < v/27. So the interval is (0,/27].

We now use calculus to find the absolute maximum of V(w) = 4%1;1“’211)2 = 5(27w —w?) on the interval

(0,v27]. We have V' (w) = 18(27 — 3w?). The equation V'(w) = 0 gives w? = 9, so w = +3. The only
critical point in (0,v/27] is w = 3.

Let us use the SDT to determine whether V(w) has a maximum or a minimum at w = 3. We have
V"(w) = 8(—6w). Since V"(w) < 0 on the interval (0,v/27], V(w) is concave down in (0,v27], and

therefore reaches its absolute maximum at w = 3. Hence, the box with largest volume has width ,

25
height h = 1085_75“’2 =17 ft | and length 4w = .

3. A rectangular box is created by cutting equal size squares from the corners of a 10 in by 20 in cardboard
rectangle and folding the sides. What size should the cut squares be for the resulting box to have the
largest possible volume?



Solution. Call x the side length of the squares cut from the corners of the rectangle. The resulting box
has height z, length 20 — 22 and width 10 — 2z, see figure below.

1 1
1 1
€T . .

10 — 2« 1
— X ) I

10 — 22

z 20 — 2z x

The objective function is the volume of the box V(x) = x(10 — 22)(20 — 2z) = 4(2® — 152% + 50z). To
find the interval of interest, observe that all lengths must be postive, so we need = > 0, 10 — 2x > 0
and 20 — 2z > 0. This gives the interval [0,5]. We now use calculus to find the absolute maximum of
V(z) = 4(2® — 1522 + 50z) on [0, 5].

First, we find the critical points of V' (x) we have V'(z) = 4(32% — 30x + 50). Using the quadratic formula,

30+£v300 __ 5v3
B

the solutions of V'(z) = 0 are x = . The only critical point in the interval of interest

isx=5— 5T\/§ We now evaluate V(x) at the critical point and the endpoint.

e V(0)=0
oV (5 — %) is some positive value.
e V(5)=0
: : 5V3
Therefore, the volume is maximal when the square cut off from the the corners has base z =|5 — 3 in
. A rectangle has base on the z-axis and its two other vertices on the graph of y = ﬁ Find the

dimensions of such a rectangle with largest possible area.
Solution. Call (x,y) the vertex of the rectangle on the graph in the first quadrant, see figure below.

Y

X




The rectangle has base 2x and height y. The objective function is the area A = 2xy. The constraint is

given by the fact that (z,y) is a point on the graph, which gives the equation y = Therefore, the

2z
25+x2 "

_1
25+x2 "

objective function in terms of the variable x only is A =

To find the feasible interval, observe that (x,y) can be any point on the graph in the first quadrant, so
we have x > 0. This gives the interval [0, c0).

We now use calculus to find the absolute maximum of A(z) = 252+7"Lzz on the interval [0, c0). First, we find
the critical points. We have
25+ 22) —2x(2x) 50 —222  2(5—x)(h+x)

oy _ _
A ="y @ @)

The equation A’(z) = 0 gives the solutions x = 5, -5, and there are no values of = for which A’(x) is

undefined. Therefore, the only critical point in [0,00) is = 5. We can use the FDT to classify the

critical point. When 0 < z < 5, we have A'(z) > 0, so A(x) is increasing on [0,5]. When =z > 5,

we have A’(z) < 50, so A(z) is decreasing on [5,00). Therefore, we can conclude that the absolute

maximum of A(z) occurs when x = 5. For this value of z, the rectangle has width 2z = and height
! 1

T 25422 |50

Y

. A circular cone is created by cutting a circular sector from a disk of radius 9in and sealing the resulting
open wedge together. What is the largest possible volume of such a cone?

Solution. Call h and r the height and radius of the resulting cone, see figure below.

S -

The objective function is the volume of the cone V = %m”h. The constraint is given by the fact that
the slant height of the cone is 9 - the radius of the original disk. Therefore, 72 4+ h? = 81, which gives
r? = 81 — h?. Hence, the volume in terms of the variable h only is V(h) = im(81 — h?*)h = im(81h — h?).

To find the feasible interval, observe that the height can take any value between 0 (which occurs when
we don’t cut anything from the disk and get a flat cone) and 9 (which occurs when we cut off the entire
disk and get just a line segment as cone).Therefore, the interval is [0, 9].

We now use calculus the find the absolute maximum of V (h) = $m(81h — h®) on [0,9]. First, we find the
critical points. We have

V'(h) = %n (81 —3h%).



So V'(h) = 0 when 3h? = 81, which gives the solutions h = 4-v/27. The only solution in the feasible
interval is h = v/27. We now evaluate V' (h) at the endpoints and the critical points.

e V(0)

0

o V(VET) = ir (81VZ7 — (VIT)’) = 5473

e V(9)

0

Hence, the largest possible value of the volume of such a cone is | 547v/3 in® |.

6. The parts of this problem are independent.

(a)

Find the point on the line 2z + y = 5 that is closest to the origin.

Solution. We find the absolute minimum of the square of the distance between the origin and a point
(x,7) on the line. The objective function is therefore F' = 224y, subject to the constraint 2x+y = 5.
The constraint gives y = 5 — 2z, so the objective function in terms of z only is F(z) = 22+ (5 —2x).
The feasible interval is (—oo, 00) as the point can be anywhere on the line.

We now use calculus to find the absolute minimum of F(x) = 22 + (5 — 22)? on (—o0,o0). We have
F'(z) = 22 + 2(5 — 2x)(—2) = 102 — 20. Therefore, the only critical point of F(z) is = 2. Since
F"(z) =10 > 0, F(x) is concave up on (—o00,00), and thus F(z) reaches its absolute minimum at
x = 2. For this value of z, we have y = 5 — 22 = 1. Hence, the point on the line 2x + y = 5 closest

to the origin is | (2,1) |

Find the point on the graph of y = y/z that is closest to the point (3,0).

Solution. We find the absolute minimum of the square of the distance between the point (3,0) and a
point (x,y) on the curve. The objective function is therefore F' = (x — 3)? + 42, subject to the con-
straint y = /7. Using the constraint, the objective function in terms of = only is F(z) = (z—3)%+ .
The feasible interval is [0, 00) as the point can be anywhere on the graph of y = \/x.

We now use calculus to find the absolute minimum of F(z) = (z — 3)? + x on [0,00). We have
F'(z) = 2(z—3)+1 = 22—5. Therefore, the only critical point of F'(z) isz = 2. Since F”'(z) = 2 > 0,
F(z) is concave up on [0,00), and thus F(z) reaches its absolute minimum at z = 5. For this value

s 5 /5
of z, we have y = /3. Hence, the point on the curve y = \/z closest to (3,0) is (2, \/;> !
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Section 4.8: Antiderivatives - Worksheet Solutions

1. Evaluate the following antiderivatives.

(a) /Hszdx

‘ 7 1 —

Solution. 3sin~! (%) +C|

3 1
/\/16—362 v /\/42—1‘2

(c) /(3:1: +1) (:c? - 2) dx

Solution. We fully distribute the integrand, then use the power rule. This gives

/(3x—|—1) <x2—i)dx:/<3x3+x2—15—i>dx

3 1
= 1x4+§x3—15x—5ln|m|+0.

(d) /(651 + cos(1)) dx

Solution. Warning: an antiderivative of cos(1) is not sin(1), because cos(1) is a constant. The
correct way to integrate cos(1) with respect to x is cos(1)x. With this in mind, we have

1
/ (€% + cos(1)) do = 3651 + cos(1)z + C'|.

(e) /(5W+ 81j‘;z2) dx

Solution.

7 4 3/7 1
/(5\/;73+81+x2>dx:5/x/dm+4/92+m2dx

10/7

?0/7 N %tan_l (9 +C

35 qo7 4 1 (m)
=|— -t —+C|
103: + 9 an 9 +

=5




() /csc(5€) (sin(560) — cot(50)) d

Solution.
/CSC(5(9) (sin(50) — cot(50)) df = /(CSC(59) sin(560) — csc(56) cot(50)) db
= /(1 — csc(50) cot(50)) db
= 9+%csc(50)+0 !
Tt —11
(g) Tdt
Solution.

[t [ ()
— / (7t1/2 - 11t_1/2) dt

t3/2 t1/2

=7 — 11—
73/2 1/2

+C

— %tsm — 22812 4 C|.

W [ (- L)

. 1 27 In |x|
lution. 27 — — = — .
Solution /< 796) dx m(2) 7 +C

0 /tan(?)x) + 5sec(3x) de

cos(3x)

Solution.

/tan(?)x) + 5sec(3x) dp — / (tan(?)x) n 5sec(3x)> de

cos(3x) cos(3x) cos(3x)

= / (tan(3z) sec(3z) + 5sec’(3z)) da

1
=3 sec(3z) + gtan(?)x) +C|

o f (e )



Solution.

2. Solve the following initial value problems.

(a) % =2— 7z and y(2) = 0.

Solution. First, we find the general form of y(x) by integrating y’(z).
7
y(z) = /(2 — Tx)dx = 2z — 5&02 +C.
Next, we find the value of the constant C' by using the initial condition y(2) = 0. This gives

7
2.2_5.22+C:0 = —-10+C =0 = C=10.

7
Therefore, the solution of the initial value problem is | y(z) = 2z — 5:1:2 +10|

dyi ¢, 6 .
(b) it +xandy(1)_3.

Solution. First, we find the general form of y(x) by integrating y'(x).

T

y(x)/<x6+g) dzx = :5 +6In|z|+C.

Next, we find the value of the constant C' by using the initial condition y(1) = 3. This gives

-5

1 16
- In|1 = —= = = .
_5+6n||+0 3 = 5+C 3 = C 7

—° 16
Therefore, the solution of the initial value problem is | y(z) = 96_—5 +61In x| + =

dy 5

() dz 9+ a?

and y(3) = —1.
Solution. First, we find the general form of y(x) by integrating y'(z).

Y
y(:c)_/9+m2d:c—3tan (3)+C’.

Next, we find the value of the constant C' by using the initial condition y(3) = —1. This gives

5 1 om om
24 N4C=-1= T 4012 Cc=-1-2T,
gtan— () + RTINS = 12



Therefore, the solution of the initial value problem is | y(z) = 3 tan~* (g) —-1- % .

dy 1
—~ = ——— and y(—4) = 0.
=™ y(—4)

Solution. First, we find the general form of y(x) by integrating y'(z).

y(z) = /\/ﬁd{b =sin~! (g) +C.

Next, we find the value of the constant C' by using the initial condition y(—4) = 0. This gives

1 T s
in~ ! —_— = —_— = = —
sin ( 2>+C 0 = 6—|—C’ 0= C 5

Therefore, the solution of the initial value problem is | y(z) = sin™! (%) + % )
d2
Y =3, y/(0) =1 and y(0) =7

d /
Solution. We first solve the initial value problem % =3—¢%*, 9(0) =1 to find y/(z). The general

form of y/(x) is
2x

y’(m):/(S—ezx)dm:?)x—%—i—C.

To find the value of the constant C, we use the initial condition y'(0) = 1. This gives

el 1 3
3-0—-—+4+C=1 —4+C=1 C=-.
2+ = 2+ = 5

2x
3
Therefore, y'(z) = 3z — % + 3 We can now find y(z) by solving the initial value problem
dy e 3
W_gp 42 —7. Weh
7 3z 5 o y(0) = 7. We have
e 3 3x2 € 3z
= ) == 2D
y(z) /(33: 5 +2> 5 T t5t

To find the value of the constant D, we use the initial condition y(0) = 7. This gives

e 3.0
- —+

1 29
—+D=7 ——+D=7 D=—.
1 5 + = 4+ = 1

vl o

3 2 2z 3 29
Therefore | y(z) = % _f g ; +
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Sections 5.1-2: Areas Estimations and Riemann Sums - Worksheet Solutions

1. (a) Approximate the net area between the graph of f(z) = 9 — 2% and the z-axis on [—1,3] using 4

rectangles of equal width and (i) left endpoints, (ii) right endpoints.

Solution. Partitioning the interval [—1, 3] into 4 subintervals of equal length will give us subintervals

3—(—1
of length # = 1. Therefore, we get the 4 subintervals [—1,0], [0,1], [1,2] and [2, 3].

(i) Picking the value at the left endpoint for the height of the rectangles gives the sum

A f(=1)- 14+ f(0)-1+ f(1)- 14 f(2)-1
=9— (D)) +(9-0)+(9-1%)+(9-2%

= ‘ 30 square units ‘

(ii) Picking the value at the right endpoint for the height of the rectangles gives the sum
A f0)- 14+ f(1)- 1+ f(2)- 1+ f(3) 1
=(9-0%)+(9—1%) +(9-2%) + (9 3%

= ’ 22 square units ‘

Approximate the net area between the graph of f(z) = 2cos(z) and the z-axis on [O, g] using 3
rectangles of equal width and (i) left endpoints, (ii) right endpoints.

Solution. Partitioning the interval [O, g} into 3 subintervals of equal length will give us subintervals

5+ Therefore, we get the 4 subintervals [O, %], [%, g} and [1, g]

0
of length 25— =

(i) Picking the value at the left endpoint for the height of the rectangles gives the sum

™

A’:f(O)-z—kf(I)-I—i—f(Z)-G

2cos( ) + 2cos <6> + 2cos (g))

[+ )

m(3++v3)
= 6 square units |.

S ®\

(ii) Picking the value at the right endpoint for the height of the rectangles gives the sum

I GERIC B GR



(s (5) + 200 (5) 20 ()

V3 1
2Y° 192-42.0
( 5 T3t

0
6
m
6

m(1+3)

==/ square units |.

2. Suppose that the function f has the following values.

f(o):37 f(l):77f(2>:53f(3): ():2>f(5):87
f(6) =0, f(7)=1, f(8) =5, f(9)=3, f(10)=1.

Approximate the net area between the graph of g(z) = f(8x + 2) and the z-axis on the interval [0,1]
using a midpoint sum with 4 rectangles of equal width.

Solution. Dividing the interval [0, 1] into 4 subintervals of equal width gives the intervals [ , i] [i %]

[%7 %J and [ @ ] We will pick the height using the value at the midpoint of each interval, that is z = %
r=g,r=gandxr= Z. We get the approximation
dm (Y (VY (3L (T Y
“9\8)179\8) 179\ 8)1"9\8) 1
1
=1 B+ fB)+ f(7) + £(9))
13 .
=| — square units |.
4
3. Evaluate the following sums.
5
k(k—1)
() 3 "
k=0
Solution.
5
k(k—1) 0(0 -1 11-1) 2(2-1) 33-1) 44-1) 5(B-1)
Z 2 + 2 + 2 + 2 + 2 + 2
k=0
=[20]
4
) Z cos
j=1
Solution.

4
Z cos(jm)j = cos(m) + 2 cos(2m) + 3cos(3m) + 4 cos(4r)
Jj=1

=—14+2-3+4

_[2]



4. Consider the sum 2 +4 + 8 + 16 + 32 + 64.

(a) Write the sum in sigma notation with the index starting at the value 1.
(b) Write the sum in sigma notation with the index starting at the value 0.

(c) Write the sum in sigma notation with the index starting at the value 3.

Solution.

6 5 8
2+4+8+16+32+64:Z2’“222’““:2Qk_Q.
k=1 k=0 k=3

5. Use the common sum formulas

n

nn+1) o nn+1)2n+1) 5 n*(n+1)?
Zk_i > K= I

k=1 6 k=1 4
to evaluate the following sums.
136
(a) Z (2k — 3).
k=1
Solution.
136 136 136
SEEUED WE
k=1 k=1
136(1
- QM —3.136
2
=118224 |
20
b) > 5 —4)
j=2
Solution.
20 20
PG -9=> (*—47)
j=2 j=2



Jj=2 Jj=2

20 20
:ZJ3_13_4 Zj2_12

j=1 j=1

202 - 212 20-21-41
= —1 1— 476 +4
= [55583].
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Section 5.3: Definite Integrals - Worksheet Solutions

2
1. Let f(z) =4 — 2z. We are going to calculate / f(x)dx using two methods.
0

(a) Geometric method.
(i) Sketch the graph of y = f(x).

Solution.

4

2
(ii) Use your graph and a geometric formula to calculate / f(z)dx.
0

2 2
Solution. / f(z)dz is the area of a triangle with base 2 and height 4, so / flx)dx =
0 0
(b) With Riemann sums.

(i) Calculate R, the right-endpoint Riemann sum of f on [0,2] with n rectangles. Your answer
should not contain the ¥ or --- symbols. Hint: you will need to use the reference sum

Zk:n(n—i-l).

2
k=1

n



2
(ii) Using your formula for R, calculate / f(z)dz.
0

Solution. We have Ax = b

= — and
n
R”:Z fla+ kEAx)Ax
k=1
:Z (4_2%> 2
nJ)n
k=1
S (8_%)
—~ \n n
n n
k=1 k=1
_8 ,_ 8 nntl)
n n 2
4(n+1)

Il
o0

Solution.

2
/f(m)dx: lim R, = lim 8 -4
0

n—oo n—oo

8—4(1+

(1+711) =8 —4=[4]

2. Write each limit below as the integral of a function f(x) on an interval [0, b].

(a)

. " [3k 3
i 2\
Solution.
. " [3k 3 3
lim Z — 45 — = v+ 5dx |
n—o00 — n n 0
lim i 612]c/n§
n— oo n’
k=1
Solution.
n 8 8
lim Z el2k/n = z/ 3/ 2qg |.
n— o0 n
k=1 0
S A
nh_)rr;C Z sin (713) o

k=1



Solution.
. (K
Jm 3 (55

- 1
d) I P
@ Y > 5
k=1
Solution. We can write the sum in the format of a Riemann sum by factoring out an n from the
denominator, which gives
- 1 11 ' d
lim E = lim E k-f:/ v .
n—oo £~ 2n+5k n—oo = 2+55; n 0o 2+ 5z
3. Suppose that f and g are functions such that
5
g(z)dz = 10.

/Zf(a?)d:cll, /Zf(:z:)d:c -1, [2

Evaluate the following integrals.

* o)
(a) / 9
5 5
(z) 1/ g(m)dx:.

Solution.
9\x) 2
/ 5 dx 5

(b) / (20(x) — 3f(x))dx

-2

Solution.
5 5
/ (2gla) = 37(a))d = 2 / 2
5
() /O 7F(2)dx
Solution.

/057f(a:)d:v = 7/05f(:v)d:c =7 (/zf(x)dx - /Zf(z)dac)

7(—1—4)

5
g(z)dz — 3[2f(x)dw =2-10-3(-1) =[23]

=35



—2
(@) / (f(2) + 49(x)) da

Solution.

/5_2(f()+4g( dx—/ f(x d:c+4/5 2g(m)d9c

/f da:—4/52g( )z
—4-10
=|-39|

0
(e) / 2z + f(z) —1)dx

—2

Solution. First, observe that

/0 (2x+f(m)—1)dx:/02xdm+ _(;f(x)dx—/oldx.

92 -2 -2
0
The integral / 2zdz gives the area of a triangle of base 2 and height 4 located below the y-axis,
-2

0 0 0
therefore / 2xdr = —4. We know that / f(z)dx =4 and / ldx = 2. Hence
-2

—2 -2

/0 22+ f(z) —1)do = —4+4-2=[-2]

-2

() /50 (f(x) —4 257332) dz

Solution. First, we have

/:(f(x)—él 25—:102)dx:/E)Of(ﬂlc)dac—4/50\/%_—aﬂd$
= [ s [ Vo
0 0

5
We know that / f(z)dx = —5. The graph of y = v/25 — 22 is a semi circle of radius 5 centered at
0

5
(0,0). Thus, / v/ 25 — x2dx is the area of a quarter disk of radius 5, that is 25—” We obtain
0

/50(f(x)—4 25—:(:2)dx:—( 5)+4% .



4. Let f be the function whose graph is sketched below. You can assume that each piece of the graph of f
is either a straight line or a circle arc.

Yy

xT

Calculate the following integrals.
5
@ [ fda
0
5
Solution. / fl@de=4—-1—7= .
0

9
ONRCEFEE
9 9 9
Solution. /3 (3 — f(z))dz = /3 3dx — /3 fla)dz =3-6— (-7 +1-6)=[23+7]|

5
(c) | f@)de

5 12
Solution. / fl@)de=—[ f(z)de=— (1 —6— g) |
12 5

14
m>£ F(@)ldx

14 9
Solution. / |f(x)|dx:6—|—§—|—2: —
7




Rutgers University
Math 151

Section 5.4: Fundamental Theorem of Calculus - Worksheet Solutions

1. Evaluate the following definite integrals.

3 2
-2 1
(a) / 8a” — 2z 41,
1

X
3
/w :/ <3x2+ )d:z:
1

3

Solution.

322
{ 2x+ln|x|}
1

( 232 9. 3+1n(3)) _ (‘;’ - 2+ln(1)>

1/2 dt
(b) / -

Solution.

In(2)

(c)/ (e® + 1) da
0
Solution.

In(2) In(2)
/ (e* +1)* da = / (e +2e" + 1) dz
0 0




(d) / e sec?(56)do

/30
Solution.
/20 1 /20
/ sec?(50)df = [ tan(59)]
/30 5 /30
1 T 1
= gtan (Z) — gtan
_1_v3
5 1
[s=vs
15
V3
4
3 X +3
Solution.

= % (tanfl (1) — tan™* (,\/g))
V3w ™
-1 (1-(-3))
_ |28V
144 |
g z
®) /0 4Zd—|— 7
Solution.
0 4z—|—7 ln|4z+7|}
= i (In(27) — In(7))

1 27
=|-In .




Solution.

[ (o= D)= [ (22 0 a
252 127t
-[57-]
(57 -1%) - (1)

)33

)
22
=

(h) /O% (bm(g) +1)do

Solution.

27
3 cos (9> —I—Q}
3 0

-
<3(Jos <2;) + 27r> — (=3cos(0) +0)
=2 torys

NGRS

9

(i / 5
vz 3zvar? —1

Solution.

2
/ de = §sec_1 |x|}
V3 3xvar? -1 3 vz

2. Evaluate the following derivatives.
d xT
) — (/ \/t4+1dt>
dI’ 4
Solution. — (/ Vit + dt) zt+1




(b) % < /x ’ sec(5t2)dt>
Solution. % ( L ’ sec(5t2)dt> - —% ( /O ’ sec(5t2)dt> =| -~ sec(sa?) |

d 2 dt
(©) 7 Brtt1
1

Sotution. 2 /23‘ dt B 1 (2) = 2
omon-a\J, Brt+r1) T o r2er1 Y |82 1 2r 41

(d) % ( /3 7 (t* + 2)3/4dt)

7 322
Solution. % (/ (t* + 2)3/4dt> = _di (/ (t* + 2)3/4dt> = —((322)442)3/4(62) = | —62(812" 4 2)3/1 |
3x2 7

X
( ) d /sec(Qz) (\[)d
e) — cos(Vt)dt
dx tan(2z)

Solution.

d sec(2z) d sec(2z) tan(2z)
— / cos(Vt)dt | = — / cos(Vt)dt — / cos(V/t)dt
dzx tan(2z) dzx 0 0

= | cos(y/sec(2x)) sec(2x) tan(2z)(2) — cos(y/tan(2x)) sec?(22)(2) |

s -1
d sin™ " (3z)
f) — ttdt
0 & ( / )

d sin’l(Bz) e 3
Solution. — / thdt | =|sin~!(3z)"™ Gy 2 |
dz \ Jo 1 — (3z)2

3. For the function f(¢) sketched below, let F(z) = / f(t)dt.
-3



(a)

Evaluate the following.
Solution.

(i) F(3)=[4] () F(-5)=[=3] i) F'(-2)=[2]  (iv) F'(4) =[0]

Find an equation of the tangent line to the graph of y = F(z) at x = 6.

Solution. We have F(6) = 7 and F'(6) = f(6) = 4, so an equation of the tangent line to the graph
pfy=F(x) atxzfiis‘y—7:4(x—6)‘.

Find the critical points of F.

Solution. We have F'(x) = f(z). Observe that f(z) is never undefined, and the solutions of f(x) =0

Find the intervals on which F' is increasing and the intervals on which F' is decreasing.

Solution. F is increasing on | [—4,1],[4,00) | F is decreasing on ’ (—o0, —4],[1,4] ‘

Find the z-values at which F'(x) has a local maximum or a local minimum.

Solution. The location of the local maxima of F' is . The location of the local minima of F

Find the intervals on which F'is concave up and the intervals on which F' is concave down.

Solution. F is concave up when F’ = f is increasing, which happens on ‘ [—6,—3],[3,0) ‘ Fis

concave down when F’ = f is decreasing, which happens on | [—1, 3] |




(¢) Find the a-values at which F'(x) has an inflection point.

Solution. The inflection points of F' are located where the concavity changes, which is at .

x

4. Let f(z) = 7+/ t(t — 14)%/dt.

13

(a) Find an equation of the tangent line to the graph of y = f(x) at = = 13.

Solution. We have

13
f(11) = 7+/ tt—14)Y°dt =7+0=7
13

and

d x
fany = — (/ #t — 14)2/5dt> e (x(x - 14)2/5)|IZ13 = 13(13 — 12)%/° = —13,

So an equation of the tangent line to the graph of y = f(x) at x =13 is ‘ y—"T7=—-13(x — 13) ‘

(b) Find the critical points of f.

Solution. The derivative of f is f'(x) = x(x — 14)%/® so the critical points of f are .

(c) Find the intervals on which f is increasing and the intervals on which F is decreasing.

Solution. Let us test for the sign of f’(z) in between the critical points.
e On (—00,0), the sign of f'(x) is (=)(+) = (—).

e On (0,14) the sign of f'(z) is (+)(+) = (+).

e On (14, 00), the sign of f/(z) is (+)(+) = (+).

Hence, f is increasing on | [0, 00) | and decreasing on | (oo, 0] |

(d) Find the z-values at which f(z) has a local maximum or a local minimum.

Solution. Based on our findings in the previous question, we can deduce that f does not have a local
maximum and has a local minimum at H

(e) Find the intervals on which f is concave up and the intervals on which F' is concave down.

Solution. We'll need a sign chart for f”(z) to determine this. We have

2x 5(x — 14) + 2z Tx — 70 7(x — 10)
" _ — 14 2/5 — — —
J@) =@ =W s 555 = s 1455 (e 1455 (s — 1435

Let us analyze the sign of f”(z). The points where f”(z) is zero or undefined are = = 10, 14.

¢ On (—o00,10), the sign of f”(x) is % = (4).
e On (10, 14), the sign of f(z) is % =(-).



e On (14, 00), the sign of f(z) is % = (4).

Hence, f is concave up on ‘ (—00,10], [14, o) ‘ and concave down on |[10, 14] |

(f) Find the a-values at which f(x) has an inflection point.

Solution. Based on our previous answer, we can deduce that f has inflection points at | x = 10, 14 |.
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Sections 5.5-6: Substitution Method - Worksheet Solutions

1. Evaluate the following integrals.
(a) / (3z* + 6) sec(z® + 10z)dx
Solution. We substitute u = 2% + 10z, so du = (5z* 4+ 10)dz = 5(x* + 2)dz. We obtain
/ (32* 4 6) sec(2” + 10x)dx = / 3sec(x® + 10z)(z* + 2)dx
1
= /3 sec(u)gdu

= %/sec(u)du
= gln | sec(u) + tan(u)| + C

3
=3 In |sec(x® 4 10z) + tan(x® + 10z)| 4+ C |

dz
() / xzy/3In(z) +5

Solution 1. We substitute u = 31In(z) + 5, so du = 3dz, which gives 9 = 2 Therefore,

/ x\/31i:(6x)+5 - / ;f}%

2
2
= g\/3ln(x) +54+C|
- 41 J— — 71 . § 19 1 7dw =
Solution 2. We substituted v = y/3In(z) + 5, so du = NS =dx. This gives N

%du, SO

| s = [
2

2
= g\/3ln(m)+5—|—0.




(c) / 2\x — ldx
Solution. We use the substitution u = z — 1, so du = dz. Then we have x = u + 1, so we get
/xQ\/:ﬁdx :/ (u+ 1)*Vudu
_ / (u? + 2u + L)u2du

= / (u5/2 +2u?? 4 u1/2)du

w’/? 205/2 ud/? o
72 i 5/2 * 3/2 *

) _17/2 4 _15/2 ) _11/2
R L |

(d) /x3 sin(z* + 2)dx
Solution. We use the substitution v = 2* + 2, du = 423dx. Therefore, z3dx = %7 and we obtain

1
/x3 sin(z? 4+ 2)dz = /1 sin(u)du

1
~1 cos(u) + C

1
= —Zcos(x4+2) +C|

1,3
e —dx
e
Solution 1. We use the substitution u = 3 + 22. So du = 2zdx, that is xdx = dz—“. The extraneous
factor z2 in the numerator can be expressed in terms of u using 2 = v — 3. Finally, the bounds
become
=0 = u=3+0%=3,
=1 = u=3+1"=4.

So the integral becomes

1 3 1 2
x x
/7daz: —xdzx
0o V34 a2 0 V3 4+ a2



= (;43/2 - 3x/zi> - @33/2 - 3\/??)

10
=|2 — —
V3 3

Solution 2. We use the substitution © = v/3 + 22. So du = \/% The extraneous factor z2 in the

numerator can be expressed in terms of u using 2 = u? — 3. Finally, the bounds become

=0 = u=1/3+02=13,
r=1 = u=+3+12=2.

So the integral becomes
/1 3 /1 9 xdzx
——dr = | 2 —
0 V3+a? 0o V3+a?
2
= / (u? — 3)du
V3
2
1
= {u?’ - 3u}
3 V3

- (;23—32) - (;\@3—3\/3)

() /t sec? (3t%) e7tan(31%) gy
Solution. We use the substitution u = 7tan (3t?). This gives
du = Tsec?(3t?) - 6tdt = 42t sec?(3t%)dL.

So p
u
tsec? (3t2) dt = o

We get

/t sec? (3t2) e”an(3t2)dt = /ie“du

1 u
f@€ +C

_ 1 7tan(3t2)
= 426 +C




(@) [erler -2

Solution. We use the substitution u = e* — 2, so that du = e®dz. This gives

/ez(em —2)¥3dy = /u2/3du

3
= guf’/?’+()
3
=[5 -2)53 10|

(h) /621(617 —2)23dy
Solution. We again use the substitution u = e* —2, du = e*dx. But this time, we have an extraneous

factor e® since €2 = e®e®. We can express this extraneous factor in terms of u as e® = u + 2.
Therefore

/eQI(em —2)?3dy = /ex(em —2)28erdx
= /(u + 2)u?3du

= / (u5/3 + 2u2/3> du

3 6
= Sut 4 24

3 6
— g(em—2)8/3+g(€m—2)5/3+0.

e at
(1) /e3 tln(t)

Solution. We use the substitution v = In(t), so that du = %. The bounds change as follows

3

t=e* = u=In(e®) =3,
t=e® = u=1In(e’ =6.
The integral becomes
/66 dt  [du
e tin(t)  J3 u

= [Inul)§

= In(6) — In(3)
()
- ,



0 /Mf—jﬁ

Solution. We can first factor out a /z from the denominator, which gives

/mfzﬁ:/ﬁ(sf/xzww

We can then use the substitution u = 5/ + 4, which gives du = 5dr - This gives % = %, and

Nk
| o=

2
:gln|u|+C

the integral becomes

2

© [ 5

Solution. Recall the reference antiderivative

Z

We can use this antiderivative after factoring out a 2 from the square root and letting v = NoE This
gives

dx _

dx
dx

1) / U gdx
0 V2 —2a2
Solution 1. This time, the numerator is (up to a constant factor) the derivative of the inside of the

square root. Therefore, we can compute this integral with the substitution u = 2 — 22, du = —2zdx.

Thus we have xdx = —d—Q“, and the bounds change to

r=0 = U:2_02:2a



r=1=u=2-12=1.
We obtain
/1 zdx _/1_du
o V222 2 2Vu
= [-val,
[

Solution 2. We can be more ambitious with the substitution and let ©v = /2 — 2. The bounds

change to
=0 = u=12-02=V2,
r=1= u=+2-12=1.
Differentiating gives du = — \/%, which is the entire integrand up to a negative sign. So the

integral becomes

Y zdx !
| A= - m=lva-i]

23 4y
(m)/ 4 + 922
O Z

Solution. This integral will make use of the reference antiderivative
d
/i =tan"*(u) + C.
u

To get to this form, we factor out a 4 from the denominator to obtain

2/3 dz 2/3 dz 2/3 dz
[t [t L i

We can then use the substitution u = 372, which gives du = %, so dz = inT“. The bounds change to

r=0 = u=0,

2:> 1
=z u=1.
3

We obtain




el arcsm(B:r)

) V1-— 25:52
: : : _ : _ 20dx dx _ du
Solution. We use the substitution u = 4 arcsin(5z), so that du = g5 Therefore, o557 = 20

and we obtain

4arcsm 59:) el
—du
V1-— 253:2
% +C
e arcsin(5z)
= T +C|
/10 3 5
(0) / _sin(dz)
o  cos(bz)+3
Solution. We can write sin®(5z) = sin?(5z) sin(5x) = (1 — cos?(5z)) sin(5x), which allows us to use
the substitution v = cos(bx), du = —5sin(5z)dx. The bounds of the integral change as follows:

=0 = u=cos(0) =1,

s = (W)—o
Xr = 10 U = COS B = U.

Therefore we get

/10 2.3 5 71'/101 _ 2(5
/ _sin®(5z) / 1= cos"(52) o (5)da
o  cos(br)+3 0 cos(5x) + 3

0 2
1—u
= — ——0du
/1 5(u+ 3)
1M —a?
=— | ——du
5 /0 u+3
To evaluate this last integral, we can substitute w = u+ 3, so that dw = du. The u in the numerator
can be expressed in terms of w as u = w — 3. We get

1M1 —w? 1
,/ 1—w =1
9Jp u+3

——dw

3!
/ w+6w—9d
[
/ (6 w—)dw

11— (w—3)?
w
6w — w? —

1
5
1
"5



w? *
{610 —— —8In |w}
2 3

Ul = Ot =

(24 8 —8In(4)— 18+ 2 + 81n(3)>

2
| 5+161n(3/4)
- 10 ‘
dt

Solution. We use the substitution u = tan=1(t), so du = 147+ This gives

/ Lf +1S))3dt: / udu

1
:ZU4+C

-1 3
) / (tan~'(0))"

142

(tan~' (1)) " + C|

e~ =

¢ dy
(@ /e x4/In(x) -

Solution. We use the substitution v = In(x), so that du = df. The bounds become

r=e = u=In(e) =1,

r=¢? = u=1In(?) = 2.

We obtain
¢ dr 2 du
/e x«/ln(x)dx :/1 %du
- pval:
=|2(va-1)|

() /tan(3ln(az))dx'

xT

Solution. We use the substitution v = 31n(z), so du = 3% and the integral becomes

/ tan(3 ;n(:c)) . / tar;(u) "

= %1n|sec(u)| +C

= %ln\sec (Bln(x))|+C |




341
dx.
© [ 5
Solution. We can start by splitting up the integral into a sum of two integrals:
34+ 1 x> 1
——dr= | ——d ——dux.
/9+:z:2 o /9+x2 x+/9+x2 v

The first integral can be computed using the substitution v = 9 + x2, which gives du = 2zdx. The
extraneous factor 22 in the numerator can be replaced by u — 9, which gives

3 2
——dxr = ——uxd
/9+x2 * /9+x2mx
:/qudu
2u
1 9
= - 1——-)d
2/( u) Y

1
5(u—91n|u|)+0

:%(m2+9—9ln(x2+9))+0

:%@3—mmﬂ+ﬂn+c.

For the second integral, we can factor out a 9 from the denominator and use the substitution u = %,

/ dz _1/ dz
9+22 9 14 ()’

_1/ du
T3 14w

= étanfl(u) +C

which gives du = d?””. We obtain

1
= gtan*1 (%) + C.

Putting the pieces together gives

34+ 1 23 1

Yo ge= | g 4
/9+x2 v /9+x2 x+/9+x2 o
1

_t2 2 L. iz
= 2(x 9In(z +9))+3tan (3)—1—0.

/12
(t) / tan?(30) sec®(36)d6.
0
Solution. We substitute u = tan(36), so du = 3sec?(30)df. The bounds change as follows:
x=0 = u=tan(0) =0,

~ = = u=tan(])=1
x—12 u = tan 1 = 1.



Then we get

w [ W‘i

Solution. We use the substitution v = 3

x, so du = 3e3*dz. Then we get

/ e3® d / du
- dr= | =
V49 — eb* 3VT? —u?

L (e

1 3z
= gSiﬂil (e7> +C .

v) / L),

Solution. We can split up the integral into a sum of two integrals:

/5/2 1+2sin(z)dx_/5/2 2dx Jr/5/2 Sizn(x) de
,5/2 4.’15 +25 75/2 4.’17 +25 75/2 4.’E +25

The second integral is the integral of an odd function on an interval symmetric about the origin since

sin(—x) — sin(x) sin(x)

A—2)2+25 422+25 422 +25

Therefore,

/5/2 sin(z) dr =0

52 402 +25

For the other integral, we can use an arc tangent to get

/5/2 dx 1 [5/? dx
52 Ax 425 25 ) 5 (%“7)2+1

1 [5 _1<2x)r/2
= — |- tan —
25 |2 5)1 5

1
1

(tan™'(1) — tan™'(—1))

10
m
20°

10



Therefore

5/2 1 4 g
/ +2s1n(x) de— 7|
75/2 4.7,' + 25 20

2. Suppose that f is an even function such that

5 9
/ f(z)dx = —13 and / f(z)dz = 4.

Evaluate the definite integrals below.

2 [ 99f<x>dx

Solution. Since f is even, by symmetry we have

/:f(x)da: _ 2/09f(sc)d33 -

5
(b) / (47 — 3f(2))da

Solution. Let us start by calculating / f(x)dx. By additivity of the integral, we have

/f dx—/f d:ﬂ+/f
/ ng(x)dw= / ' f)ds =
_13:4+/05f(x)da: = /OSf(x)dx:_

Now using the linearity of the integral, we obtain

/05(4x _ 3f(a))dz = 4/05J:dac _ 3/05f(x)da:

=4 [1332] i 3(—17)

Since f is even, we have

So we get

11



(c) /fo(:v)dx

Solution. Since f is even, the function g(z) = zf(z) is odd, as shown below:

9(=2) = (=2)f(-2) = —zf(z) = —g(2).

Since the interval of integration [—3, 3] is centered at 0, we deduce

/_wa(m) =0/

3
@ [ afe)is

Solution. We can evaluate this integral using the substitution u = 22, which gives du = 2zdz, or
rdr = dQ—“. The bounds become

=0 = u=0%=0,
r=3 => u=32=09.

/03xf(z2)d:1: = /Ogéf(u)du
= ;/ng(u)du
1

2
2]

Therefore

3. Find the average value of the following functions on the given interval.

(a) f(x) = on [0,5].

3
V100 — 22

Solution. The average value is given by

av

1 5 3
(f) = 5—0/0 \/100—x2dx

_3/5 dzx
5Jo 100 (1 - £2)

_3/5 dz
5 2
0 10y/1— (&)
3 M2 qu ( x)
= — —_— uzi
5Jo V1—u? 10
1/2

3.
=% [sin (u)]o

12



(b) f(x) =23z —Ton [2,5].

Solution. The average value is given by

av( 5 2/ v/ 3z — Tdx = /x\/3x— Tdx.

We can calculate the integral using the substitution u = 3z — 7. This will give du = 3dx, or dx = d3—“.
The bounds will become

r=2 => u=3-2—-7=-1,

r=5 => u=3-5-T7=8.
Finally, the extraneous factor = in the integrand can be expressed in terms of v as x = “T” We

obtain

av(f) = 3/_1u+7\f—

= 217/_8 <u4/3—|—7u1/3) du

1 [3 2, 21 45"
27[7 A

L Bars 2l oas\ (3, s 2L, as
27((78 + 28 S04 2 ()

139
28 |

13



Rutgers University
Math 151

Section 5.6: Areas Between Curves - Worksheet Solutions

1. For each of the regions described below (i) sketch the region, clearly labeling the curves and their inter-
section points, (ii) calculate the area of the region using an z-integral and (iii) calculate the area of the
region using a y-integral.

(a) The region to the right of the parabola y = 1 — (z — 2)?, below the line y = 1 and to the left of the
line x — 2y = 3.

Solution. (1)

I

N

‘1:1—(,\‘72/)2 \ X|=2y-=3

0 z

S \

(ii) The region is not vertically simple, so we will need a sum of z-integrals. For 2 < z < 3, the
vertical strip at 2 is bounded by y = 1 on the top and y = 1 — (2 —2)? on the bottom. For 3 < z < 5,
the vertical strip at x is bounded by y = 1 on the top and the line x — 2y =3 = y = %‘3 on the
bottom. Therefore the area is given by

A:/23(1—(1—(x—2)2))da:+/35(1—x;3>da:
2/23(x—2)2dx+;/35(5—x)dx
:[M’Eg[m_w?r

3 2 2

(3-2)3 (2-2)* 1 52 32
= — Z(5.5—-—— 5.3+
3 3 32 2 3

4
=3 square units |.




(iii) The region is horizontally simple. The horizontal strip at y is bounded on the right by the line
x — 2y = 3, which gives x = 2y + 3 when expressed as a function of y. The curve bounding on the
left is the right branch of the parabola y = 1 — (z — 2)?. Expressing this branch as a function of y
gives

y=1-(z-2)? = (@-20?=1-y =r-2/=/1-y = 2-2=/1-y = 2=2+/1—y.

Note that |z — 2| = & — 2 since x — 2 > 0 on the right branch of the parabola. Therefore the area is
1
A:/ (y+3) - (2+V1-y))ay
0
1
:/ (2y+1—\/1—y)dy
0

1

2
= [yQ +y+30 —y)3/2}
0

I
—_
+
—_
I
I

4
=3 square units |.

(b) The region bounded by the curves y = 2z and y = v/32z.

Solution. (i)

5
(2,4)
= 2x
-5 5
yi= :\3/ 32x

[(—2, —4)

(ii) The region is not vertically simple. For 0 < 2 < 2, the vertical strip at  is bounded on the top
by y = v/32x and on the bottom by y = 2x. For —2 < x < 0, the vertical strip at x is bounded on
the top by y = 2z and on the bottom by y = v/32z. Therefore

0 2
A= / (290 — v 3233) dzr + / (\3/ 321 — 2x> dx
2 0
3 0 3 2

— |42 _391/32,4/3 1 |321/82 478 _ 42
4 —2 4 0



:—@QF+3?“Z@QVB+3TBZ%B—22

=4 square units |.

(iii) We need to express the curves as functions of y to use a y-integral.

3

y=+vV32zr = Rr=9y> = xz%,
Y
=2z = r==.
Y x T=35

The region is not horizontally simple. For 0 < y < 4, the horizontal strip at y is bounded on the
3
right by 2 = £ and on the left by 2 = g—Q For —4 < y < 0, the horizontal strip at y is bounded on

the right by x = ¥ and on the left by x = ¥. Therefore

32
0 3 4 3
Y Y y oy
A= 2 R
[(g-5)w [ (5-%)»

4
(4 (4 24
128 4 4 128

=4 square units |.

4
(¢) The region bounded by the curves y = 2 and y =3 — 1.
z

Solution. (1)

N

IN

X2 N (2.1)
-2 0 2?4

2 X

(ii) The region is vertically simple. The vertical strip at  is bounded on the top by y = 3 — 2 and

on the bottom by y = ﬁ. Therefore the area is

A:/j ((3—x)—xi2>dx




1 2
= {395— 5:102 —41n|x+2|]

—1

-~ <3 2 %22 - 41n(4)> - (—3 - % - 41n(1))

15
=5 - 81n(2) square units |

(iii) We need to express the curves as functions of y.

y=3—x = rz=3—y,
4 4 4
Yy = > r+2=- = r=-—2.
T+ 2 Y Y
The region is horizontally simple. The horizontal strip at y is bounded on the right by x = 3 — y

4
and on the left by x = ; — 2. Therefore

[ (o (39
SR
= {Sy—%?ﬁ—‘llnlyl]l

= (5.4_ %42 —4ln(4)) - (5— % —4ln(1)>

15
=3 - 81n(2) square units |

4

2. Calculate the area of the regions described below.

(a) The region bounded by the parabola x = (y + 3)? — 4 and the line z = 3y + 9.

Solution. A sketch of the region is included below.

(12,1)
x+= 4 3)2 . 4M
5 ofl ——T75 — 10
— — |
=3y +9

—

= (=3 —4)
\\

10




The region is horizontally simple, but not vertically simple. So computing the area using horizontal
strips/integration with respect to y will be simpler than using vertical strips/integration with respect
to = since we will only need one integral. The horizontal strip at y is bounded on the right by the
line x = 3y + 9 and on the left by the parabola x = (y + 3)? — 4. Therefore the area is given by

A:/ (By+9) — ((y+3)> — ) dy

/11(43yy2)dy

= [41/ - ng - ;y?’] 14

= (1-5-5) - (w0500~ 5-07)
125

=15 square units |.

4
s andy=1

b) Th ion bounded by y =
(b) e region bounded by y rppe

Solution. A sketch of the region is included below.

—2

Note that the region is both vertically and horizontally simple. So we would need only one integral to
compute the area using integration with respect to either x or y. However, integration with respect
to x will be simpler here, both to set up the integral and compute the antiderivative. The vertical
strip at x is bounded on the top by y = ﬁ and on the bottom by y = 1. So the area is given by

! 4 ! 4
A—/_1(3+x2—1)d33— /0 (?)erz—l)das7



the second equality holding because the integrand is even (or equivalently, because the region is sym-
metric with respect to the y-axis). To compute the antiderivative of the first term of the integrand,
we can factor out a 3 from the denominator and use the reference antiderivative

du 1

/4dx _/ 4dx
3+a2 ) 3(1+%)

:4/ dx
e ()

o (u- )
_ 43

This gives

3 tan™!(u) + C
e ()
=—t +C.
5 tan 7

We can now use this to compute the area. We obtain
< rynps i 1) dx
1
_ i w () -
3 V3
W3 (
—— tan
3
4\/§ o 1
3 6

_|s <2\/§7T
9

) square units |.

(¢) The region bounded by y = 2In(x + 1), the x-axis and the line z = 4.

Solution. A sketch of the region is included below.



(4.21n(5)) /

N

(0.0)

The region is both vertically and horizontally simple. Calculating the area using an z-integral would
require finding an antiderivative of In, which we do not know how to do (yet! we will learn how to
do this in section 8.2). So we will prefer a y-integral here. We can express the curve y = 21In(z + 1)
as a function of y as follows

y=2In(z+1) = %zln(m—i—l) = z+1=e2 s p=e¥?—1.

The horizontal strip at y is bounded by the line = 4 on the right and the curve z = e¢¥/2 — 1 on
the left. Therefore the area is
21In(5)
A:/ (4= (e =1)) ay
0

_ /021n(5) (5 B ey/Q) ay

21In(5)
= |5y —2ev/2]
[ y ¢ 0

- (10 In(5) — 261“(5>) ~(~2)

= ‘ 101n(5) — 8 square units ‘

(d) The region to the right of the y-axis, above the graph of y = sec(z)? and below the graph of
y = 2sec(x).

Solution. A sketch of the region is included below.



N (wy3,4)

\yv=2 sec:(x)_
|| x‘::secfz(xj
0 4

The region is vertically simple. The vertical strip at = is bounded on the top by y = 2sec(x) and on
the bottom by y = sec(z)?. Therefore the area is given by

w/3
A= /0 (2sec(z) — sec(z)?) da
= [2In |sec(x) + tan(z)| — tan(ac)]g/3

= (2 In ‘Sec <§> + tan (g)’ — tan (g)) — (2Insec(0) + tan(0)| — tan(0))
(2m]2+ V3| - v3) - @m1+0] - 0)

=|2In(2 + v/3) — /3 square units |
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