Rutgers University
Math 151

Chapter 1: Review of Algebra \& Precalculus - Worksheet Solutions

1. Composite functions: recall that given two functions f and g, the function $f \circ g$ (called f composed with g) is

$$
(f \circ g)(x)=f(g(x))
$$

(a) Given $f(x)=\sqrt{x}$ and $g(x)=(x-3)^{2}$, find and simplify the following.
i. $(f \circ g)(x)$

Solution.

$$
(f \circ g)(x)=f(g(x))=f\left((x-3)^{2}\right)=\sqrt{(x-3)^{2}}=|x-3|
$$

ii. $(g \circ f)(x)$

Solution.

$$
(g \circ f)(x)=g(f(x))=g(\sqrt{x})=(\sqrt{x}-3)^{2}
$$

iii. $(f \circ f \circ f)(x)$

Solution.

$$
(f \circ f \circ f)(x)=f(f(f(x)))=\sqrt{\sqrt{\sqrt{x}}}=\left(\left(x^{\frac{1}{2}}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}=x^{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}}=x^{\frac{1}{8}} .
$$

(b) Let $H(x)=\cos \left(3 x^{2}\right)+1$. Complete the table below to find pairs of functions $f(x)$ and $g(x)$ such that $H(x)=f(g(x))$.

	$f(x)=$	$g(x)=$
i.	$\cos (x)+1$	
ii.		x^{2}
iii.		$\cos \left(3 x^{2}\right)$
iv.	x	
v.		$\cos \left(3 x^{2}\right)+7$

Solution.

	$f(x)=$	$g(x)=$
i.	$\cos (x)+1$	$3 x^{2}$
ii.	$\cos (3 x)+1$	x^{2}
iii.	$x+1$	$\cos \left(3 x^{2}\right)$
iv.	x	$\cos \left(3 x^{2}\right)+1$
v.	$x-6$	$\cos \left(3 x^{2}\right)+7$

2. Trigonometry:

(a) Suppose that $\cos (a)=\frac{2}{5}$ and $\frac{3 \pi}{2}<\theta<2 \pi$. Evaluate the following.
i. $\tan (a)$

Solution. We start by using the Pythagorean identity $\cos (a)^{2}+\sin (a)^{2}$ to find $\sin (a)$. We get

$$
\begin{aligned}
& \left(\frac{2}{5}\right)^{2}+\sin (a)^{2}=1 \\
& \sin (a)^{2}=1-\frac{4}{25}=\frac{21}{25} \\
& \sqrt{\sin (a)^{2}}=\sqrt{\frac{21}{25}} \\
& |\sin (a)|=\frac{\sqrt{21}}{5} \\
& \sin (a)= \pm \frac{\sqrt{21}}{5}
\end{aligned}
$$

To determine which sign is appropriate, we use the fact that $\frac{3 \pi}{2}<\theta<2 \pi$ (quadrant IV), which implies $\sin (a)<0$. Therefore, $\sin (a)=-\frac{\sqrt{21}}{5}$. Now

$$
\tan (a)=\frac{\sin (a)}{\cos (a)}=\frac{-\frac{\sqrt{21}}{5}}{\frac{2}{5}}=-\frac{\sqrt{21}}{2} .
$$

ii. $\sin (2 a)$

Solution. We use a double-angle identity to get

$$
\sin (2 a)=2 \sin (a) \cos (a)=2\left(-\frac{\sqrt{21}}{5}\right) \frac{2}{5}=-\frac{4 \sqrt{21}}{25}
$$

iii. $\cos (2 a)$

Solution. We use a double-angle identity to get

$$
\cos (2 a)=2 \cos (a)^{2}-1=2\left(\frac{2}{5}\right)^{2}-1=\frac{8}{25}-1=-\frac{17}{25}
$$

(b) Evaluate the following.
i. $\sec \left(\frac{4 \pi}{3}\right)$
iii. $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
v. $\sin \left(\sin ^{-1}(0.8)\right)$
ii. $\tan ^{-1}(1)$
iv. $\csc ^{-1}(2)$
vi. $\sin ^{-1}\left(\sin \left(\frac{5 \pi}{4}\right)\right)$

Solution.
i. $\sec \left(\frac{4 \pi}{3}\right)=-2$
iii. $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=\frac{5 \pi}{6}$
v. $\sin \left(\sin ^{-1}(0.8)\right)=0.8$
ii. $\tan ^{-1}(1)=\frac{\pi}{4}$
iv. $\csc ^{-1}(2)=\frac{\pi}{6}$
vi. $\sin ^{-1}\left(\sin \left(\frac{5 \pi}{4}\right)\right)=-\frac{\pi}{4}$
(c) Simplify the following. Your answers should be algebraic expressions of x (not involving any trigonometric or inverse trigonometric functions).
i. $\cos \left(\cos ^{-1}(x)\right)$

Solution. By definition of the inverse function, $\cos \left(\cos ^{-1}(x)\right)=x$.
ii. $\cos \left(\sin ^{-1}(x)\right)$

Solution. We use the Pythagorean identity $\cos (\theta)^{2}+\sin (\theta)^{2}=1$ with $\theta=\sin ^{-1}(x)$. By definition of $\sin ^{-1}$, we know that $\sin (\theta)=x$ and θ is in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. We get

$$
\begin{aligned}
& \cos (\theta)^{2}+x^{2}=1 \\
& \cos (\theta)^{2}=1-x^{2} \\
& \sqrt{\cos (\theta)^{2}}=\sqrt{1-x^{2}} \\
& |\cos (\theta)|=\sqrt{1-x^{2}} \\
& \cos (\theta)= \pm \sqrt{1-x^{2}}
\end{aligned}
$$

To determine which sign is appropriate, recall that $\theta=\sin ^{-1}(x)$ is an angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, so $\cos (\theta) \geqslant 0$. Hence

$$
\cos \left(\sin ^{-1}(x)\right)=\sqrt{1-x^{2}}
$$

iii. $\sin \left(\cos ^{-1}(x)\right)$

Solution. We use the Pythagorean identity $\cos (\theta)^{2}+\sin (\theta)^{2}=1$ with $\theta=\cos ^{-1}(x)$. By definition of $\cos ^{-1}$, we know that $\cos (\theta)=x$ and θ is in $[0, \pi]$. We get

$$
\begin{aligned}
& x^{2}+\sin (\theta)^{2}=1 \\
& \sin (\theta)^{2}=1-x^{2} \\
& \sqrt{\sin (\theta)^{2}}=\sqrt{1-x^{2}} \\
& |\sin (\theta)|=\sqrt{1-x^{2}} \\
& \sin (\theta)= \pm \sqrt{1-x^{2}}
\end{aligned}
$$

To determine which sign is appropriate, recall that $\theta=\cos ^{-1}(x)$ is an angle in $[0, \pi]$, so $\sin (\theta) \geqslant 0$. Hence

$$
\sin \left(\cos ^{-1}(x)\right)=\sqrt{1-x^{2}} .
$$

iv. $\sec \left(\tan ^{-1}(4 x)\right)$

Solution. We use the Pythagorean identity $1+\tan (\theta)^{2}=\sec (\theta)^{2}$ with $\theta=\tan ^{-1}(4 x)$. By definition of $\tan ^{-1}$, we know that $\tan (\theta)=4 x$ and θ is in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. We get

$$
\begin{aligned}
& \sec (\theta)^{2}=1+(4 x)^{2}=1+16 x^{2} \\
& \sqrt{\sec (\theta)^{2}}=\sqrt{1+16 x^{2}} \\
& |\sec (\theta)|=\sqrt{1+16 x^{2}} \\
& \sec (\theta)= \pm \sqrt{1+16 x^{2}}
\end{aligned}
$$

To determine which sign is appropriate, recall that $\theta=\tan ^{-1}(x)$ is an angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, so $\sec (\theta)>0$. Hence

$$
\sec \left(\tan ^{-1}(4 x)\right)=\sqrt{1+16 x^{2}} .
$$

v. $\tan \left(\cos ^{-1}\left(\frac{x}{2}\right)\right)$

Solution. We start by using the Pythagorean identity $\cos (\theta)^{2}+\sin (\theta)^{2}=1$ with $\theta=\cos ^{-1}\left(\frac{x}{2}\right)$ to find $\sin (\theta)$. By definition of $\cos ^{-1}$, we know that $\cos (\theta)=\frac{x}{2}$ and θ is in $[0, \pi]$. We get

$$
\begin{aligned}
& \left(\frac{x}{2}\right)^{2}+\sin (\theta)^{2}=1 \\
& \sin (\theta)^{2}=1-\frac{x^{2}}{4}=\frac{4-x^{2}}{4} \\
& \sqrt{\sin (\theta)^{2}}=\sqrt{\frac{4-x^{2}}{4}} \\
& |\sin (\theta)|=\frac{\sqrt{4-x^{2}}}{2} \\
& \sin (\theta)= \pm \frac{\sqrt{4-x^{2}}}{2}
\end{aligned}
$$

To determine which sign is appropriate, recall that $\theta=\cos ^{-1}\left(\frac{x}{2}\right)$ is an angle in $[0, \pi]$, so $\sin (\theta) \geqslant 0$. Hence $\sin (\theta)=\frac{\sqrt{4-x^{2}}}{2}$ and

$$
\tan \left(\cos ^{-1}\left(\frac{x}{2}\right)\right)=\frac{\sin (\theta)}{\cos (\theta)}=\frac{\frac{\sqrt{4-x^{2}}}{2}}{\frac{x}{2}} \frac{\sqrt{4-x^{2}}}{x}
$$

vi. $\csc \left(\cot ^{-1}\left(\frac{3 x}{5}\right)\right)$

Solution. We use the Pythagorean identity $1+\cot (\theta)^{2}=\csc (\theta)^{2}$ with $\theta=\cot ^{-1}\left(\frac{3 x}{5}\right)$. By definition of $\cot ^{-1}$, we know that $\cot (\theta)=\frac{3 x}{5}$ and θ is in $(0, \pi)$. We get

$$
\begin{aligned}
& \csc (\theta)^{2}=1+\left(\frac{3 x}{5}\right)^{2}=1+\frac{9 x^{2}}{25}=\frac{25+9 x^{2}}{25} \\
& \sqrt{\csc (\theta)^{2}}=\sqrt{\frac{25+9 x^{2}}{25}} \\
& |\csc (\theta)|=\frac{\sqrt{25+9 x^{2}}}{5}
\end{aligned}
$$

$$
\csc (\theta)= \pm \frac{\sqrt{25+9 x^{2}}}{5}
$$

To determine which sign is appropriate, recall that $\theta=\cot ^{-1}\left(\frac{3 x}{5}\right)$ is an angle in $(0, \pi)$, so $\csc (\theta)>0$. Hence

$$
\csc \left(\cot ^{-1}\left(\frac{3 x}{5}\right)\right)=\frac{\sqrt{25+9 x^{2}}}{5}
$$

3. Exponential and Logarithmic Functions:

(a) Evaluate the following.
i. $e^{\ln (75)-2 \ln (5)}$

Solution.

$$
e^{\ln (75)-2 \ln (5)}=e^{\ln \left(\frac{75}{5^{2}}\right)}=\frac{75}{5^{2}}=3
$$

ii. $\log _{\frac{1}{2}}(32)$

Solution. Recall that by definition of $\operatorname{logarithms,~} \log _{\frac{1}{2}}(32)$ is the exponent to which the base $\frac{1}{2}$ must be raised to obtain 32 . Therefore $\log _{\frac{1}{2}}(32)=-5$.
iii. $\ln \left(9 e^{2}\right)+\ln (\sqrt{9 e})-\ln \left(27 e^{1 / 3}\right)$

Solution.

$\ln \left(9 e^{2}\right)+\ln (\sqrt{9 e})-\ln \left(27 e^{1 / 3}\right)=\ln \left(\frac{9 e^{2} \sqrt{9 e}}{27 e^{1 / 3}}\right)=\ln \left(\frac{e^{2} e^{1 / 2}}{e^{1 / 3}}\right)=\ln \left(e^{2+1 / 2-1 / 3}\right)=\ln \left(e^{13 / 6}\right)=\frac{13}{6}$.
(b) Solve the following equations.
i. $2^{5 x-1}=4^{-3 x}$

Solution.

$$
\begin{aligned}
& 2^{5 x-1}=4^{-3 x} \\
& 2^{5 x-1}=\left(2^{2}\right)^{-3 x} \\
& 2^{5 x-1}=2^{-6 x} \\
& 5 x-1=-6 x \\
& 11 x=1 \\
& x x=\frac{1}{11}
\end{aligned}
$$

ii. $\log _{4}(x+5)-\log _{4}(x)=2$

Solution.

$$
\log _{4}(x+5)-\log _{4}(x)=2
$$

$$
\begin{aligned}
& \log _{4}\left(\frac{x+5}{x}\right)=2 \\
& \frac{x+5}{x}=4^{2} \\
& x+5=16 x \\
& 15 x=5 \\
& x=\frac{1}{3}
\end{aligned}
$$

iii. $e^{2 x}-3 e^{x}-10=0$

Solution.

$$
\begin{aligned}
& e^{2 x}-3 e^{x}-10=0 \\
& \left(e^{x}\right)^{2}-3 e^{x}-10=0 \\
& \left(e^{x}-5\right)\left(e^{x}+2\right)=0 \\
& e^{x}=5 \text { or } e^{x}=-2 \\
& x=\ln (5)
\end{aligned}
$$

4. Inverse Functions: each function below is one-to-one. Find the inverse function.
(a) $f(x)=(x+8)^{7 / 4}$

Solution.

$$
\begin{aligned}
& f(y)=x \\
& (y+8)^{7 / 4}=x \\
& \left((y+8)^{7 / 4}\right)^{4 / 7}=x^{4 / 7} \\
& y+8=x^{4 / 7} \\
& y=x^{4 / 7}-8 \\
& f^{-1}(x)=x^{4 / 7}-8
\end{aligned}
$$

(b) $f(x)=\frac{3-2 x}{4 x+7}$

Solution.

$$
\begin{aligned}
& f(y)=x \\
& \frac{3-2 y}{4 y+7}=x \\
& 3-2 y=x(4 y+7) \\
& 3-2 y=4 x y+7 x
\end{aligned}
$$

$$
\begin{aligned}
& 4 x y+2 y=3-7 x \\
& y(4 x+2)=3-7 x \\
& y=\frac{3-7 x}{4 x+2} \\
& f^{-1}(x)=\frac{3-7 x}{4 x+2}
\end{aligned}
$$

(c) $f(x)=5+2 e^{3 x+1}$

Solution.

$$
\begin{aligned}
& f(y)=x \\
& 5+2 e^{3 y+1}=x \\
& e^{3 y+1}=\frac{x-5}{2} \\
& 3 y+1=\ln \left(\frac{x-5}{2}\right) \\
& y=\frac{1}{3}\left(\ln \left(\frac{x-5}{2}\right)-1\right) \\
& f^{-1}(x)=\frac{1}{3}\left(\ln \left(\frac{x-5}{2}\right)-1\right)
\end{aligned}
$$

(d) $f(x)=1-\arcsin \left(x^{3}\right)$

Solution.

$$
\begin{aligned}
& f(y)=x \\
& 1-\arcsin \left(y^{3}\right)=x \\
& \arcsin \left(y^{3}\right)=1-x \\
& y^{3}=\sin (1-x) \\
& y=\sqrt[3]{\sin (1-x)} \\
& f^{-1}(x)=\sqrt[3]{\sin (1-x)}
\end{aligned}
$$

(e) $f(x)=\ln (x)-\ln (x-3)$

Solution.

$$
\begin{aligned}
& f(y)=x \\
& \ln (y)-\ln (y-3)=x \\
& \ln \left(\frac{y}{y-3}\right)=x \\
& \frac{y}{y-3}=e^{x}
\end{aligned}
$$

$$
\begin{aligned}
& y=e^{x}(y-3) \\
& y=e^{x} y-3 e^{x} \\
& e^{x} y-y=3 e^{x} \\
& y\left(e^{x}-1\right)=3 e^{x} \\
& y=\frac{3 e^{x}}{e^{x}-1} \\
& f^{-1}(x)=\frac{3 e^{x}}{e^{x}-1}
\end{aligned}
$$

(f) $f(x)=\frac{2^{x}}{2^{x}+3}$

Solution.

$$
\begin{aligned}
& f(y)=x \\
& \frac{2^{y}}{2^{y}+3}=x \\
& 2^{y}=x\left(2^{y}+3\right) \\
& 2^{y}=x 2^{y}+3 x \\
& 2^{y}-x 2^{y}=3 x \\
& 2^{y}(1-x)=3 x \\
& 2^{y}=\frac{3 x}{1-x} \\
& y=\log _{2}\left(\frac{3 x}{1-x}\right) \\
& f^{-1}(x)=\log _{2}\left(\frac{3 x}{1-x}\right)
\end{aligned}
$$

