Rutgers University Math 151

Chapter 1: Review of Algebra & Precalculus - Worksheet Solutions

1. Composite functions: recall that given two functions f and g, the function $f \circ g$ (called f composed with g) is

$$(f \circ g)(x) = f(g(x)).$$

(a) Given f(x) = √x and g(x) = (x - 3)², find and simplify the following.
i. (f ∘ g)(x)

Solution.

$$(f \circ g)(x) = f(g(x)) = f((x-3)^2) = \sqrt{(x-3)^2} = \boxed{|x-3|}$$

ii. $(g \circ f)(x)$

Solution.

$$(g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = (\sqrt{x} - 3)^2.$$

iii. $(f \circ f \circ f)(x)$

Solution.

$$(f \circ f \circ f)(x) = f(f(f(x))) = \sqrt{\sqrt{\sqrt{x}}} = \left(\left(x^{\frac{1}{2}}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} = x^{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}} = \boxed{x^{\frac{1}{8}}}.$$

(b) Let $H(x) = \cos(3x^2) + 1$. Complete the table below to find pairs of functions f(x) and g(x) such that H(x) = f(g(x)).

	f(x) =	g(x) =
i.	$\cos(x) + 1$	
ii.		x^2
iii.		$\cos(3x^2)$
iv.	x	
v.		$\cos(3x^2) + 7$

	f(x) =	g(x) =
i.	$\cos(x) + 1$	$3x^{2}$
ii.	$\cos(3x) + 1$	x^2
iii.	x + 1	$\cos(3x^2)$
iv.	x	$\cos(3x^2) + 1$
v.	x-6	$\cos(3x^2) + 7$

2. Trigonometry:

- (a) Suppose that $\cos(a) = \frac{2}{5}$ and $\frac{3\pi}{2} < \theta < 2\pi$. Evaluate the following.
 - i. $\tan(a)$

Solution. We start by using the Pythagorean identity $\cos(a)^2 + \sin(a)^2$ to find $\sin(a)$. We get

$$\left(\frac{2}{5}\right)^2 + \sin(a)^2 = 1$$
$$\sin(a)^2 = 1 - \frac{4}{25} = \frac{21}{25}$$
$$\sqrt{\sin(a)^2} = \sqrt{\frac{21}{25}}$$
$$|\sin(a)| = \frac{\sqrt{21}}{5}$$
$$\sin(a) = \pm \frac{\sqrt{21}}{5}.$$

To determine which sign is appropriate, we use the fact that $\frac{3\pi}{2} < \theta < 2\pi$ (quadrant IV), which implies $\sin(a) < 0$. Therefore, $\sin(a) = -\frac{\sqrt{21}}{5}$. Now

$$\tan(a) = \frac{\sin(a)}{\cos(a)} = \frac{-\frac{\sqrt{21}}{5}}{\frac{2}{5}} = \boxed{-\frac{\sqrt{21}}{2}}.$$

ii. $\sin(2a)$

Solution. We use a double-angle identity to get

$$\sin(2a) = 2\sin(a)\cos(a) = 2\left(-\frac{\sqrt{21}}{5}\right)\frac{2}{5} = \boxed{-\frac{4\sqrt{21}}{25}}.$$

iii. $\cos(2a)$

Solution. We use a double-angle identity to get

$$\cos(2a) = 2\cos(a)^2 - 1 = 2\left(\frac{2}{5}\right)^2 - 1 = \frac{8}{25} - 1 = \boxed{-\frac{17}{25}}.$$

(b) Evaluate the following.

i.
$$\sec\left(\frac{4\pi}{3}\right)$$
iii. $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ v. $\sin\left(\sin^{-1}(0.8)\right)$ ii. $\tan^{-1}(1)$ iv. $\csc^{-1}(2)$ vi. $\sin^{-1}\left(\sin\left(\frac{5\pi}{4}\right)\right)$

i.
$$\sec\left(\frac{4\pi}{3}\right) = \boxed{-2}$$

ii. $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \boxed{\frac{5\pi}{6}}$
v. $\sin\left(\sin^{-1}\left(0.8\right)\right) = \boxed{0.8}$
ii. $\tan^{-1}\left(1\right) = \boxed{\frac{\pi}{4}}$
iv. $\csc^{-1}(2) = \boxed{\frac{\pi}{6}}$
vi. $\sin^{-1}\left(\sin\left(\frac{5\pi}{4}\right)\right) = \boxed{-\frac{\pi}{4}}$

(c) Simplify the following. Your answers should be algebraic expressions of x (not involving any trigonometric or inverse trigonometric functions).

i. $\cos(\cos^{-1}(x))$

Solution. By definition of the inverse function, $\cos(\cos^{-1}(x)) = x$

ii. $\cos\left(\sin^{-1}(x)\right)$

Solution. We use the Pythagorean identity $\cos(\theta)^2 + \sin(\theta)^2 = 1$ with $\theta = \sin^{-1}(x)$. By definition of \sin^{-1} , we know that $\sin(\theta) = x$ and θ is in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. We get

$$\cos(\theta)^2 + x^2 = 1$$

$$\cos(\theta)^2 = 1 - x^2$$

$$\sqrt{\cos(\theta)^2} = \sqrt{1 - x^2}$$

$$|\cos(\theta)| = \sqrt{1 - x^2}$$

$$\cos(\theta) = \pm \sqrt{1 - x^2}$$

To determine which sign is appropriate, recall that $\theta = \sin^{-1}(x)$ is an angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, so $\cos(\theta) \ge 0$. Hence

$$\cos(\sin^{-1}(x)) = \sqrt{1 - x^2}$$
.

iii. $\sin\left(\cos^{-1}(x)\right)$

Solution. We use the Pythagorean identity $\cos(\theta)^2 + \sin(\theta)^2 = 1$ with $\theta = \cos^{-1}(x)$. By definition of \cos^{-1} , we know that $\cos(\theta) = x$ and θ is in $[0, \pi]$. We get

$$x^{2} + \sin(\theta)^{2} = 1$$

$$\sin(\theta)^{2} = 1 - x^{2}$$

$$\sqrt{\sin(\theta)^{2}} = \sqrt{1 - x^{2}}$$

$$|\sin(\theta)| = \sqrt{1 - x^{2}}$$

$$\sin(\theta) = \pm \sqrt{1 - x^{2}}$$

To determine which sign is appropriate, recall that $\theta = \cos^{-1}(x)$ is an angle in $[0, \pi]$, so $\sin(\theta) \ge 0$. Hence

$$\sin(\cos^{-1}(x)) = \sqrt{1 - x^2} \,.$$

iv. sec $(\tan^{-1}(4x))$

Solution. We use the Pythagorean identity $1 + \tan(\theta)^2 = \sec(\theta)^2$ with $\theta = \tan^{-1}(4x)$. By definition of \tan^{-1} , we know that $\tan(\theta) = 4x$ and θ is in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. We get

$$\sec(\theta)^2 = 1 + (4x)^2 = 1 + 16x^2$$
$$\sqrt{\sec(\theta)^2} = \sqrt{1 + 16x^2}$$
$$|\sec(\theta)| = \sqrt{1 + 16x^2}$$
$$\sec(\theta) = \pm\sqrt{1 + 16x^2}$$

To determine which sign is appropriate, recall that $\theta = \tan^{-1}(x)$ is an angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, so $\sec(\theta) > 0$. Hence

$$\sec(\tan^{-1}(4x)) = \sqrt{1 + 16x^2}$$
.

v. $\tan\left(\cos^{-1}\left(\frac{x}{2}\right)\right)$

Solution. We start by using the Pythagorean identity $\cos(\theta)^2 + \sin(\theta)^2 = 1$ with $\theta = \cos^{-1}\left(\frac{x}{2}\right)$ to find $\sin(\theta)$. By definition of \cos^{-1} , we know that $\cos(\theta) = \frac{x}{2}$ and θ is in $[0, \pi]$. We get

$$\left(\frac{x}{2}\right)^2 + \sin(\theta)^2 = 1$$
$$\sin(\theta)^2 = 1 - \frac{x^2}{4} = \frac{4 - x^2}{4}$$
$$\sqrt{\sin(\theta)^2} = \sqrt{\frac{4 - x^2}{4}}$$
$$|\sin(\theta)| = \frac{\sqrt{4 - x^2}}{2}$$
$$\sin(\theta) = \pm \frac{\sqrt{4 - x^2}}{2}$$

To determine which sign is appropriate, recall that $\theta = \cos^{-1}\left(\frac{x}{2}\right)$ is an angle in $[0, \pi]$, so $\sin(\theta) \ge 0$. Hence $\sin(\theta) = \frac{\sqrt{4-x^2}}{2}$ and

$$\tan\left(\cos^{-1}\left(\frac{x}{2}\right)\right) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{\sqrt{4-x^2}}{2}}{\frac{x}{2}} \left\lfloor \frac{\sqrt{4-x^2}}{x} \right\rfloor.$$

vi. $\csc\left(\cot^{-1}\left(\frac{3x}{5}\right)\right)$

Solution. We use the Pythagorean identity $1 + \cot(\theta)^2 = \csc(\theta)^2$ with $\theta = \cot^{-1}(\frac{3x}{5})$. By definition of \cot^{-1} , we know that $\cot(\theta) = \frac{3x}{5}$ and θ is in $(0, \pi)$. We get

$$\csc(\theta)^{2} = 1 + \left(\frac{3x}{5}\right)^{2} = 1 + \frac{9x^{2}}{25} = \frac{25 + 9x^{2}}{25}$$
$$\sqrt{\csc(\theta)^{2}} = \sqrt{\frac{25 + 9x^{2}}{25}}$$
$$|\csc(\theta)| = \frac{\sqrt{25 + 9x^{2}}}{5}$$

$$\csc(\theta) = \pm \frac{\sqrt{25 + 9x^2}}{5}$$

To determine which sign is appropriate, recall that $\theta = \cot^{-1}\left(\frac{3x}{5}\right)$ is an angle in $(0,\pi)$, so $\csc(\theta) > 0$. Hence

$$\csc\left(\cot^{-1}\left(\frac{3x}{5}\right)\right) = \frac{\sqrt{25+9x^2}}{5}.$$

3. Exponential and Logarithmic Functions:

(a) Evaluate the following.

i. $e^{\ln(75)-2\ln(5)}$

Solution.

$$e^{\ln(75)-2\ln(5)} = e^{\ln\left(\frac{75}{5^2}\right)} = \frac{75}{5^2} = 3.$$

ii. $\log_{\frac{1}{2}}(32)$

Solution. Recall that by definition of logarithms, $\log_{\frac{1}{2}}(32)$ is the exponent to which the base $\frac{1}{2}$ must be raised to obtain 32. Therefore $\log_{\frac{1}{2}}(32) = -5$.

iii.
$$\ln(9e^2) + \ln(\sqrt{9e}) - \ln(27e^{1/3})$$

Solution.

$$\ln(9e^2) + \ln(\sqrt{9e}) - \ln(27e^{1/3}) = \ln\left(\frac{9e^2\sqrt{9e}}{27e^{1/3}}\right) = \ln\left(\frac{e^2e^{1/2}}{e^{1/3}}\right) = \ln\left(e^{2+1/2-1/3}\right) = \ln\left(e^{13/6}\right) = \boxed{\frac{13}{6}}$$

(b) Solve the following equations.

i. $2^{5x-1} = 4^{-3x}$

Solution.

$$2^{5x-1} = 4^{-3x}$$

$$2^{5x-1} = (2^2)^{-3x}$$

$$2^{5x-1} = 2^{-6x}$$

$$5x - 1 = -6x$$

$$11x = 1$$

$$x = \frac{1}{11}$$

ii. $\log_4(x+5) - \log_4(x) = 2$

$$\log_4(x+5) - \log_4(x) = 2$$

$$\log_4\left(\frac{x+5}{x}\right) = 2$$
$$\frac{x+5}{x} = 4^2$$
$$x+5 = 16x$$
$$15x = 5$$
$$x = \frac{1}{3}$$

iii. $e^{2x} - 3e^x - 10 = 0$

Solution.

 $e^{2x} - 3e^{x} - 10 = 0$ $(e^{x})^{2} - 3e^{x} - 10 = 0$ $(e^{x} - 5)(e^{x} + 2) = 0$ $e^{x} = 5 \text{ or } e^{x} = -2$ $\boxed{x = \ln(5)}$

- 4. Inverse Functions: each function below is one-to-one. Find the inverse function.
 - (a) $f(x) = (x+8)^{7/4}$

Solution.

$$f(y) = x$$

$$(y+8)^{7/4} = x$$

$$\left((y+8)^{7/4}\right)^{4/7} = x^{4/7}$$

$$y+8 = x^{4/7}$$

$$y = x^{4/7} - 8$$

$$f^{-1}(x) = x^{4/7} - 8$$

(b)
$$f(x) = \frac{3-2x}{4x+7}$$

$$f(y) = x$$

$$\frac{3 - 2y}{4y + 7} = x$$

$$3 - 2y = x(4y + 7)$$

$$3 - 2y = 4xy + 7x$$

$$4xy + 2y = 3 - 7x$$
$$y(4x + 2) = 3 - 7x$$
$$y = \frac{3 - 7x}{4x + 2}$$
$$f^{-1}(x) = \frac{3 - 7x}{4x + 2}$$

(c) $f(x) = 5 + 2e^{3x+1}$

Solution.

$$f(y) = x$$

$$5 + 2e^{3y+1} = x$$

$$e^{3y+1} = \frac{x-5}{2}$$

$$3y + 1 = \ln\left(\frac{x-5}{2}\right)$$

$$y = \frac{1}{3}\left(\ln\left(\frac{x-5}{2}\right) - 1\right)$$

$$f^{-1}(x) = \frac{1}{3}\left(\ln\left(\frac{x-5}{2}\right) - 1\right)$$

(d)
$$f(x) = 1 - \arcsin(x^3)$$

Solution.

$$f(y) = x$$

$$1 - \arcsin(y^3) = x$$

$$\arcsin(y^3) = 1 - x$$

$$y^3 = \sin(1 - x)$$

$$y = \sqrt[3]{\sin(1 - x)}$$

$$f^{-1}(x) = \sqrt[3]{\sin(1 - x)}$$

(e)
$$f(x) = \ln(x) - \ln(x - 3)$$

$$f(y) = x$$
$$\ln(y) - \ln(y - 3) = x$$
$$\ln\left(\frac{y}{y - 3}\right) = x$$
$$\frac{y}{y - 3} = e^x$$

$$y = e^{x}(y - 3)$$

$$y = e^{x}y - 3e^{x}$$

$$e^{x}y - y = 3e^{x}$$

$$y(e^{x} - 1) = 3e^{x}$$

$$y = \frac{3e^{x}}{e^{x} - 1}$$

$$f^{-1}(x) = \frac{3e^{x}}{e^{x} - 1}$$

(f)
$$f(x) = \frac{2^x}{2^x + 3}$$

$$f(y) = x$$

$$\frac{2^{y}}{2^{y} + 3} = x$$

$$2^{y} = x(2^{y} + 3)$$

$$2^{y} = x2^{y} + 3x$$

$$2^{y} - x2^{y} = 3x$$

$$2^{y}(1 - x) = 3x$$

$$2^{y} = \frac{3x}{1 - x}$$

$$y = \log_{2}\left(\frac{3x}{1 - x}\right)$$

$$f^{-1}(x) = \log_{2}\left(\frac{3x}{1 - x}\right)$$