Final Exam Practice Session

1. Suppose $\tan (\theta)=-\frac{3}{2}$ and $\frac{\pi}{2}<\theta<\pi$. Evaluate the following.
(a) $\cos (\theta)$
(b) $\sin (\theta)$
(c) $\cos (2 \theta)$
(d) $\sin (2 \theta)$
2. Calculate the following limits. You may use any valid method.
(a) $\lim _{x \rightarrow 0} \frac{x^{3}-5 x^{2}}{3^{x^{2}}-1}$
(b) $\lim _{x \rightarrow \infty} x e^{-\sqrt{x}}$
(c) $\lim _{x \rightarrow 4} \frac{\frac{2}{\sqrt{x}}-1}{x-4}$
(d) $\lim _{x \rightarrow 0}(\cos (3 x)+\tan (5 x))^{1 / x}$
3. Calculate $\frac{d y}{d x}$ for the following curves. You do not have to simplify your answers.
(a) $y=\sqrt{9 x^{2}+16 x+4}$
(c) $y=\sin ^{-1}(\sqrt[4]{x})$
(e) $y=\int_{\ln (x)}^{\pi} \cos \left(t^{3}\right) d t$
(b) $y=\frac{\sin (13 x)}{(2 x+5)^{10}}$
(d) $y=x^{\arctan (2 x)}$
(f) $y=\tan \left(x e^{7 x}\right)$
4. Calculate the following integrals.
(a) $\int\left(\frac{9}{x^{3}}-\frac{1}{\sqrt{1-25 x^{2}}}\right) d x$
(c) $\int_{0}^{1} x e^{x^{2}} \cos \left(e^{x^{2}}\right) d x$
(e) $\int_{0}^{6} x \sqrt{36-x^{2}} d x$
(b) $\int \tan ^{7}(3 \theta) \sec ^{2}(3 \theta) d \theta$
(d) $\int \frac{6 t+21}{t^{2}+7 t+3} d t$
(f) $\int_{0}^{6} \sqrt{36-x^{2}} d x$
5. The two parts of this problem are independent.
(a) Alice walks at $4 \mathrm{ft} / \mathrm{sec}$ towards a building of height 600 ft . At what rate is the viewing angle between Alice and the top of the building changing when Alice is 200 ft away from the building?
(b) A rectangular ice block with square base melts at a rate of $60 \mathrm{in}^{3} / \mathrm{min}$. When the side length of the base is 4 in, the height is 6 in and decreases at a rate of $2 \mathrm{in} / \mathrm{min}$. At what rate is the side length of the base decreasing at that time?
6. A closed cylindrical box has volume $250 \pi \mathrm{ft}^{3}$. Find the dimensions of the box (height and radius) that give the minimal possible surface area.
7. Sketch the graph of a function f with the following features. Label all asymptotes, local extrema and inflection points.

- The domain of f is $(-\infty,-3) \cup(-3,1) \cup(1, \infty)$ and the lines $x=-3$ and $x=1$ are asymptotes of f.
- $\lim _{x \rightarrow-\infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} f(x)=1$.
- $f(-4)=-2, f(-1)=2, f(3)=4$ and $f(5)=2$.
- The signs of f^{\prime} and $f^{\prime \prime}$ are given by the following charts.

x	$(-\infty,-4)$	$(-4,-3)$	$(-3,-1)$	$(-1,1)$	$(1,3)$	$(3,5)$	$(5, \infty)$
$f^{\prime}(x)$	-	+	-	-	+	-	-
$f^{\prime \prime}(x)$	+	+	+	-	-	-	+

8. Find all horizontal and vertical asymptotes of the function $f(x)=\frac{\sqrt{4 x^{2}+9}+5 x}{x+3}$.
9. For each region described below, (i) sketch the region, then use (ii) integration with respect to x and (iii) integration with respect to y to set-up expression with integrals calculating the area of the region.
(a) The region bounded by the parabola $x=7-y^{2}$ and the line $x=3$.
(b) The region bounded by the x-axis, the y-axis, the curve $y=2^{x}$ and the line $y=6-x$. (You can use fact that the curve and the line intersect at the point $(2,4)$ only.)
10. Let $f(x)=\sin (x) \sqrt[3]{\cos (x)}$. Find the absolute maximum and minimum values of f on the interval $[0, \pi]$ and where they occur.
11. Suppose that f is a one-to-one differentiable function. The following table of values is given for f and f^{\prime}.

x	-1	0	1	2
$f(x)$	2	3	6	11
$f^{\prime}(x)$	7	2	8	5

(a) Find an equation of the tangent line to the graph of $y=f(x)$ at the point $x=1$.
(b) Find an equation of the tangent line to the graph of $y=f^{-1}(x)$ at the point $x=2$.
(c) Let $G(x)=\arccos (2 x) f(3 x)$. Calculate $G^{\prime}(0)$.
12. Let $f(x)=\frac{1}{2} x^{2 / 3}(x+5)$. Find the open intervals where f is increasing, decreasing, concave up, concave down, the x-coordinates of the local maxima, local minima and inflection points of f. Then sketch the graph of f.
13. Let $F(x)=\int_{0}^{x^{2}} e^{-t^{2} / 4} d t$. Find the open intervals where F is concave up, concave down and the x coordinates of the inflection points of F.
14. Find the points on the ellipse of equation $x^{2}+x y+y^{2}=12$ where the tangent line is (a) horizontal and (b) vertical.
15. A particle is moving along an axis with acceleration $a(t)=\frac{6 t}{\left(9+t^{2}\right)^{2}}$, initial velocity $v(0)=1$ and initial position $s(0)=-2$. Find the position $s(t)$ of the particle.
16. Let $f(x)= \begin{cases}A x+B & \text { if } x \leq 0, \\ \arcsin \left(\frac{1}{x+2}\right) & \text { if } 0<x .\end{cases}$
(a) Find the value of the constant B for which f is continuous for all real numbers.
(b) Find the values of the constants A, B for which f satisfies the conditions of the Mean Value Theorem on the interval $[-1,1]$.

