Final Exam Practice Session

- 1. Suppose $\tan(\theta) = -\frac{3}{2}$ and $\frac{\pi}{2} < \theta < \pi$. Evaluate the following.
 - (a) $\cos(\theta)$ (b) $\sin(\theta)$ (c) $\cos(2\theta)$ (d) $\sin(2\theta)$
- 2. Calculate the following limits. You may use any valid method.
 - (a) $\lim_{x \to 0} \frac{x^3 5x^2}{3^{x^2} 1}$ (b) $\lim_{x \to \infty} x e^{-\sqrt{x}}$ (c) $\lim_{x \to 4} \frac{\frac{2}{\sqrt{x}} 1}{x 4}$ (d) $\lim_{x \to 0} (\cos(3x) + \tan(5x))^{1/x}$
- 3. Calculate $\frac{dy}{dx}$ for the following curves. You do not have to simplify your answers.
 - (a) $y = \sqrt{9x^2 + 16x + 4}$ (c) $y = \sin^{-1}(\sqrt[4]{x})$ (e) $y = \int_{\ln(x)}^{\pi} \cos(t^3) dt$ (b) $y = \frac{\sin(13x)}{(2x+5)^{10}}$ (d) $y = x^{\arctan(2x)}$ (f) $y = \tan(xe^{7x})$
- 4. Calculate the following integrals.

(a)
$$\int \left(\frac{9}{x^3} - \frac{1}{\sqrt{1 - 25x^2}}\right) dx$$
 (c) $\int_0^1 x e^{x^2} \cos\left(e^{x^2}\right) dx$ (e) $\int_0^6 x \sqrt{36 - x^2} dx$
(b) $\int \tan^7(3\theta) \sec^2(3\theta) d\theta$ (d) $\int \frac{6t + 21}{t^2 + 7t + 3} dt$ (f) $\int_0^6 \sqrt{36 - x^2} dx$

- 5. The two parts of this problem are independent.
 - (a) Alice walks at 4 ft/sec towards a building of height 600 ft. At what rate is the viewing angle between Alice and the top of the building changing when Alice is 200 ft away from the building?
 - (b) A rectangular ice block with square base melts at a rate of 60 in³/min. When the side length of the base is 4 in, the height is 6 in and decreases at a rate of 2 in/min. At what rate is the side length of the base decreasing at that time?
- 6. A closed cylindrical box has volume 250π ft³. Find the dimensions of the box (height and radius) that give the minimal possible surface area.
- 7. Sketch the graph of a function f with the following features. Label all asymptotes, local extrema and inflection points.
 - The domain of f is $(-\infty, -3) \cup (-3, 1) \cup (1, \infty)$ and the lines x = -3 and x = 1 are asymptotes of f.
 - $\lim_{x \to -\infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = 1$.
 - f(-4) = -2, f(-1) = 2, f(3) = 4 and f(5) = 2.
 - The signs of f' and f'' are given by the following charts.

x	$(-\infty, -4)$	(-4, -3)	(-3, -1)	(-1, 1)	(1, 3)	(3,5)	$(5,\infty)$
f'(x)	_	+	_	_	+	_	_
f''(x)	+	+	+	_	_	_	+

- 8. Find all horizontal and vertical asymptotes of the function $f(x) = \frac{\sqrt{4x^2 + 9} + 5x}{x + 3}$.
- 9. For each region described below, (i) sketch the region, then use (ii) integration with respect to x and (iii) integration with respect to y to set-up expression with integrals calculating the area of the region.
 - (a) The region bounded by the parabola $x = 7 y^2$ and the line x = 3.
 - (b) The region bounded by the x-axis, the y-axis, the curve $y = 2^x$ and the line y = 6 x. (You can use fact that the curve and the line intersect at the point (2, 4) only.)
- 10. Let $f(x) = \sin(x)\sqrt[3]{\cos(x)}$. Find the absolute maximum and minimum values of f on the interval $[0, \pi]$ and where they occur.
- 11. Suppose that f is a one-to-one differentiable function. The following table of values is given for f and f'.

$x \mid$	-1	0	1	2
f(x)	2	3	6	11
f'(x)	7	2	8	5

- (a) Find an equation of the tangent line to the graph of y = f(x) at the point x = 1.
- (b) Find an equation of the tangent line to the graph of $y = f^{-1}(x)$ at the point x = 2.
- (c) Let $G(x) = \arccos(2x)f(3x)$. Calculate G'(0).
- 12. Let $f(x) = \frac{1}{2}x^{2/3}(x+5)$. Find the open intervals where f is increasing, decreasing, concave up, concave down, the x-coordinates of the local maxima, local minima and inflection points of f. Then sketch the graph of f.
- 13. Let $F(x) = \int_0^{x^2} e^{-t^2/4} dt$. Find the open intervals where F is concave up, concave down and the x-coordinates of the inflection points of F.
- 14. Find the points on the ellipse of equation $x^2 + xy + y^2 = 12$ where the tangent line is (a) horizontal and (b) vertical.
- 15. A particle is moving along an axis with acceleration $a(t) = \frac{6t}{(9+t^2)^2}$, initial velocity v(0) = 1 and initial position s(0) = -2. Find the position s(t) of the particle.

16. Let
$$f(x) = \begin{cases} Ax + B & \text{if } x \le 0, \\ \arcsin\left(\frac{1}{x+2}\right) & \text{if } 0 < x. \end{cases}$$

- (a) Find the value of the constant B for which f is continuous for all real numbers.
- (b) Find the values of the constants A, B for which f satisfies the conditions of the Mean Value Theorem on the interval [-1, 1].