Final Exam Practice Session Solutions

1. Suppose $\tan (\theta)=-\frac{3}{2}$ and $\frac{\pi}{2}<\theta<\pi$. Evaluate the following.

Solution. We use a right triangle in the second quadrant.

(a) $\cos (\theta)=-\frac{2}{\sqrt{13}}$
(c) $\cos (2 \theta)=2 \cos ^{2}(\theta)-1=-\frac{5}{13}$
(b) $\sin (\theta)=\frac{3}{\sqrt{13}}$
(d) $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)=-\frac{12}{13}$
2. Calculate the following limits. You may use any valid method.
(a) $\lim _{x \rightarrow 0} \frac{x^{3}-5 x^{2}}{3^{x^{2}}-1}$

Solution. This limit is a $\frac{0}{0}$ indeterminate form that requires using L'Hôpital's Rule twice.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x^{3}-5 x^{2}}{3^{x^{2}}-1} \stackrel{\stackrel{\text { L'H }}{=}}{\stackrel{0}{0}} & \lim _{x \rightarrow 0} \frac{3 x^{2}-10 x}{2 \ln (3) x 3^{x^{2}}} \\
\stackrel{\stackrel{\text { L'H }}{=}}{=} & \lim _{x \rightarrow 0} \frac{6 x-10}{2 \ln (3) 3^{x^{2}}+4(\ln (3))^{2} x^{2} e^{x^{2}}} \\
& =\frac{0-10}{2 \ln (3)+0} \\
& =\frac{5}{\ln (3)}
\end{aligned}
$$

(b) $\lim _{x \rightarrow \infty} x e^{-\sqrt{x}}$

Solution. This limit is a $\infty \cdot 0$ indeterminate form. We first write the expression as a fraction, then use L'Hôpital's Rule twice.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} x e^{-\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{x}{e^{\sqrt{x}}} \\
& \stackrel{\text { L'H }}{=} \lim _{x \rightarrow \infty} \frac{1}{\frac{1}{2 \sqrt{x}} e^{\sqrt{x}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}}{e^{\sqrt{x}}} \\
& \frac{\text { L'H }^{\prime} H}{\frac{\infty}{\infty}} \lim _{x \rightarrow \infty} \frac{\frac{1}{\sqrt{x}}}{\frac{1}{2 \sqrt{x}} e^{\sqrt{x}}} \\
& =\lim _{x \rightarrow \infty} \frac{2}{e^{\sqrt{x}}} \\
& =0
\end{aligned}
$$

(c) $\lim _{x \rightarrow 4} \frac{\frac{2}{\sqrt{x}}-1}{x-4}$

Solution 1. Using algebra.

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{\frac{2}{\sqrt{x}}-1}{x-4} & =\lim _{x \rightarrow 4} \frac{\frac{2-\sqrt{x}}{\sqrt{x}}}{x-4} \\
& =\lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{\sqrt{x}(x-4)} \cdot \frac{2+\sqrt{x}}{2+\sqrt{x}} \\
& =\lim _{x \rightarrow 4} \frac{4-x}{\sqrt{x}(x-4)(2+\sqrt{x})} \\
& =\lim _{x \rightarrow 4}-\frac{1}{\sqrt{x}(2+\sqrt{x})} \\
& =-\frac{1}{\sqrt{4}(2+\sqrt{4})} \\
& =-\frac{1}{8}
\end{aligned}
$$

Solution 2. Using L'Hôpital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{\frac{2}{\sqrt{x}}-1}{x-4} & \stackrel{\text { L'H }}{\frac{0}{0}} \\
& =-\frac{1}{4^{3 / 2}} \\
& =-\frac{1}{8}
\end{aligned}
$$

(d) $\lim _{x \rightarrow 0}(\cos (3 x)+\tan (5 x))^{1 / x}$

Solution. This limit is an indeterminate power 1^{∞}. Warning: limits of the form 1^{∞} need not be equal to 1 ! This is because the base is not equal to 1 , it is approaching 1 . We can resolve the indeterminate form by taking the \ln of the limit L and applying L'Hôpital's Rule. This gives:

$$
\begin{aligned}
& \ln (L)=\lim _{x \rightarrow 0} \frac{\ln (\cos (3 x)+\tan (5 x))}{x} \\
& \stackrel{\text { L'H }}{=} \lim _{x \rightarrow 0} \frac{\frac{-3 \sin (3 x)+5 \sec ^{2}(5 x)}{\cos (3 x)+\tan (5 x)}}{1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-3 \sin (0)+5 \sec ^{2}(0)}{\cos (0)+\tan (0)} \\
& =5
\end{aligned}
$$

This is the \ln of the original limit, so we now solve for L and we get $L=e^{5}$.
3. Calculate $\frac{d y}{d x}$ for the following curves. You do not have to simplify your answers.
(a) $y=\sqrt{9 x^{2}+16 x+4}$

Solution. $\frac{d y}{d x}=\frac{1}{2 \sqrt{9 x^{2}+16 x+4}}(18 x+16)$
(b) $y=\frac{\sin (13 x)}{(2 x+5)^{10}}$

Solution. $\frac{d y}{d x}=\frac{13 \cos (13 x)(2 x+5)^{10}-\sin (13 x) \cdot 10(2 x+5)^{9} \cdot 2}{(2 x+5)^{20}}$
(c) $y=\sin ^{-1}(\sqrt[4]{x})$

Solution. $\frac{d y}{d x}=\frac{1}{\sqrt{1-(\sqrt[4]{x})^{2}}} \cdot \frac{x^{-3 / 4}}{4}$
(d) $y=x^{\arctan (2 x)}$

Solution. Since both the base and the exponent depend on x, we will need to use logarithmic differentiation.

$$
\begin{aligned}
& \ln (y)=\arctan (2 x) \ln (x) \\
& \Rightarrow \frac{y^{\prime}}{y}=\frac{2 \ln (x)}{1+4 x^{2}}+\frac{\arctan (2 x)}{x} \\
& \Rightarrow y^{\prime}=y\left(\frac{2 \ln (x)}{1+4 x^{2}}+\frac{\arctan (2 x)}{x}\right) \\
& \frac{d y}{d x}=x^{\arctan (2 x)}\left(\frac{2 \ln (x)}{1+4 x^{2}}+\frac{\arctan (2 x)}{x}\right)
\end{aligned}
$$

(e) $y=\int_{\ln (x)}^{\pi} \cos \left(t^{3}\right) d t$

Solution. $\frac{d y}{d x}=-\cos \left((\ln (x))^{3}\right) \cdot \frac{1}{x}$
(f) $y=\tan \left(x e^{7 x}\right)$

Solution. $\frac{d y}{d x}=\sec ^{2}\left(x e^{7 x}\right)\left(e^{7 x}+7 x e^{7 x}\right)$
4. Calculate the following integrals.
(a) $\int\left(\frac{9}{x^{3}}-\frac{1}{\sqrt{1-25 x^{2}}}\right) d x$

Solution.

$$
\begin{aligned}
\int\left(\frac{9}{x^{3}}-\frac{1}{\sqrt{1-25 x^{2}}}\right) d x & =\int\left(9 x^{-3}-\frac{1}{\sqrt{1-(5 x)^{2}}}\right) d x \\
& =\frac{9 x^{-2}}{-2}-\frac{1}{5} \tan ^{-1}(5 x)+C
\end{aligned}
$$

(b) $\int \tan ^{7}(3 \theta) \sec ^{2}(3 \theta) d \theta$

Solution. This integral can be evaluated with the substitution $u=\tan (3 \theta)$, so $d u=3 \sec ^{2}(3 \theta) d \theta$. We obtain

$$
\begin{aligned}
\int \tan ^{7}(3 \theta) \sec ^{2}(3 \theta) d \theta & =\int \frac{1}{3} u^{7} d u \\
& =\frac{u^{8}}{24}+C \\
& =\frac{\tan ^{8}(3 \theta)}{24}+C
\end{aligned}
$$

(c) $\int_{0}^{1} x e^{x^{2}} \cos \left(e^{x^{2}}\right) d x$

Solution. We use the substitution $u=e^{x^{2}}$, which gives $d u=2 x e^{x^{2}} d x$. The bounds change as follows.

$$
\begin{aligned}
& x=0 \Rightarrow u=e^{0^{2}}=1 \\
& x=1 \Rightarrow u=e^{1^{2}}=e
\end{aligned}
$$

We get

$$
\begin{aligned}
\int_{0}^{1} x e^{x^{2}} \cos \left(e^{x^{2}}\right) d x & =\int_{1}^{e} \frac{1}{2} \cos (u) d u \\
& =\left[\frac{1}{2} \sin (u)\right]_{1}^{e} \\
& =\frac{\sin (e)-\sin (1)}{2}
\end{aligned}
$$

(d) $\int \frac{6 t+21}{t^{2}+7 t+3} d t$

Solution. We use the substitution $u=t^{2}+7 t+3$, so $d u=(2 t+7) d t$. Then we have

$$
\int \frac{6 t+21}{t^{2}+7 t+3} d t=\int \frac{3(2 t+7)}{t^{2}+7 t+3} d t
$$

$$
\begin{aligned}
& =\int \frac{3}{u} d u \\
& =3 \ln |u|+C \\
& =3 \ln \left|t^{2}+7 t+3\right|+C .
\end{aligned}
$$

(e) $\int_{0}^{6} x \sqrt{36-x^{2}} d x$

Solution. We can use the substitution $u=36-x^{2}$, so that $d u=-2 x d x$. The bounds change as follows:

$$
\begin{aligned}
& x=0 \Rightarrow u=36-0=36, \\
& x=6 \Rightarrow u=36-36=0 .
\end{aligned}
$$

We obtain

$$
\begin{aligned}
\int_{0}^{6} x \sqrt{36-x^{2}} & =\int_{36}^{0}-\frac{1}{2} \sqrt{u} d u \\
& =\left[\frac{1}{3} u^{3 / 2}\right]_{36}^{0} \\
& =\frac{36^{3 / 2}}{3} \\
& =72 .
\end{aligned}
$$

(f) $\int_{0}^{6} \sqrt{36-x^{2}} d x$

Solution. Substitution will be no use here because the derivative of the inside function $36-x^{2}$ does not appear anywhere in the integrand. Instead, we can use geometry. The graph of the equation $y=\sqrt{36-x^{2}}$ is a semi-circle of radius 6 centered at $(0,0)$ and located above the x-axis. (This can be seen by squaring both sides and moving the x^{2} to the left-hand side to obtain $x^{2}+y^{2}=36$.) Therefore, this integral calculates the area of the region between the semi-circle and the x-axis on $[0,6]$, which is a quarter of disk of radius 6 . Hence,

$$
\int_{0}^{6} \sqrt{36-x^{2}} d x=\frac{36 \pi}{4} .
$$

5. The two parts of this problem are independent.
(a) Alice walks at $4 \mathrm{ft} / \mathrm{sec}$ towards a building of height 600 ft . At what rate is the viewing angle between Alice and the top of the building changing when Alice is 200 ft away from the building?

Solution. We start by drawing a picture and naming the two relevant variables, which are the distance x between Alice and the building and the angle θ between the ground and the line of sight from Alice to the top of the building.

We can use right triangle trigonometry to get a relation between the variables. One possible option would be to use the relation $\cot (\theta)=\frac{x}{600}$. (Other correct relations will lead to the same final answer.) Differentiating this relation with respect to the time t gives

$$
-\csc ^{2}(\theta) \frac{d \theta}{d t}=\frac{1}{600} \frac{d x}{d t} .
$$

We can now plug-in the known values $x=200$ and $\frac{d x}{d t}=-4$, which gives

$$
\left\{\begin{array}{l}
\cot (\theta)=\frac{200}{600}=\frac{1}{3}, \\
-\csc ^{2}(\theta) \frac{d \theta}{d t}=-\frac{4}{600}=-\frac{1}{150} .
\end{array}\right.
$$

To solve this for the unknown rate $\frac{d \theta}{d t}$, we'll need to first find $\csc ^{2}(\theta)$. Using the Pythagorean identity, we have

$$
\csc ^{2}(\theta)=\cot ^{2}(\theta)+1=\frac{1}{9}+1=\frac{10}{9} .
$$

So we get

$$
-\frac{10}{9} \frac{d \theta}{d t}=-\frac{1}{150} \Rightarrow \frac{d \theta}{d t}=\frac{3}{500} \mathrm{rad} / \mathrm{sec} \text {. }
$$

(b) A rectangular ice block with square base melts at a rate of $60 \mathrm{in}^{3} / \mathrm{min}$. When the side length of the base is 4 in, the height is 6 in and decreases at a rate of $2 \mathrm{in} / \mathrm{min}$. At what rate is the side length of the base decreasing at that time?

Solution. Call x the side length of the base of the block and h the height of the block. We have $V=x^{2} h$. Differentiating this relation with respect to the time t gives

$$
\frac{d V}{d t}=2 x h \frac{d x}{d t}+x^{2} \frac{d h}{d t} .
$$

We can now plug-in the known values $\frac{d V}{d t}=-60, x=4, h=6$ and $\frac{d h}{d t}=-2$. This gives

$$
-60=2 \cdot 4 \cdot 6 \frac{d x}{d t}+4^{2} \cdot(-2) \Rightarrow \frac{d x}{d t}=-\frac{7}{12} \mathrm{in} / \mathrm{min} .
$$

6. A closed cylindrical box has volume $250 \pi \mathrm{ft}^{3}$. Find the dimensions of the box (height and radius) that give the minimal possible surface area.

Solution. Call r the radius of the cylinder and h its height. The objective function is the surface area of the box $S=2 \pi r^{2}+2 \pi r h$. The volume being 250π gives the constraint $\pi r^{2} h=250 \pi$, so $h=\frac{250}{r^{2}}$. Therefore, we can write the surface area in terms of the variable r only as

$$
S(r)=2 \pi r^{2}+2 \pi r \frac{250}{r^{2}}=2 \pi\left(r^{2}+\frac{250}{r}\right) .
$$

The interval of interest is $(0, \infty)$. We now find the absolute minimum of $S(r)$ on that interval. We have

$$
S^{\prime}(r)=2 \pi\left(2 r-\frac{250}{r^{2}}\right)
$$

The equation $S^{\prime}(r)=0$ gives $r^{3}=125$, so $r=5$ is the only critical point of $S(r)$. We can test whether $S(r)$ has a local maximum or minimum at $r=5$ using the second derivative test. We have

$$
S^{\prime \prime}(r)=2 \pi\left(2+\frac{500}{r^{3}}\right)>0 \text { on }(0, \infty)
$$

Hence, $S(r)$ is concave up on $(0, \infty)$, so there is a local minimum at $r=5$. Since $r=5$ is the only critical point of $S(r)$, it must be the location of the absolute minimum of $S(r)$. In conclusion, the box with the minimal possible surface area has radius $r=5 \mathrm{ft}$ and height $h=10 \mathrm{ft}$.
7. Sketch the graph of a function f with the following features. Label all asymptotes, local extrema and inflection points.

- The domain of f is $(-\infty,-3) \cup(-3,1) \cup(1, \infty)$ and the lines $x=-3$ and $x=1$ are asymptotes of f.
- $\lim _{x \rightarrow-\infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} f(x)=1$.
- $f(-3)=-2, f(-1)=2, f(3)=4$ and $f(5)=2$.
- The signs of f^{\prime} and $f^{\prime \prime}$ are given by the following charts.

x	$(-\infty,-4)$	$(-4,-3)$	$(-3,-1)$	$(-1,1)$	$(1,3)$	$(3,5)$	$(5, \infty)$
$f^{\prime}(x)$	-	+	-	-	+	-	-
$f^{\prime \prime}(x)$	+	+	+	-	-	-	+

Solution.

8. Find all horizontal and vertical asymptotes of the function $f(x)=\frac{\sqrt{4 x^{2}+9}+5 x}{x+3}$.

Solution. To find potential vertical asymptotes, we set the denominator equal to 0 . This gives $x+$ $3=0$, or $x=-3$. Substituting this value in $f(x)$ gives the form $\frac{\text { non-zero number }}{0}$. It follows that $x=-3$ is the vertical asymptote of f.

To find the horizontal asymptotes of f, we calculate the limits at ∞ and $-\infty$. We have

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+9}+5 x}{x+3} & =\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}\left(4+\frac{9}{x^{2}}\right)}+5 x}{x+3} \\
& =\lim _{x \rightarrow-\infty} \frac{|x| \sqrt{4+\frac{9}{x^{2}}}+5 x}{x+3} \\
& =\lim _{x \rightarrow-\infty} \frac{-x \sqrt{4+\frac{9}{x^{2}}}+5 x}{x+3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \quad(x<0) \\
& =\lim _{x \rightarrow-\infty} \frac{-\sqrt{4+\frac{9}{x^{2}}}+5}{1+\frac{3}{x}} \\
& =\frac{-\sqrt{4+0}+5}{1+0} \\
& =3, \\
\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+9}+5 x}{x+3} & =\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}\left(4+\frac{9}{x^{2}}\right.}+5 x}{x+3} \\
& =\lim _{x \rightarrow-\infty} \frac{|x| \sqrt{4+\frac{9}{x^{2}}}+5 x}{x+3} \\
& =\lim _{x \rightarrow-\infty} \frac{x \sqrt{4+\frac{9}{x^{2}}}+5 x}{x+3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{4+\frac{9}{x^{2}}+5}}{1+\frac{3}{x}} \\
& =\frac{\sqrt{4+0}+5}{1+0} \\
& =7,
\end{aligned}
$$

So $y=3$ and $y=7$ are the two horizontal asymptotes of f.
9. For each region described below, (i) sketch the region, then use (ii) integration with respect to x and (iii) integration with respect to y to set-up expression with integrals calculating the area of the region.
(a) The region bounded by the parabola $x=7-y^{2}$ and the line $x=3$.

Solution. (i)

(ii) The vertical strip at x in the region is bounded by both branches of the parabola. To find the length of the strip $\ell(x)$, we need to solve the equation of the parabola for x.

$$
x=7-y^{2} \Rightarrow y^{2}=7-x \Rightarrow y= \pm \sqrt{7-x}
$$

The equation $y=\sqrt{7-x}$ corresponds to the top branch of the parabola, and the equation $y=$ $-\sqrt{7-x}$ corresponds to the bottom branch. Therefore, the length of the vertical strip at x is $\ell(x)=\sqrt{7-x}-(-\sqrt{7-x})=2 \sqrt{7-x}$. The region is located between $x=3$ and $x=7$, therefore

$$
A=\int_{3}^{7} 2 \sqrt{7-x} d x
$$

(iii) The horizontal strip at y is bounded by the line $x=3$ on the left and $x=7-x^{2}$ on the right, so it has length $\ell(y)=\left(7-y^{2}\right)-3=4-y^{2}$. The region is located between $y=-2$ and $y=2$, so

$$
A=\int_{-2}^{2}\left(4-y^{2}\right) d y
$$

(b) The region bounded by the x-axis, the y-axis, the curve $y=2^{x}$ and the line $y=6-x$. (You can use fact that the curve and the line intersect at the point $(2,4)$ only.)

Solution.(i)

(ii) The vertical strip at x in the region is bounded by $y=2^{x}$ between $x=0$ and $x=2$, and $y=6-x$ between $x=2$ and $x=6$. Therefore, the area is

$$
A=\int_{0}^{2} 2^{x} d x+\int_{2}^{6}(6-x) d x
$$

(iii) The horizontal strip at y is bounded on the right by $y=6-x$, so $x=6-y$. On the left, the strip is bounded by the y-axis when $0 \leqslant y \leqslant 1$. When $1 \leqslant y \leqslant 4$, the strip is bounded on the right by $y=2^{x}$, that is $x=\log _{2}(y)$. Hence, the area is

$$
A=\int_{0}^{1}(6-y) d y+\int_{1}^{4}\left(6-y-\log _{2}(y)\right) d y
$$

10. Let $f(x)=\sin (x) \sqrt[3]{\cos (x)}$. Find the absolute maximum and minimum values of f on the interval $[0, \pi]$ and where they occur.

Solution. First, we find the critical points of f. The derivative is given by

$$
f^{\prime}(x)=\cos (x)(\cos (x))^{1 / 3}-\frac{\sin ^{2}(x)}{3(\cos (x))^{2 / 3}}=\frac{3 \cos ^{2}(x)-\sin ^{2}(x)}{2(\cos (x))^{2 / 3}}
$$

- $f^{\prime}(x)=0$ gives $3 \cos ^{2}(x)=\sin ^{2}(x)$, or $\tan ^{2}(x)=3$, which gives $\tan (x)= \pm \sqrt{3}$. This equation has two solution in $[0, \pi]$, namely $x=\frac{\pi}{3}, \frac{2 \pi}{3}$.
- $f^{\prime}(x)$ is undefined when $\cos (x)=0$, which occurs when $x=\frac{\pi}{2}$ in the interval $[0, \pi]$.

We now evaluate $f(x)$ at the critical points in $[0, \pi]$ and the endpoints of $[0, \pi]$.

- $f(0)=0$,
- $f\left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2} \sqrt[3]{\frac{1}{2}}=\frac{\sqrt{3}}{2^{4 / 3}}$,
- $f\left(\frac{\pi}{2}\right)=0$,
- $f\left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2} \sqrt[3]{-\frac{1}{2}}=-\frac{\sqrt{3}}{2^{4 / 3}}$,
- $f(\pi)=0$.

Hence the absolute maximum of $f(x)$ on $[0, \pi]$ is $\frac{\sqrt{3}}{2^{4 / 3}}$ and it occurs at $x=\frac{\pi}{3}$ and the absolute minimum of $f(x)$ on $[0, \pi]$ is $-\frac{\sqrt{3}}{2^{4 / 3}}$ and it occurs at $x=\frac{2 \pi}{3}$.
11. Suppose that f is a one-to-one differentiable function. The following table of values is given for f and f^{\prime}.

x	-1	0	1	2
$f(x)$	2	3	6	11
$f^{\prime}(x)$	7	2	8	5

(a) Find an equation of the tangent line to the graph of $y=f(x)$ at the point $x=1$.

Solution. $y-6=8(x-1)$
(b) Find an equation of the tangent line to the graph of $y=f^{-1}(x)$ at the point $x=2$.

Solution. $y-(-1)=\frac{1}{7}(x-2)$
(c) Let $G(x)=\arccos (2 x) f(3 x)$. Calculate $G^{\prime}(0)$.

Solution. We have

$$
G^{\prime}(x)=\frac{-2}{\sqrt{1-4 x^{2}}} f(3 x)+3 \arccos (2 x) f^{\prime}(3 x)
$$

So

$$
G^{\prime}(0)=-2 f(0)+3 \arccos (0) f^{\prime}(0)=-6+3 \pi .
$$

12. Let $f(x)=\frac{1}{2} x^{2 / 3}(x+5)$. Find the open intervals where f is increasing, decreasing, concave up, concave down, the x-coordinates of the local maxima, local minima and inflection points of f. Then sketch the graph of f.

Solution. First, we calculate the derivatives of f and chart their sign.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x+5}{3 x^{1 / 3}}+\frac{x^{2 / 3}}{2} \\
& =\frac{2 x+10+3 x}{6 x^{1 / 3}} \\
& =\frac{5(x+2)}{6 x^{1 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{5}{6 x^{1 / 3}}-\frac{5(x+2)}{18 x^{4 / 3}} \\
& =\frac{15 x-5 x-10}{18 x^{4 / 3}} \\
& =\frac{5(x-1)}{9 x^{4 / 3}}
\end{aligned}
$$

- Increasing: $(-\infty,-2),(0, \infty)$
- Decreasing: $(-2,0)$
- Concave up: $(1, \infty)$
- Concave down: $(-\infty, 0),(0,1)$
- Local maximum at: $x=-2$
- Local minimum at: $x=0$
- Inflection point at: $x=1$

13. Let $F(x)=\int_{0}^{x^{2}} e^{-t^{2} / 4} d t$. Find the open intervals where F is concave up, concave down and the x coordinates of the inflection points of F.

Solution. First, we must find $F^{\prime \prime}(x)$. For the first derivative, we use the Fundamental Theorem combined with the Chain Rule to get

$$
F^{\prime}(x)=e^{-\left(x^{2}\right)^{2} / 4} \cdot(2 x)=2 x e^{-x^{4} / 4}
$$

We differentiate one more time and we obtain

$$
\begin{aligned}
F^{\prime \prime}(x) & =2 e^{-x^{4} / 4}+2 x e^{-x^{4} / 4} \cdot\left(-x^{3}\right) \\
& =2 e^{-x^{4} / 4}\left(1-x^{4}\right) \\
& =2 e^{-x^{4} / 4}(1-x)(1+x)\left(1+x^{2}\right) .
\end{aligned}
$$

The sign chart of $F^{\prime \prime}(x)$ is given below.

x	$(-\infty,-1)$	$(-1,1)$	$(1, \infty)$
$F^{\prime \prime}(x)$	-	+	-

We can now conclude that

- F is concave up on $(-1,1)$.
- F is concave down on $(-\infty,-1),(1, \infty)$
- F has inflection points at $x=-1,1$.

14. Find the points on the ellipse of equation $x^{2}+x y+y^{2}=12$ where the tangent line is (a) horizontal and (b) vertical.

Solution. We use implicit differentiation to find $y^{\prime}=\frac{d y}{d x}$. Differentiating the equation $x^{2}+x y+y^{2}=12$ with respect to x gives

$$
\begin{aligned}
& 2 x+y+x y^{\prime}+2 y y^{\prime}=0 \\
& \Rightarrow y^{\prime}(x+2 y)=-2 x-y \\
& \Rightarrow y^{\prime}=\frac{-2 x-y}{x+2 y}
\end{aligned}
$$

(a) The tangent line is horizontal when $y^{\prime}=0$. This gives $-2 x-y=0$, so $y=-2 x$. Substituting this back in the equation of the ellipse gives

$$
\begin{aligned}
& x^{2}+x(-2 x)+(-2 x)^{2}=12 \\
& 3 x^{2}=12 \\
& x^{2}=4 \\
& x= \pm 2
\end{aligned}
$$

Using $y=-2 x$, we get the points $(2,-4),(-2,4)$.
(b) The tangent line is vertical when y^{\prime} is undefined, which happens when the denominator of y^{\prime} is equal to 0 . This gives $x+2 y=0$, so $x=-2 y$. Substituting this back in the equation of the ellipse gives

$$
\begin{aligned}
& (-2 y)^{2}+(-2 y) y+y^{2}=12 \\
& 3 y^{2}=12 \\
& y^{2}=4 \\
& y= \pm 2
\end{aligned}
$$

Using $x=-2 y$, we get the points $(4,-2),(-4,2)$.
15. A particle is moving along an axis with acceleration $a(t)=\frac{6 t}{\left(9+t^{2}\right)^{2}}$, initial velocity $v(0)=1$ and initial position $s(0)=-2$. Find the position $s(t)$ of the particle.

Solution. First, we find the velocity $v(t)$ of the particle. The velocity is an antiderivative of the acceleration, so

$$
\begin{aligned}
v(t) & =\int a(t) d t \\
& =\int \frac{6 t}{\left(9+t^{2}\right)^{2}} d t \\
& =\int \frac{3}{u^{2}} d u \quad\left(u=9+t^{2}, d u=2 t d t\right) \quad=-\frac{3}{u}+C \\
& =-\frac{3}{9+t^{2}}+C
\end{aligned}
$$

To find the constant C, we use the initial velocity $v(0)=1$, which gives $-\frac{3}{9+0}+C=1$, so $C=\frac{4}{3}$. Hence, the velocity is $v(t)=-\frac{3}{9+t^{2}}+\frac{4}{3}$.

We can now find the position $s(t)$ by taking an antiderivative of the velocity. This gives

$$
\begin{aligned}
s(t) & =\int\left(-\frac{3}{9+t^{2}}+\frac{4}{3}\right) d t \\
& =\int\left(-\frac{3}{3^{2}+t^{2}}+\frac{4}{3}\right) d t \\
& =-3 \frac{1}{3} \tan ^{-1}\left(\frac{t}{3}\right)+\frac{4}{3} t+D \\
& =-\tan ^{-1}\left(\frac{t}{3}\right)+\frac{4}{3} t+D .
\end{aligned}
$$

To find the constant D, we use the initial position $s(0)=-2$, which gives $-\tan ^{-1}(0)+0+D=-2$, so $D=-2$. Hence we have obtained $s(t)=-\tan ^{-1}\left(\frac{t}{3}\right)+\frac{4}{3} t-2$.
16. Let $f(x)= \begin{cases}A x+B & \text { if } x \leq 0, \\ \arcsin \left(\frac{1}{x+2}\right) & \text { if } 0<x .\end{cases}$
(a) Find the value of the constant B for which f is continuous for all real numbers.

Solution. Each piece of f is continuous on its given domain, so it suffices to ensure continuity at the transition point $x=0$. For this, we need $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)$. This gives

$$
A \cdot 0+B=\arcsin \left(\frac{1}{2}\right) \Rightarrow B=\frac{\pi}{6}
$$

(b) Find the values of the constants A, B for which f satisfies the conditions of the Mean Value Theorem on the interval $[-1,1]$.

Solution. To satisfy the assumptions of the MVT, we will need $f(x)$ to be continuous on $[-1,1]$ and differentiable on $(-1,1)$. We already know from (a) that continuity requires $B=\frac{\pi}{6}$.

For differentiability, observe that each piece is differentiable on its given domain. So we just need to ensure differentiability at $x=0$. We have

- $\frac{d}{d x}(A x+B)_{\mid x=0}=A$,
- $\frac{d}{d x}\left(\arcsin \left(\frac{1}{x+2}\right)\right)_{\mid x=0}=\left(\frac{1}{\sqrt{1-\frac{1}{(x+2)^{2}}}} \cdot \frac{-1}{(x+2)^{2}}\right)_{\mid x=0}=\frac{1}{\sqrt{1-\frac{1}{4}}} \cdot \frac{-1}{2}=-\frac{1}{\sqrt{3}}$.

So we need $A=-\frac{1}{\sqrt{3}}$.

