Rutgers University
Math 151

Midterm 1 Practice Session - Solutions

1. Suppose that 6 is an angle such that cot(#) = g and csc(f) < 0. Find sec(#), sin(260) and cos(20).

Solution. We use a right triangle placed in the correct quadrant. Since cot(6) > 0 but csc(d) < 0, we
know that the terminal ray of the angle # will be in quadrant III.
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Using this triangle, we get | sec(f) = — . For the trigonometric functions of 26, we use double angle

identities and we obtain

sin(20) = 2sin(0) cos(d) = 2 (\/3773) (\%) = % :
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2. Evaluate the following limits.
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Solution. Direct substitution gives %, so we rewrite the expression by rationalizing the numerator
and canceling out common factors.
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Solution. Direct substitution gives %7 SO we rewrite the expression as a simple fraction and cancel
the common factors.
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Solution. Substitution gives %5, so the limit is infinite. To determine if the limit is co or —oo, we
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use a sign analysis. The function can be written as (x(i)()l) When x — 17, the signs in this
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expression are O so the expression is positive. Therefore,
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Solution. Substitution gives %, so we need to do more work to determine this limit. Given that z =8

is the transition point of the absolute value in the numerator, we’ll investigate one-sided limits.
I |32 — 24| . —3(x —8) . 3 3
m ———= _ = lIm — —_
a—s8— 12 —64 258 (r—8)(x+8) o8- x+8 16’
|3z — 24] ) 3(x — 8) ) 3 3

1m = m 1m = .
a—8t 22 —64 o8t (x—8)(x+8) a8t x+8 16

3x — 24
Since left and right limits are different, we conclude that | lim g does not exist |.
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Solution. Subsitution gives %, so this limit is infinite. To determine if the limit is co or —oo, we
investigate the sign of the expression. When 6 — 2, we have cos(f) < 3 as cos(f) decreases from

0 =0 to 8 = 5. Therefore, the denominator is negative as 0 — §+, and
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462m _|_e3m 462&0 + 631 6731
z—o0 5e3T 42 z—oo HedT  2eT eI
. 4e % +1
= lim ———
z—o0 H+ 2e—2x
_ 1
=z}

I 3z

im —

r—-2 22 44z +4

Solution. The limit has the form _TG, so the limit is infinite. Observe that the expression is equal to
3 _

ﬁ. As z — —2, the signs in the expression are u = (—), so
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3. Suppose that f(z) is a function such that cos (rx) < f(z) < 2* — 822 + 17 for —5 < x < 6. Find the
following limits, if possible. If there is not enough information to find a limit, explain why.

(a)

Solution. We use the Squeeze Theorem. Since

lim cos (mz) = cos (—2m) =1, lim2 zt — 8 +17=16-32+17=1,
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we conclude that | lim f(xz) =11
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Solution. The Squeeze Theorem does not apply since

lim cos (7z) = cos (7)) = —1, lim1 ozt — 82 +17=1-8+17 = 10.
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Therefore, there is not enough information to find lim1 f).
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Solution. We use the Squeeze Theorem. Since

lim cos (mx) = cos (27) =1, lim2 ' =8 +17=16-32+17=1,
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we conclude that | lim f(z) =1|.
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4. Find horizontal asymptotes of f(x) 348
x

Solution. To find the horizontal asymptotes of f, we need to compute the limits at co and —oo. We have
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lim ——— = lim ——— = lim -F = lim —F = —,
z—=oo  3r + 8 z—=oo  3x + 8 z—oo Jr+8 - w0 342 3
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So the horizontal asymptotes of f are |y = E,y =3t
22 +8—3

5. Find the vertical asymptotes of f(x) = . Also find the limits to the left and right of any

22— 31 —4
vertical asymptote.

Solution. The discontinuities of f occur when 22 — 3z — 4 = 0, that is 2 = —1, x = 4. We now test if the
limits at these points are finite or infinite.

e At x = 4, substitution gives ‘/%73, SO is a vertical asymptote. For the one sided limits, we

have
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e At x = —1, substitution gives g, so we need more analysis. We have
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Since this limit is finite, z = —1 is not a vertical asymptote. (There is a removable discontinuity at
x=-1)



6. Find the values of the constants A and B making the following function continuous on R.

arctan(Ax) if x > 3,
m(x + 2) )

_ <z <

f(l‘): 20 if0<z <3,
2
B
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Solution. Each piece of f is a continuous function, so it suffices to test for continuity at the transition
points. At x =3, we want lim f(z) = lim f(z) = f(3). We have
z—31 z—3~

li =1l tan(Axz) = arctan(3A
xi%l+f(x) Jlim arc an(Az) = arctan(3A4),
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So we obtain the condition arctan(3A) = Z, which gives 34 =tan (5) =1,s0 | A = 3|
At x =0, we want lim f(z)= lim f(z) = f(0). We have
z—0t z—0~
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So we obtain | B = —— |
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7. Use the Intermediate Value Theorem to show that the equation sec™!(x) = 3 — z has a solution in the
interval [1, 2].

Solution. The equation is equivalent to
sec” () + 2 = 3.

Put f(z) =sec™!(z) + z and yo = 3. The function f is continuous on [1,2]. Furthermore, we have

o f(1)=sec (1) +1=0+1=1<3,
° f(2)=SeC71(2)+2=§+2>3since7r>3,so§>1.

Thus yo = 3 is an intermediate value between f(1) and f(2). By the IVT, there exists x in [1, 2] such
that f(zo) = yo, that is sec™!(zg) + 29 = 3. Thus z( provides a solution to the given equation.
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8. Let = .
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tangent line to the graph of f at x = 1.

Use the limit definition of derivatives to compute f’(1), then find an equation of the

3 1
Solution. We have f(1) = £§=3 and
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Therefore, the tangent line at x = 1 passes through the point (1, %) and has slope é—}l. Hence, it has

equation
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