Midterm 1 Practice Session - Solutions

1. Suppose that θ is an angle such that $\cot (\theta)=\frac{8}{3}$ and $\csc (\theta)<0$. Find $\sec (\theta), \sin (2 \theta)$ and $\cos (2 \theta)$.

Solution. We use a right triangle placed in the correct quadrant. Since $\cot (\theta)>0$ but $\csc (\theta)<0$, we know that the terminal ray of the angle θ will be in quadrant III.

Using this triangle, we get $\sec (\theta)=-\frac{\sqrt{73}}{8}$. For the trigonometric functions of 2θ, we use double angle identities and we obtain

$$
\begin{aligned}
& \sin (2 \theta)=2 \sin (\theta) \cos (\theta)=2\left(-\frac{3}{\sqrt{73}}\right)\left(-\frac{8}{\sqrt{73}}\right)=\frac{48}{73} \\
& \cos (2 \theta)=2 \cos ^{2}(\theta)-1=2\left(-\frac{8}{\sqrt{73}}\right)^{2}-1=\frac{55}{73}
\end{aligned}
$$

2. Evaluate the following limits.
(a) $\lim _{x \rightarrow 1} \frac{\sqrt{4 x^{2}+7}-\sqrt{x+10}}{x-1}$

Solution. Direct substitution gives $\frac{0}{0}$, so we rewrite the expression by rationalizing the numerator and canceling out common factors.

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\sqrt{4 x^{2}+7}-\sqrt{x+10}}{x-1} & =\lim _{x \rightarrow 1} \frac{\sqrt{4 x^{2}+7}-\sqrt{x+10}}{x-1} \cdot \frac{\sqrt{4 x^{2}+7}+\sqrt{x+10}}{\sqrt{4 x^{2}+7}+\sqrt{x+10}} \\
& =\lim _{x \rightarrow 1} \frac{4 x^{2}+7-(x+10)}{(x-1)\left(\sqrt{4 x^{2}+7}+\sqrt{x+10}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{4 x^{2}-x-3}{(x-1)\left(\sqrt{4 x^{2}+7}+\sqrt{x+10}\right)} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(4 x+3)}{(x-1)\left(\sqrt{4 x^{2}+7}+\sqrt{x+10}\right)} \\
& =\lim _{x \rightarrow 1} \frac{4 x+3}{\sqrt{4 x^{2}+7}+\sqrt{x+10}} \\
& =\frac{7}{2 \sqrt{11}} .
\end{aligned}
$$

(b) $\lim _{h \rightarrow 0} \frac{\frac{6}{3+7 h}-2}{h}$

Solution. Direct substitution gives $\frac{0}{0}$, so we rewrite the expression as a simple fraction and cancel the common factors.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\frac{6}{3+7 h}-2}{h} & =\lim _{h \rightarrow 0} \frac{\frac{6-2(3+7 h)}{3+7 h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-14 h}{h(3+7 h)} \\
& =\lim _{h \rightarrow 0} \frac{-14}{3+7 h} \\
& =-\frac{14}{3}
\end{aligned}
$$

(c) $\lim _{x \rightarrow 1^{+}} \frac{x^{2}-6 x}{x^{2}-5 x+4}$

Solution. Substitution gives $\frac{-5}{0}$, so the limit is infinite. To determine if the limit is ∞ or $-\infty$, we use a sign analysis. The function can be written as $\frac{x(x-6)}{(x-4)(x-1)}$. When $x \rightarrow 1^{+}$, the signs in this expression are $\frac{(+)(-)}{(-)(+)}$, so the expression is positive. Therefore,

$$
\lim _{x \rightarrow 1^{+}} \frac{x^{2}-6 x}{x^{2}-5 x+4}=\infty
$$

(d) $\lim _{x \rightarrow-\infty} \frac{4 x+3}{\sqrt{9 x^{2}+5 x+2}}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{4 x+3}{\sqrt{9 x^{2}+5 x+2}} & =\lim _{x \rightarrow-\infty} \frac{4 x+3}{|x| \sqrt{9+\frac{5}{x}+\frac{2}{x^{2}}}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{4 x+3}{-x \sqrt{9+\frac{5}{x}+\frac{2}{x^{2}}}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow-\infty} \frac{4+\frac{3}{x}}{-\sqrt{9+\frac{5}{x}+\frac{2}{x^{2}}}} \\
& =\frac{4+0}{-\sqrt{9+0+0}} \\
& =-\frac{4}{3}
\end{aligned}
$$

(e) $\lim _{x \rightarrow 8} \frac{|3 x-24|}{x^{2}-64}$.

Solution. Substitution gives $\frac{0}{0}$, so we need to do more work to determine this limit. Given that $x=8$ is the transition point of the absolute value in the numerator, we'll investigate one-sided limits.

$$
\begin{aligned}
\lim _{x \rightarrow 8^{-}} \frac{|3 x-24|}{x^{2}-64} & =\lim _{x \rightarrow 8^{-}} \frac{-3(x-8)}{(x-8)(x+8)}=\lim _{x \rightarrow 8^{-}}-\frac{3}{x+8}=-\frac{3}{16} \\
\lim _{x \rightarrow 8^{+}} \frac{|3 x-24|}{x^{2}-64} & =\lim _{x \rightarrow 8^{+}} \frac{3(x-8)}{(x-8)(x+8)}=\lim _{x \rightarrow 8^{+}} \frac{3}{x+8}=\frac{3}{16}
\end{aligned}
$$

Since left and right limits are different, we conclude that $\lim _{x \rightarrow 8} \frac{|3 x-24|}{x^{2}-64}$ does not exist .
(f) $\lim _{\theta \rightarrow \frac{\pi}{3}+} \frac{1}{2 \cos (\theta)-1}$

Solution. Subsitution gives $\frac{1}{0}$, so this limit is infinite. To determine if the limit is ∞ or $-\infty$, we investigate the sign of the expression. When $\theta \rightarrow \frac{\pi}{3}+$, we have $\cos (\theta)<\frac{1}{2}$ as $\cos (\theta)$ decreases from $\theta=0$ to $\theta=\frac{\pi}{2}$. Therefore, the denominator is negative as $\theta \rightarrow \frac{\pi}{3}+$, and

$$
\lim _{\theta \rightarrow \frac{\pi}{3}+} \frac{1}{2 \cos (\theta)-1}=-\infty
$$

(g) $\lim _{x \rightarrow 0} \frac{x \sin (5 x)}{\tan ^{2}(3 x)}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x \sin (5 x)}{\tan ^{2}(3 x)} & =\lim _{x \rightarrow 0} \frac{x \sin (5 x) \cos ^{2}(3 x)}{\sin ^{2}(3 x)} \cdot \frac{5 x}{5 x} \cdot \frac{(3 x)^{2}}{(3 x)^{2}} \\
& =\lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x} \cdot\left(\frac{3 x}{\sin (3 x)}\right)^{2} \cdot \frac{x(5 x) \cos ^{2}(3 x)}{(3 x)^{2}} \\
& =\left(\lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x}\right) \cdot\left(\lim _{x \rightarrow 0} \frac{3 x}{\sin (3 x)}\right)^{2} \cdot\left(\lim _{x \rightarrow 0} \frac{5 \cos ^{2}(3 x)}{9}\right) \\
& =1 \cdot 1^{2} \cdot \frac{5 \cos ^{2}(0)}{9} \\
& =\frac{5}{9} .
\end{aligned}
$$

(h) $\lim _{x \rightarrow \infty} \frac{4 e^{2 x}+e^{3 x}}{5 e^{3 x}+2 e^{x}}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{4 e^{2 x}+e^{3 x}}{5 e^{3 x}+2 e^{x}} & =\lim _{x \rightarrow \infty} \frac{4 e^{2 x}+e^{3 x}}{5 e^{3 x}+2 e^{x}} \cdot \frac{e^{-3 x}}{e^{-3 x}} \\
& =\lim _{x \rightarrow \infty} \frac{4 e^{-x}+1}{5+2 e^{-2 x}} \\
& =\frac{1}{5}
\end{aligned}
$$

(i) $\lim _{x \rightarrow-2} \frac{3 x}{x^{2}+4 x+4}$

Solution. The limit has the form $\frac{-6}{0}$, so the limit is infinite. Observe that the expression is equal to $\frac{3 x}{(x+2)^{2}}$. As $x \rightarrow-2$, the signs in the expression are $\frac{(-)}{(+)}=(-)$, so

$$
\lim _{x \rightarrow-2} \frac{3 x}{x^{2}+4 x+4}=-\infty
$$

3. Suppose that $f(x)$ is a function such that $\cos (\pi x) \leqslant f(x) \leqslant x^{4}-8 x^{2}+17$ for $-5<x<6$. Find the following limits, if possible. If there is not enough information to find a limit, explain why.
(a) $\lim _{x \rightarrow-2} f(x)$

Solution. We use the Squeeze Theorem. Since

$$
\lim _{x \rightarrow-2} \cos (\pi x)=\cos (-2 \pi)=1, \quad \lim _{x \rightarrow-2} x^{4}-8 x^{2}+17=16-32+17=1
$$

we conclude that $\lim _{x \rightarrow-2} f(x)=1$.
(b) $\lim _{x \rightarrow 1} f(x)$

Solution. The Squeeze Theorem does not apply since

$$
\lim _{x \rightarrow 1} \cos (\pi x)=\cos (\pi)=-1, \quad \quad \lim _{x \rightarrow 1} x^{4}-8 x^{2}+17=1-8+17=10
$$

Therefore, there is not enough information to find $\lim _{x \rightarrow 1} f(x)$.
(c) $\lim _{x \rightarrow 2} f(x)$

Solution. We use the Squeeze Theorem. Since

$$
\lim _{x \rightarrow 2} \cos (\pi x)=\cos (2 \pi)=1, \quad \quad \lim _{x \rightarrow 2} x^{4}-8 x^{2}+17=16-32+17=1
$$

we conclude that $\lim _{x \rightarrow 2} f(x)=1$.
4. Find horizontal asymptotes of $f(x)=\frac{|6 x+1|+7 x}{3 x+8}$.

Solution. To find the horizontal asymptotes of f, we need to compute the limits at ∞ and $-\infty$. We have

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{|6 x+1|+7 x}{3 x+8}=\lim _{x \rightarrow \infty} \frac{6 x+1+7 x}{3 x+8}=\lim _{x \rightarrow \infty} \frac{13 x+1}{3 x+8} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{13+\frac{1}{x}}{3+\frac{8}{x}}=\frac{13}{3} \\
& \lim _{x \rightarrow-\infty} \frac{|6 x+1|+7 x}{3 x+8}=\lim _{x \rightarrow-\infty} \frac{-(6 x+1)+7 x}{3 x+8}=\lim _{x \rightarrow-\infty} \frac{x-1}{3 x+8} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow-\infty} \frac{1-\frac{1}{x}}{3+\frac{8}{x}}=\frac{1}{3}
\end{aligned}
$$

So the horizontal asymptotes of f are $y=\frac{13}{3}, y=\frac{1}{3}$
5. Find the vertical asymptotes of $f(x)=\frac{\sqrt{x^{2}+8}-3}{x^{2}-3 x-4}$. Also find the limits to the left and right of any vertical asymptote.

Solution. The discontinuities of f occur when $x^{2}-3 x-4=0$, that is $x=-1, x=4$. We now test if the limits at these points are finite or infinite.

- At $x=4$, substitution gives $\frac{\sqrt{24}-3}{0}$, so $x=4$ is a vertical asymptote. For the one sided limits, we have

$$
\begin{array}{r}
\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x^{2}+8}-3}{x^{2}-3 x-4}=\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x^{2}+8}-3}{(x+1)(x-4)}=\frac{(+)}{(+)(-)} \infty=-\infty \\
\lim _{x \rightarrow 4^{+}} \frac{\sqrt{x^{2}+8}-3}{x^{2}-3 x-4}=\lim _{x \rightarrow 4^{+}} \frac{\sqrt{x^{2}+8}-3}{(x+1)(x-4)}=\frac{(+)}{(+)(+)} \infty=\infty .
\end{array}
$$

- At $x=-1$, substitution gives $\frac{0}{0}$, so we need more analysis. We have

$$
\begin{aligned}
\lim _{x \rightarrow-1} \frac{\sqrt{x^{2}+8}-3}{x^{2}-3 x-4} & =\lim _{x \rightarrow-1} \frac{\sqrt{x^{2}+8}-3}{(x+1)(x-4)} \cdot \frac{\sqrt{x^{2}+8}+3}{\sqrt{x^{2}+8}+3} \\
& =\lim _{x \rightarrow-1} \frac{x^{2}+8-9}{(x+1)(x-4)\left(\sqrt{x^{2}+8}+3\right)} \\
& =\lim _{x \rightarrow-1} \frac{x^{2}-1}{(x+1)(x-4)\left(\sqrt{x^{2}+8}+3\right)} \\
& =\lim _{x \rightarrow-1} \frac{(x-1)(x+1)}{(x+1)(x-4)\left(\sqrt{x^{2}+8}+3\right)} \\
& =\lim _{x \rightarrow-1} \frac{x-1}{(x-4)\left(\sqrt{x^{2}+8}+3\right)} \\
& =\frac{-2}{-5(3+3)} .
\end{aligned}
$$

Since this limit is finite, $x=-1$ is not a vertical asymptote. (There is a removable discontinuity at $x=-1$.)
6. Find the values of the constants A and B making the following function continuous on \mathbb{R}.

$$
f(x)= \begin{cases}\arctan (A x) & \text { if } x>3, \\ \frac{\pi(x+2)}{20} & \text { if } 0 \leqslant x \leqslant 3, \\ \frac{x^{2}+B x}{|x|} & \text { if } x<0\end{cases}
$$

Solution. Each piece of f is a continuous function, so it suffices to test for continuity at the transition points. At $x=3$, we want $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{-}} f(x)=f(3)$. We have

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} \arctan (A x)=\arctan (3 A) \\
& \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \frac{\pi(x+2)}{20}=\frac{\pi(3+2)}{20}=\frac{\pi}{4} \\
& f(3)=\frac{\pi(3+2)}{20}=\frac{\pi}{4}
\end{aligned}
$$

So we obtain the condition $\arctan (3 A)=\frac{\pi}{4}$, which gives $3 A=\tan \left(\frac{\pi}{4}\right)=1$, so $A=\frac{1}{3}$.
At $x=0$, we want $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=f(0)$. We have

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{\pi(x+2)}{20}=\frac{\pi(0+2)}{20}=\frac{\pi}{10} \\
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{x^{2}+B x}{|x|}=\lim _{x \rightarrow 0^{-}} \frac{x(x+B)}{-x}=\lim _{x \rightarrow 0^{-}}-(x+B)=-B, \\
& f(0)=\frac{\pi(0+2)}{20}=\frac{\pi}{10}
\end{aligned}
$$

So we obtain $B=-\frac{\pi}{10}$.
7. Use the Intermediate Value Theorem to show that the equation $\sec ^{-1}(x)=3-x$ has a solution in the interval [1, 2].

Solution. The equation is equivalent to

$$
\sec ^{-1}(x)+x=3
$$

Put $f(x)=\sec ^{-1}(x)+x$ and $y_{0}=3$. The function f is continuous on $[1,2]$. Furthermore, we have

- $f(1)=\sec ^{-1}(1)+1=0+1=1<3$,
- $f(2)=\sec ^{-1}(2)+2=\frac{\pi}{3}+2>3$ since $\pi>3$, so $\frac{\pi}{3}>1$.

Thus $y_{0}=3$ is an intermediate value between $f(1)$ and $f(2)$. By the IVT, there exists x_{0} in $[1,2]$ such that $f\left(x_{0}\right)=y_{0}$, that is $\sec ^{-1}\left(x_{0}\right)+x_{0}=3$. Thus x_{0} provides a solution to the given equation.
8. Let $f(x)=\frac{3 x}{\sqrt{x}+5}$. Use the limit definition of derivatives to compute $f^{\prime}(1)$, then find an equation of the tangent line to the graph of f at $x=1$.

Solution. We have $f(1)=\frac{3}{6}=\frac{1}{2}$ and

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{3(1+h)}{\sqrt{1+h}+5}-\frac{1}{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{6(1+h)-\sqrt{1+h}-5}{2(\sqrt{1+h}+5)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1+6 h-\sqrt{1+h}}{2 h(\sqrt{1+h}+5)} \cdot \frac{1+6 h+\sqrt{1+h}}{1+6 h+\sqrt{1+h}} \\
& =\lim _{h \rightarrow 0} \frac{(1+6 h)^{2}-(\sqrt{1+h})^{2}}{2 h(\sqrt{1+h}+5)(1+6 h+\sqrt{1+h})} \\
& =\lim _{h \rightarrow 0} \frac{1+12 h+36 h^{2}-1-h}{2 h(\sqrt{1+h}+5)(1+6 h+\sqrt{1+h})} \\
& =\lim _{h \rightarrow 0} \frac{11 h+36 h^{2}}{2 h(\sqrt{1+h}+5)(1+6 h+\sqrt{1+h})} \\
& =\lim _{h \rightarrow 0} \frac{11+36 h}{2(\sqrt{1+h}+5)(1+6 h+\sqrt{1+h})} \\
& =\frac{11+0}{2(\sqrt{1+0}+5)(1+0+\sqrt{1+0})} \\
& =\frac{11}{24} .
\end{aligned}
$$

Therefore, the tangent line at $x=1$ passes through the point $\left(1, \frac{1}{2}\right)$ and has slope $\frac{11}{24}$. Hence, it has equation

$$
y-\frac{1}{2}=\frac{11}{24}(x-1) \text {. }
$$

