Rutgers University
Math 151

Midterm 2 Practice Session Solutions

1. Find $\frac{d y}{d x}$ for the following equations.
(a) $y=\cos (7)+4 e^{3 x}-\frac{5}{\sqrt[8]{x^{3}}}$

Solution. $\frac{d y}{d x}=0+12 e^{3 x}-5\left(-\frac{3}{8}\right) x^{-11 / 3}$
(b) $y=\arctan (7 \ln (x))$

Solution. $\frac{d y}{d x}=\frac{1}{1+(7 \ln (x))^{2}} \cdot \frac{7}{x}$
(c) $y=x^{2} \sin ^{-1}(2 x) e^{-x}$

$$
\text { Solution. } \frac{d y}{d x}=2 x \sin ^{-1}(2 x) e^{-x}+x^{2} \frac{2}{\sqrt{1-(2 x)^{2}}} e^{-x}+x^{2} \sin ^{-1}(2 x) e^{-x}(-1)
$$

(d) $y=\sec ^{3}\left(\frac{2}{x}-e^{-4 x}\right)$

$$
\text { Solution. } \frac{d y}{d x}=3 \sec ^{2}\left(\frac{2}{x}-e^{-4 x}\right) \sec \left(\frac{2}{x}-e^{-4 x}\right) \tan \left(\frac{2}{x}-e^{-4 x}\right)\left(-\frac{2}{x^{2}}+4 e^{-4 x}\right)
$$

(e) $y=(1-3 x)^{8 \cot \left(5 x^{2}\right)}$

Solution. We use logarithmic differentiation because the base and the exponent both depend on x.

$$
\begin{aligned}
\ln (y) & =\ln \left((1-3 x)^{8 \cot \left(5 x^{2}\right)}\right)=8 \cot \left(5 x^{2}\right) \ln (1-3 x) \\
\Rightarrow \frac{y^{\prime}}{y} & =8\left(-\csc ^{2}\left(5 x^{2}\right)\right)(10 x) \ln (1-3 x)+8 \cot \left(5 x^{2}\right) \frac{-3}{1-3 x} \\
& =-8\left(10 x \csc ^{2}\left(5 x^{2}\right)+\frac{3 \cot \left(5 x^{2}\right)}{1-3 x}\right) \\
\Rightarrow y^{\prime} & =-8 y\left(10 x \csc ^{2}\left(5 x^{2}\right)+\frac{3 \cot \left(5 x^{2}\right)}{1-3 x}\right) \\
& =-8(1-3 x)^{8 \cot \left(5 x^{2}\right)\left(10 x \csc ^{2}\left(5 x^{2}\right)+\frac{3 \cot \left(5 x^{2}\right)}{1-3 x}\right)}
\end{aligned}
$$

(f) $y=\sqrt{4-9 x^{2}}-\sec ^{-1}(3 x)$

Solution. $\frac{d y}{d x}=\frac{1}{2 \sqrt{4-9 x^{2}}}(-18 x)-\frac{3}{|3 x| \sqrt{(3 x)^{2}-1}}$
(g) $y=\frac{\sqrt[7]{x^{2}}\left(x^{2}+6 x+1\right)^{32}}{(2 x+1)^{10}(x+2)^{3}}$

Solution. We use logarithmic differentiation to make this derivative calculation less of a pain. We have

$$
\ln (y)=\frac{2}{7} \ln (x)+32 \ln \left(x^{2}+6 x+1\right)-10 \ln (2 x+1)-3 \ln (x+2) .
$$

Differentiating both sides with respect to x gives

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =\frac{2}{7 x}+\frac{32(2 x+6)}{x^{2}+6 x+1}-\frac{20}{2 x+1}-\frac{3}{x+2} \\
\Rightarrow y^{\prime} & =y\left(\frac{2}{7 x}+\frac{32(2 x+6)}{x^{2}+6 x+1}-\frac{20}{2 x+1}-\frac{3}{x+2}\right) \\
& =\frac{\sqrt[7]{x^{2}}\left(x^{2}+6 x+1\right)^{32}}{(2 x+1)^{10}(x+2)^{3}}\left(\frac{2}{7 x}+\frac{32(2 x+6)}{x^{2}+6 x+1}-\frac{20}{2 x+1}-\frac{3}{x+2}\right)
\end{aligned}
$$

(h) $y=\frac{5^{x}}{\cos (2 x)+3 x}$

Solution. $\frac{d y}{d x}=\frac{\ln (5) 5^{x}(\cos (2 x)+3 x)-5^{x}(-2 \sin (2 x)+3)}{(\cos (2 x)+3 x)^{2}}$
(i) $y=\sin (3 x)^{x^{2}}$

Solution. We use logarithmic differentiation because the base and the exponent both depend on x.

$$
\begin{aligned}
\ln (y) & =\ln \left(\sin (3 x)^{x^{2}}\right) \\
& =x^{2} \ln (\sin (3 x)) \\
\Rightarrow \frac{y^{\prime}}{y} & =2 x \ln (\sin (3 x))+x^{2} \frac{3 \cos (3 x)}{\sin (3 x)} \\
& =2 x \ln (\sin (3 x))+3 x^{2} \cot (3 x) \\
\Rightarrow y^{\prime} & =y\left(2 x \ln (\sin (3 x))+3 x^{2} \cot (3 x)\right) \\
& =\sin (3 x)^{x^{2}}\left(2 x \ln (\sin (3 x))+3 x^{2} \cot (3 x)\right)
\end{aligned}
$$

2. Find the values of the constants A, B for which the following function is differentiable at $x=1$.

$$
f(x)= \begin{cases}10-3 x & \text { if } x<1, \\ x^{A}+B x+3 & \text { if } x \geqslant 1 .\end{cases}
$$

Solution. For the function to be continuous at $x=1$, we will need $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)=f(1)$. This produces the condition $10-3=1^{A}+B+3$, so $7=B+4$ and $B=3$.

To have differentiability at $x=1$, the slope from the left and right at $x=1$ must be equal. We have

$$
f^{\prime}(x)= \begin{cases}-3 & \text { if } x<1 \\ A x^{A-1}+B & \text { if } x>1\end{cases}
$$

So we get the condition $-3=A 1^{A-1}+B=A+B$. Since $B=3$, we obtain $A=-6$.
3. Suppose that f is a one-to-one differentiable function. The following table of values is given for f and f^{\prime}.

x	-1	0	1	2
$f(x)$	2	3	6	11
$f^{\prime}(x)$	7	2	8	5

(a) Find an equation of the tangent line to the graph of $y=f(x)$ at the point $x=-1$.

Solution. $y-2=7(x+1)$
(b) Find an equation of the tangent line to the graph of $y=f^{-1}(x)$ at the point $x=2$.

Solution. $y+1=\frac{1}{7}(x-2)$
(c) Let $G(x)=2^{7 x} f(3 x)$. Calculate $G^{\prime}(0)$.

Solution. The derivative of G is

$$
G^{\prime}(x)=7 \ln (2) 2^{7 x} f(3 x)+2^{7 x} 3 f^{\prime}(3 x)
$$

So $G^{\prime}(0)=7 \ln (2) f(0)+3 f^{\prime}(0)=21 \ln (2)+6$.
(d) Let $H(x)=\tan ^{-1}\left(f\left(x^{2}\right)\right)$. Calculate $H^{\prime}(-1)$.

Solution. The derivative of H is

$$
H^{\prime}(x)=\frac{1}{1+f\left(x^{2}\right)^{2}} f^{\prime}\left(x^{2}\right)(2 x)
$$

So $H^{\prime}(-1)=\frac{1}{1+f(1)^{2}} f^{\prime}(1)(-2)=-\frac{16}{37}$.
(e) Let $K(x)=\sqrt{f(2-x)^{2}+e^{16 x}}$. Calculate $K^{\prime}(0)$.

Solution. The derivative of K is

$$
K^{\prime}(x)=\frac{1}{2 \sqrt{f(2-x)+e^{16 x}}}\left(f^{\prime}(2-x)(-1)+16 e^{16 x}\right)
$$

So $K^{\prime}(0)=\frac{1}{2 \sqrt{f(2)+1}}\left(-f^{\prime}(2)+16\right)=\frac{11}{2 \sqrt{12}}$.
(f) Let $M(x)=\cos (\pi x) f(2 x)$. Calculate $M^{\prime \prime}\left(\frac{1}{2}\right)$.

Solution. The first derivative of M is

$$
M^{\prime}(x)=-\pi \sin (\pi x) f(2 x)+2 \cos (\pi x) f^{\prime}(2 x)
$$

The second derivative of M is

$$
\begin{aligned}
& M^{\prime \prime}(x)=-\pi^{2} \cos (\pi x) f(2 x)-2 \pi \sin (\pi x) f^{\prime}(2 x)-2 \pi \sin (\pi x) f^{\prime}(2 x)+4 \cos (\pi x) f^{\prime \prime}(2 x)=-\pi^{2} \cos (\pi x) f(2 x)-4 \pi \sin (\pi x) f^{\prime} \\
& \text { So } M^{\prime \prime}\left(\frac{1}{2}\right)=-\pi^{2} \cos \left(\frac{\pi}{2}\right) f(1)-4 \pi \sin \left(\frac{\pi}{2}\right) f^{\prime}(1)+4 \cos \left(\frac{\pi}{2}\right) f^{\prime \prime}(1)=0-4 \pi f^{\prime}(1)+0=-32 \pi
\end{aligned}
$$

4. Consider the curve of equation $x^{2}+6 x y-y^{2}=40$. Find the points on the curve, if any, where the tangent line is (a) horizontal, (b) vertical, (c) perpendicular to $y=2 x+9$.

Solution. First, let us differentiate the relation with respect to x :

$$
\begin{aligned}
& 2 x+6 y+6 x y^{\prime}-2 y y^{\prime}=0 \\
& x+3 y+3 x y^{\prime}-y y^{\prime}=0
\end{aligned}
$$

(a) The tangent line is horizontal when $y^{\prime}=0$. Using this in the previous equation, we get $x+3 y=0$, or $x=-3 y$. Plugging this in the equation of the curve gives $(-3 y)^{2}+6(-3 y) y-y^{2}=40$, or $-10 y^{2}=40$. This equation has no solution, so there are no points on the curve where the tangent line is horizontal.
(b) Solving for y^{\prime} in the previous equation gives $y^{\prime}=-\frac{x+3 y}{3 x-y}$, so the tangent line is vertical when $y=3 x$. Plugging this in the equation of the curve gives $x^{2}+6 x(3 x)-(3 x)^{2}=40$, or $10 x^{2}=40$. We get $x^{2}=4$, that is $x=2$ (which gives $y=6$) and $x=-2$ (which gives $y=-6$). So the points where the tangent line is vertical are $(2,6),(-2,-6)$.
(c) The tangent line is perpendicular to $y=2 x+9$ when $y^{\prime}=-\frac{1}{2}$. Plugging this in $2 x+6 y+6 x y^{\prime}-2 y y^{\prime}=0$ gives $2 x+6 y-3 x+y=0$, or $x=7 y$. Substituting $x=7 y$ in the equation of the curve gives

$$
\begin{aligned}
& (7 y)^{2}+6(7 y) y-y^{2}=40 \\
& 90 y^{2}=40 \\
& y^{2}=\frac{4}{9} \\
& y= \pm \frac{2}{3}
\end{aligned}
$$

For $y=\frac{2}{3}$, we get $x=\frac{14}{3}$ and for $y=-\frac{2}{3}$, we get $x=-\frac{14}{3}$. Therefore, the points on the curve where the tangent line is perpendicular to $y=2 x+9$ are $\left(\frac{14}{3}, \frac{2}{3}\right),\left(-\frac{14}{3},-\frac{2}{3}\right)$.
5. The graph below shows the velocity v of an object moving along an axis.

(a) When is the object moving forward? backward? standing still?

Solution. The object moves forward when $v(t)>0$, that is $0<t<3,3<t<6,11<t$. The object moves backward when $v(t)<0$, that is $6<t<11$. The object is standing still when $v(t)=0$, that is $t=0,3,6,11$.
(b) When does the object reverse direction?

Solution. The object reverses direction when $v(t)$ changes sign, which happens at $t=6,11$.
(c) When does the object move at greatest speed?

Solution. The greatest speed reached by the object is $|-4|=4$ at $t=9$.
(d) When is the acceleration positive?

Solution. The acceleration is positive when $v(t)$ is increasing, that is $0<t<2,3<t<5,9<t<12$.
(e) What the particle average acceleration on the interval $5 \leqslant t \leqslant 8$?

Solution. The average acceleration on $5 \leqslant t \leqslant 8$ is

$$
\frac{v(8)-v(5)}{8-5}=\frac{-1-1}{3}=-\frac{2}{3}
$$

(f) What the exact value of the acceleration at $t=1$?

Solution. The acceleration at $t=1$ is the slope of $v(t)$ at $t=1$. Inspecting the graph, we see that the graph of $v(t)$ is a line of slope $\frac{3}{2}$ on $0<t<2$. So $a(1)=\frac{3}{2}$.
(g) Sketch the graph of the acceleration of the object.

Solution. Recall that the value of the acceleration is the slope of the graph of the velocity.

6. A snow ball in the shape of a perfect sphere melts at a rate of $4 \mathrm{~cm}^{3} / \mathrm{min}$. How fast is the surface area changing when the radius of the sphere is 7 cm ? [Hint: the volume and surface area of a sphere of radius R are given by the formulas $\left.V=\frac{4}{3} \pi R^{3}, S=4 \pi R^{2}\right]$

Solution. We'll start with the relations relating the variables and differentiate them with respect to the time t to get equations relating the rates of change.

$$
\left\{\begin{array} { l }
{ V = \frac { 4 } { 3 } \pi R ^ { 3 } } \\
{ S = 4 \pi R ^ { 2 } }
\end{array} \quad \xrightarrow { \frac { d } { d t } } \quad \left\{\begin{array}{l}
\frac{d V}{d t}=\frac{4}{3} \pi 3 R^{2} \frac{d R}{d t}=4 \pi R^{2} \frac{d R}{d t} \\
\frac{d S}{d t}=8 \pi R \frac{d R}{d t}
\end{array}\right.\right.
$$

We know the values $\frac{d V}{d t}=-4$ (negative because the ball is melting, so volume decreases) and $R=7$, and we want to solve for $\frac{d S}{d t}$. Plugging the values in the equations relating the rates gives

$$
\left\{\begin{array}{l}
-4=4 \pi \cdot 7^{2} \cdot \frac{d R}{d t} \\
\frac{d S}{d t}=8 \pi \cdot 7 \cdot \frac{d R}{d t}
\end{array}\right.
$$

Using the first equation, we can solve for $\frac{d R}{d t}$ to get $\frac{d R}{d t}=-\frac{1}{49 \pi}$. Using this in the second equation gives

$$
\frac{d S}{d t}=8 \pi \cdot 7 \cdot\left(-\frac{1}{49 \pi}\right)=-\frac{8}{7} \mathrm{~cm}^{2} / \mathrm{min}
$$

7. Find the value of the constant A such that the tangent line to $y=2 e^{A x}+\tan ^{-1}(7 x)$ at $x=0$ passes through the point $(-3,11)$.

Solution. First, let us find the equation of the tangent line to the graph at $x=0$. We have $f(0)=$ $2 e^{0}+\tan ^{-1}(0)=2$ and $f^{\prime}(x)=2 A e^{A x}+\frac{7}{1+(7 x)^{2}}$, so $f^{\prime}(0)=2 A+7$. Therefore, the equation of the tangent line at $x=0$ is

$$
y-2=(2 A+7) x
$$

Since we want the tangent line to pass through $(-3,11)$, we must have $11-2=(2 A+7)(-3)$. This gives $2 A+7=-3$, so $A=-5$.

