Midterm 3 Practice Session

1. The two parts of this problem are independent.
(a) Suppose $f(-2)=7$ and $f(1)=-4$. Fill in the blanks below. Your answer to the last blank must be a real number.

If f is \qquad on the interval $[-2,1]$ and \qquad on the interval $(-2,1)$, then the Mean Value Theorem guarantees the existence of a number c in the interval \qquad such that the the slope of the tangent line to the graph of f at $x=c$ is equal to \qquad
(b) Suppose that f is a differentiable function such that $f^{\prime}(x) \geqslant-2$ and $f(3)=4$. Find the maximum possible value of $f(-1)$ and the minimum possible value of $f(5)$.
2. Let $f(x)=\sqrt[3]{4 \cos ^{2}(x)-1}$. Find the absolute extrema and where they occur for $f(x)$ on the interval $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right]$.
3. Let $f(x)=\ln \left(x^{2}+4\right)$. Find:
(a) Find:
(i) the critical points of f.
(ii) the open intervals where f is increasing and decreasing.
(iii) the open intervals where f is concave up and concave down.
(iv) the x-coordinates of the local maxima and local minima of f.
(v) the x-coordinates of the inflection points of f.
(b) Sketch the graph of f.
4. Sketch the graph of a function f with the given properties.

- $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=-2$.
- $\lim _{x \rightarrow-1^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow-1^{+}} f(x)=\infty$.
- $f(-3)=2, f(2)=-5, f(4)=-3$.
- The first two derivatives of f have the following sign chart.

x	$(-\infty,-3)$	$(-3,-1)$	$(-1,2)$	$(2,4)$	$(4, \infty)$
$f^{\prime}(x)$	+	-	-	+	+
$f^{\prime \prime}(x)$	-	-	+	+	-

Label all asymptotes, local extrema and inflection points.
5. A closed cylindrical box has total surface area $150 \pi \mathrm{ft}^{2}$. Find the dimensions of the box (height and radius) that give the maximum possible volume.
6. A particle moving along an axis has acceleration $a(t)=\frac{8}{t^{2}}+6$. Find the position $s(t)$ of the particle if $v(-1)=3$ and $s(-1)=5$.
7. Evaluate the following limits.
(a) $\lim _{x \rightarrow \frac{\pi}{6}} \sec ^{2}(3 x) \ln (\sin (3 x))$
(b) $\lim _{x \rightarrow \infty}\left(\frac{2 \arctan (5 x)}{\pi}\right)^{x}$

