Rutgers University Math 151

Midterm 3 Practice Session

1. The two parts of this problem are independent.

(a) Suppose f(-2) = 7 and f(1) = -4. Fill in the blanks below. Your answer to the last blank must be a real number.

If f is ______ on the interval [-2, 1] and ______ on the interval (-2, 1), then the Mean Value Theorem guarantees the existence of a number c in the interval ______ such that the slope of the tangent line to the graph of f at x = c is equal to ______.

- (b) Suppose that f is a differentiable function such that $f'(x) \ge -2$ and f(3) = 4. Find the maximum possible value of f(-1) and the minimum possible value of f(5).
- 2. Let $f(x) = \sqrt[3]{4\cos^2(x) 1}$. Find the absolute extrema and where they occur for f(x) on the interval $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right]$.
- 3. Let $f(x) = \ln(x^2 + 4)$. Find:
 - (a) Find:
 - (i) the critical points of f.
 - (ii) the open intervals where f is increasing and decreasing.
 - (iii) the open intervals where f is concave up and concave down.
 - (iv) the x-coordinates of the local maxima and local minima of f.
 - (v) the x-coordinates of the inflection points of f.
 - (b) Sketch the graph of f.
- 4. Sketch the graph of a function f with the given properties.
 - $\lim_{x \to -\infty} f(x) = -\infty$ and $\lim_{x \to \infty} f(x) = -2$.
 - $\lim_{x \to -1^-} f(x) = -\infty$ and $\lim_{x \to -1^+} f(x) = \infty$.
 - f(-3) = 2, f(2) = -5, f(4) = -3.
 - The first two derivatives of f have the following sign chart.

x	$(-\infty, -3)$	(-3, -1)	(-1,2)	(2, 4)	$(4,\infty)$
f'(x)	+	_	_	+	+
f''(x)	—	—	+	+	_

Label all asymptotes, local extrema and inflection points.

- 5. A closed cylindrical box has total surface area 150π ft². Find the dimensions of the box (height and radius) that give the maximum possible volume.
- 6. A particle moving along an axis has acceleration $a(t) = \frac{8}{t^2} + 6$. Find the position s(t) of the particle if v(-1) = 3 and s(-1) = 5.
- 7. Evaluate the following limits.

(a)
$$\lim_{x \to \frac{\pi}{6}} \sec^2(3x) \ln(\sin(3x))$$
 (b) $\lim_{x \to \infty} \left(\frac{2 \arctan(5x)}{\pi}\right)^x$