Midterm 3 Practice Session Solutions

1. The two parts of this problem are independent.
(a) Suppose $f(-2)=7$ and $f(1)=-4$. Fill in the blanks below. Your answer to the last blank must be a real number.

Solution.

If f is continuous on the interval $[-2,1]$ and differentiable on the interval $(-2,1)$, then the Mean Value Theorem guarantees the existence of a number c in the interval $(-2,1)$ such that the the slope of the tangent line to the graph of f at $x=c$ is equal to $\frac{f(1)-f(-2)}{1-(-2)}=-\frac{11}{3}$.
(b) Suppose that f is a differentiable function such that $f^{\prime}(x) \geqslant-2$ and $f(3)=4$. Find the maximum possible value of $f(-1)$ and the minimum possible value of $f(5)$.

Solution. Using the MVT, we have $\frac{f(3)-f(-1)}{3-(-1)}=f^{\prime}(c)$ for some c in $(-1,3)$. So

$$
f(3)-f(-1)=4 f^{\prime}(c) \Rightarrow f(-1)=f(3)-4 f^{\prime}(c)=4-4 f^{\prime}(c)
$$

Since $f^{\prime}(c) \geqslant-2$, we have $4 f^{\prime}(c) \geqslant-8$, so $f(-1) \leqslant 4+8=12$.
Likewise, we have $\frac{f(5)-f(3)}{5-3}=f^{\prime}(d)$ for some d in $(3,5)$. So

$$
f(5)-f(3)=2 f^{\prime}(d) \Rightarrow f(5)=f(3)+2 f^{\prime}(d)=4+2 f^{\prime}(d)
$$

Since $f^{\prime}(d) \geqslant-2$, we have $2 f^{\prime}(c) \geqslant-4$, so $f(5) \geqslant 4-4=0$.
2. Let $f(x)=\sqrt[3]{4 \cos ^{2}(x)-1}$. Find the absolute extrema and where they occur for $f(x)$ on the interval $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right]$.

Solution. First, we find the critical points of $f(x)$ in $\left(-\frac{\pi}{4}, \frac{\pi}{2}\right)$. We have

$$
f^{\prime}(x)=\frac{1}{3}\left(4 \cos ^{2}(x)-1\right)^{-2 / 3}(-8 \cos (x) \sin (x))=-\frac{8 \cos (x) \sin (x)}{3\left(4 \cos ^{2}(x)-1\right)^{2 / 3}}
$$

- $f^{\prime}(x)=0$ gives $-8 \cos (x) \sin (x)=0$. The only solution in $\left(-\frac{\pi}{4}, \frac{\pi}{2}\right)$ is $x=0$.
- $f^{\prime}(x)$ undefined gives $3\left(4 \cos ^{2}(x)-1\right)^{2 / 3}=0$, that is $\cos (x)= \pm \frac{1}{2}$. The only solution in $\left(-\frac{\pi}{4}, \frac{\pi}{2}\right)$ is $x=\frac{\pi}{3}$.
We now evaluate $f(x)$ at the critical points in $\left(-\frac{\pi}{4}, \frac{\pi}{2}\right)$ and at the endpoints.
- $f\left(-\frac{\pi}{4}\right)=\sqrt[3]{4\left(\frac{\sqrt{2}}{2}\right)^{2}-1}=1$
- $f(0)=\sqrt[3]{4-1}=\sqrt[3]{3}$
- $f\left(\frac{\pi}{3}\right)=\sqrt[3]{4\left(\frac{1}{2}\right)^{2}-1}=0$
- $f\left(\frac{\pi}{2}\right)=\sqrt[3]{0-1}=-1$

Therefore, the absolute maximum of f on $\left(-\frac{\pi}{4}, \frac{\pi}{2}\right)$ is $\sqrt[3]{3}$ and it occurs at $x=0$. The absolute minimum of f on $\left(-\frac{\pi}{4}, \frac{\pi}{2}\right)$ is -1 and it occurs at $x=\frac{\pi}{2}$.
3. Let $f(x)=\ln \left(x^{2}+4\right)$. Find:
(a) Find:
(i) the critical points of f.
(ii) the open intervals where f is increasing and decreasing.
(iii) the open intervals where f is concave up and concave down.
(iv) the x-coordinates of the local maxima and local minima of f.
(v) the x-coordinates of the inflection points of f.

Solution. We have

$$
f^{\prime}(x)=\frac{2 x}{x^{2}+4}, \quad f^{\prime \prime}(x)=\frac{2\left(x^{2}+4\right)-(2 x)(2 x)}{\left(x^{2}+4\right)^{2}}=\frac{8-2 x^{2}}{\left(x^{2}+4\right)^{2}}=\frac{2(2-x)(2+x)}{\left(x^{2}+4\right)^{2}} .
$$

(i) the critical points of f : $x=0$.
(ii) the open intervals where f is increasing and decreasing: increasing on $(0, \infty)$ and decreasing on $(-\infty, 0)$.
(iii) the open intervals where f is concave up and concave down: concave up on $(-2,2)$ and concave down on $(\infty,-2),(2, \infty)$.
(iv) the x-coordinates of the local maxima and local minima of f : no local maximum, local minimum at $x=0$.
(v) the x-coordinates of the inflection points of $f: x=-2,2$.
(b) Sketch the graph of f.

Solution.

4. Sketch the graph of a function f with the given properties.

- $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=-2$.
- $\lim _{x \rightarrow-1^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow-1^{+}} f(x)=\infty$.
- $f(-3)=2, f(2)=-5, f(4)=-3$.
- The first two derivatives of f have the following sign chart.

x	$(-\infty,-3)$	$(-3,-1)$	$(-1,2)$	$(2,4)$	$(4, \infty)$
$f^{\prime}(x)$	+	-	-	+	+
$f^{\prime \prime}(x)$	-	-	+	+	-

Label all asymptotes, local extrema and inflection points.

Solution.

5. A closed cylindrical box has total surface area $150 \pi \mathrm{ft}^{2}$. Find the dimensions of the box (height and radius) that give the maximum possible volume.

Solution. The objective function is the volume $V=\pi r^{2} h$. This is subject to the constraint that the total surface area is 150π, so $2 \pi r^{2}+2 \pi r h=150$. This gives $h=\frac{150 \pi-2 \pi r^{2}}{2 \pi r}=\frac{75-r^{2}}{r}$. So the volume expressed in terms of r only is

$$
V(r)=\pi r^{2} \frac{75-r^{2}}{r}=\pi r\left(75-r^{2}\right)=\pi\left(75 r-r^{3}\right)
$$

To find the interval of interest, observe that lengths cannot be negative, so we need $r \geqslant 0$ and $\frac{75-r^{2}}{r}$. This last condition gives $r \neq 0$ and $r \leqslant \sqrt{75}$. So the interval of interest is $(0, \sqrt{75}]$.

We now find the critical points in the interval. We have $V^{\prime}(r)=\pi\left(75-3 r^{2}\right)$, so $V^{\prime}(r)=0$ when $r=5$. To check that this does give the maximum, we can use the SDT and observe that $V^{\prime \prime}(r)=\pi(-6 r)$, which is negative on $(0, \sqrt{75}]$. Hence, f is concave down on $(0, \sqrt{75}]$. So the volume is maximal when $r=5 \mathrm{ft}$ and $h=10 \mathrm{ft}$.
6. A particle moving along an axis has acceleration $a(t)=\frac{8}{t^{2}}+6$. Find the position $s(t)$ of the particle if $v(-1)=3$ and $s(-1)=5$.

Solution. First, we find the velocity.

$$
v(t)=\int\left(\frac{8}{t^{2}}+6\right) d t=-\frac{8}{t}+6 t+C
$$

To find the value of C, we use the initial condition $v(-1)=3$. This gives $8-6+C=3$, so $C=1$ and $v(t)=-\frac{8}{t}+6 t+1$. for the position, we get

$$
s(t)=\int\left(-\frac{8}{t}+6 t+1\right) d t=-8 \ln |t|+3 t^{2}+t+D
$$

To find the value of D, we use the initial condition $s(-1)=5$. This gives $-8 \ln |-1|+3-1+D=5$, so $D=3$. Hence, $s(t)=-8 \ln |t|+3 t^{2}+t+3$.
7. Evaluate the following limits.
(a) $\lim _{x \rightarrow \frac{\pi}{6}} \sec ^{2}(3 x) \ln (\sin (3 x))$

Solution. This limit is an indeterminate form $\infty \cdot 0$. We can rewrite the expression as a fraction and use L'Hôpital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow \frac{\pi}{6}} \sec ^{2}(3 x) \ln (\sin (3 x)) & =\lim _{x \rightarrow \frac{\pi}{6}} \frac{\ln (\sin (3 x))}{\cos ^{2}(3 x)} \\
& \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow \frac{\pi}{6}} \frac{\frac{3 \cos (3 x)}{\sin (3 x)}}{-6 \cos (3 x) \sin (3 x)} \\
& =\lim _{x \rightarrow \frac{\pi}{6}}-\frac{1}{2 \sin ^{2}(3 x)} \\
& =-\frac{1}{2} .
\end{aligned}
$$

(b) $\lim _{x \rightarrow \infty}\left(\frac{2 \arctan (5 x)}{\pi}\right)^{x}$

Solution. This limit is an indeterminate power 1^{∞}. Warning: limits of the form 1^{∞} need not be equal to 1! This is because the base is not equal to 1 , it is approaching 1 . We can resolve the indeterminate form by taking the \ln of the limit L and applying L'Hôpital's Rule. This gives.

$$
\begin{aligned}
\ln (L) & =\lim _{x \rightarrow \infty} x \ln \left(\frac{2 \arctan (5 x)}{\pi}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\ln \left(\frac{2 \arctan (5 x)}{\pi}\right)}{\frac{1}{x}} \\
& \stackrel{\text { L'H }}{=} \lim _{x \rightarrow \infty} \frac{\frac{\pi}{2 \arctan (5 x)} \cdot \frac{2 \cdot 5}{\pi\left(1+25 x^{2}\right)}}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty}-\frac{5 x^{2}}{\arctan (5 x)\left(1+25 x^{2}\right)} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty}-\frac{5}{\arctan (5 x)\left(\frac{1}{x^{2}}+25\right)} \\
& =-\frac{5}{\frac{\pi}{2}(0+25)} \\
& =-\frac{2}{5 \pi} .
\end{aligned}
$$

This is the \ln of the original limit, so we now solve for L and we get $L=e^{-2 / 5 \pi}$.

