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The coupled-trajectory mixed quantum classical method (CT-
MQC), derived from the exact factorization approach, has suc-
cessfully predicted photo-chemical dynamics in a number of in-
teresting molecules, capturing population transfer and decoher-
ence from first-principles. However, due to the approximations
made, CTMQC does not guarantee energy conservation. We
propose a modified algorithm, CTMQC-E, which redefines the
integrated force in the coupled-trajectory term so to restore en-
ergy conservation, and demonstrate its accuracy on scattering in
Tully’s extended coupling region model and photoisomerization
in a retinal chromophore model.

The first law of thermodynamics states that the en-
ergy of a closed system must be conserved. For molec-
ular systems, this means energy exchange must occur
between the nuclei and electrons in such a way that the
total energy of the molecule is invariant. To simulate
the dynamics of complex molecules approximations are
inevitably required, and when energy conservation does
not arise naturally in a given approximation, it is usually
imposed as an extra condition. In some cases, the energy
non-conservation is a consequence of simplifications
made in the numerical implementation of the method,
e.g. in the independent-trajectory version of the multi-
configurational Ehrenfest method in finite-Gaussian ba-
sis set implementations [1, 2]. Justified by the large
nuclear-electron mass ratio, mixed quantum-classical
(MQC) schemes are the basis for many approximations
for coupled electron-nuclear dynamics, where one prop-
agates an ensemble of classical nuclear trajectories, each
associated with a set of quantum electronic coefficients
of, typically, a Born-Oppenheimer (BO) basis. Ehren-
fest dynamics (EH) and surface-hopping (SH) [3, 4] are
the most widely-used MQC methods, with SH generally
preferred due to its ability to capture wavepacket split-
ting after regions of coupling between BO surfaces are
encountered. Both conserve energy, albeit in different
ways. Both involve a nuclear force that is the gradient
of an electronic expectation value, with the electronic
equations having a Hamiltonian evolution. But while
the consistency in the electronic and nuclear equations
in Ehrenfest yields energy conservation on an individ-
ual trajectory level, the inconsistency in having coher-
ent electronic evolution while each nuclear trajectory is
collapsed on a given surface at any time, means energy
conservation in SH is a more subtle issue.

SH imposes energy conservation on each individual
trajectory by rescaling the velocities after a hop has oc-
curred such that the gain or loss in potential energy is
compensated by a loss or gain in kinetic energy. Not
only is there no unique way to do this [5–7], but the
notion itself lacks proper physical justification since it

is the energy of the ensemble of trajectories that mim-
ics the underlying quantum wavepacket that should be
conserved, not the energy of an individual trajectory,
and this too tight constraint leads to inaccuracies. One
example is the so-called frustrated hop, where strict en-
ergy conservation precludes dynamical pathways that
are accessible in the full quantum mechanical treat-
ment. Furthermore, frustrated hops exacerbate the dif-
ference between electronic populations predicted from
the electronic coefficient evolution and those predicted
by the fraction of nuclear trajectories on the correspond-
ing electronic state, which is known as the internal con-
sistency problem of SH. More sophisticated SH schemes
that do conserve energy over the ensemble rather than
for individual trajectories [8, 9] have not been applied
beyond model systems so far. But even aside from the
incorrect imposition of individual trajectory energy con-
servation and its ad hoc manner of imposition, there is a
third issue: if the electronic populations in the definition
of the energy were obtained from the coherent electronic
evolution instead of the fraction of trajectories, then SH
methods would in fact not conserve total energy. Al-
though SH schemes that include a decoherence correc-
tion [10–13] ameliorate the internal inconsistency (albeit
in an ad hoc way), the other issues remain.

The exact factorization approach (XF) [14–23] paved
the way for the development of new MQC methods
that tackle the issues of standard MQC schemes. The
coupled-trajectory mixed quantum classical algorithm
(CTMQC) [24–26] was derived by taking the classical
limit of the XF equations and approximating some of
the terms in ways justified by exact studies [27]. Elec-
tronic decoherence and nuclear wavepacket-splitting
emerge naturally, and CTMQC has been successfully ap-
plied to a number of interesting photo-induced dynam-
ics [26, 28–32]. The XF terms introduce new mechanisms
of population transfer driven by nuclear quantum mo-
mentum, shown to be crucial in capturing dynamics of
multi-state intersections [23] in an algorithm where the
electronic equation was used in a SH scheme [23, 33–39].



However, due to the approximations made to the XF
equations, the ensemble of coupled trajectories in CT-
MQC is not guaranteed to conserve the total energy. In
this work, we analyze why, and propose and demon-
strate a modification, CTMQC-E, that restores energy
conservation.

The CTMQC electronic coefficients and nuclear force
evolve via
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where the first terms in the electronic and nuclear equa-
tions are Ehrenfest-like terms:
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Atomic units (~=me = e2 = 1) are used throughout this
letter and the shorthand notation f (α) = f(R(α)(t)) de-
notes evaluation at the position of trajectory α. Here and
henceforth we drop the t-dependences of the quantities
in writing the equations, to avoid notational clutter. The
sum over ν is a sum over all Nn nuclei. The electronic
density-matrix elements are ρ(α)lk = C

(α)∗
l C

(α)
k , d(α)

ν,lk is
the nonadiabatic coupling vector (NAC) along the ν nu-
clear coordinate between BO states l and k and ∆ε

(α)
lk the

BO energy difference between states l and k; the sums
over Latin indices go over the electronic states. The sec-
ond terms in Eqs (1) and (2) are the corrections coming
from XF
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integrated adiabatic force on nucleus ν accumulated on
the l-th surface along the trajectory α
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Variations of the CTMQC algorithm have been ex-
plored, for example, using the electronic equation Eq.(1)
within a SH or Ehrenfest scheme [33, 40, 41]. A cen-
tral term in the XF-based MQC methods is the nu-
clear quantum momentum Eq. (8). Although the SH
scheme of Ref. [33] computes this with auxiliary trajecto-
ries in order to yield an independent-trajectory method,
and the corresponding independent-trajectory version
of CTMQC was recently implemented [41], a key fea-
ture of the original CTMQC algorithm is the coupling
of trajectories through this term. The nuclear quantum
momentum can be computed in two different ways. The
original definition (Q0) implies using expression Eq.(8)
reconstructing the nuclear density as a sum of gaus-
sians centered at the position of the classical trajectories.
However, this definition was found to sometimes yield
an unphysical net population transfer in regions of van-
ishing NAC. Instead, the modified definition (Qm) was
constructed by requiring, zero net population transfer in
regions of zero NAC [25, 26]. The condition is imposed
pairwise, and separately for each degree of freedom, re-
sulting in
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and this is what has been used in the CTMQC calcula-
tions on photo-induced molecular dynamics [26, 28–31].
A deeper analysis on the different ways of computing
Q

(α)
ν and its impact on the dynamics of model systems

was studied on Ref [42].

The condition of zero net population transfer in re-
gions of zero NAC may be viewed as an exact condi-
tion, much like energy conservation. The total energy of
the molecule is the expectation value of H , i.e, the sum
of the nuclear kinetic energy and the BO Hamiltonian,
H = Tn + HBO. For MQC methods, the expectation
value involves a nuclear-trajectory average, and leads
to the following definition of the trajectory-averaged en-
ergy in CTMQC
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We note that, compared to a fully quantum scheme,
this definition misses a contribution to the nuclear ki-
netic energy from the second-derivative of the nuclear
density, which is higher order in a semiclassical expan-
sion and neglected in deriving the CTMQC equations of
motion for the trajectories [25], however the definition
Eq. (10) is consistent with the MQC framework.
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Taking the time-derivative of the energy yields
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Eq. (11) shows that, in general, energy-conservation is
not guaranteed in CTMQC, which may lead to unphys-
ical dynamics of electronic and/or nuclear observables.

Inspired by how the quantum momentum was mod-
ified to impose the exact condition of zero net popula-
tion transfer in regions of zero NAC [25, 26] (Eq. 9), here
we propose a modified definition of the accumulated
force f

(α)
µ,l that satisfies energy conservation. Applying

the energy condition through redefining f
(α)
µ,l was in-

spired by Ref. [41] which fixed the energy conservation
in the independent-trajectory version of CTMQC that
uses auxiliary trajectories. As noted earlier, this concept
of energy-conservation is likely too strict, and it should
instead be the energy of the ensemble that is conserved.
First, in the framework of the modified definition of the
quantum momentum Eq. (9), we see from Eq. (11) that
energy will be conserved in situations where the quan-
tity in the square brackets in the last line,∑
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is trajectory-independent. We enforce this by setting
Eq. (12) equal to its trajectory average. For one degree
of freedom this means
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lk Ṙ(α) + ∆ε

(α)
lk

)
(13)

That is, for one degree of freedom, the accumulated
force is redefined as
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(β)
ν + ε

(β)
l =

1

Ntr

∑
αν

f
(α)
ν,l · Ṙ
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which can be satisfied by choosing
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(β)
ν as

the momentum of the trajectory, so that

f̃
(β)
ν,l =

(
−ε(β)l + 1

Ntr

∑
αν f

(α)
ν,l · Ṙ
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Eq. (17) is the main result of this paper, and when this
is used in the CTMQC algorithm, we call the resulting
method CTMQC-E. CTMQC-E is relatively straightfor-
ward to implement on top of an existing CTMQC code,
such as g-CTMQC [32], which we have used in the fol-
lowing work to test CTMQC-E on two different systems.

Our first example is the one-dimensional Tully’s ex-
tended coupling region (ECR) model [3], illustrated in
the inset of Fig. 1. We study two situations where a
Gaussian nuclear wavepacket centered at −15 a.u. is in-
coming on the lower surface from the left with a high
(k0 = 32 a.u.) and a low (k0 = 26 a.u.) initial momen-
tum; the variance of the gaussian wavepacket at time
zero 20 times the inverse of the initial momentum. These
two scenarios were studied with independent-trajectory
XF-based methods in Ref. [41]. For the higher initial
momentum case after passing through the NAC region
where some population is transferred to the upper sur-
face, the wavepacket component on the lower surface
moves faster separating in nuclear space from the part
that has transferred to the upper state and the branches
decohere. For the lower initial momentum, much of
the wavepacket transmitted to the upper surface reflects
back and recrosses the NAC region leading to a second
splitting event. In our MQC simulations 1000 Wigner-
distributed trajectories with a fixed initial momentum
k0 were run starting on the lower surface and the time-
step used in the calculations was 0.1 a.u. Fig. 1 and Fig. 2
show the excited state population

∑
α ρ

(α)
22 , the fraction

of trajectories on the active state for SH N2(t)/Ntr, the
coherence

∑
α |ρ

(α)
12 |2, and energy from Eq. (10) for k =

32a.u. and k = 26 a.u. respectively.
Fig. 1 shows that for k0 = 32a.u. momentum all MQC

methods closely reproduce the exact populations. CT-
MQC and CTMQC-E give identical coherences that de-
cay faster than the exact, whereas SH and EH do not de-
cohere. The top panel shows that CTMQC-E conserves
the total classical energy, curing the increase in CTMQC
between 500 and 1000 a.u. where the quantum momen-
tum is active. SH and EH conserve energy so are not
shown in the top panel. After 1000 a.u. the trajectories
fully decohere and energy thereafter remains constant
in both methods. These results could be compared with
the independent trajectory XF-based schemes shown in
Fig. 5 of Ref. [41]. There, the populations and coher-
ences are also closely reproduced, but there are some
variations, depending on the way the width parameter
of the auxiliary trajectory is computed, and the equa-
tions are integrated.

Fig. 2 shows the k0 = 26a.u. case. Consider first the
standard MQC schemes. EH does not capture any re-
flection or decoherence after the first passage through
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state populations (lower panel) as a function of time for ECR
model with k0=32 a.u. The inset in the upper panel shows the
two BO surfaces in solid lines and the NAC in dashed, as a
function of R
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FIG. 2. Total energy deviation in miliatomic units (upper
panel), coherences (middle panel) and excited state popula-
tions (lower panel) as a function of time for ECR model with
k0=26 a.u.

the NAC region. On the other hand, the fraction of tra-
jectories population measure of SH predicts almost com-
plete reflection of all trajectories on the upper surface
distinct from the behavior of its electronic populations,
displaying poor internal consistency. As discussed ear-
lier, if we were to take the electronic populations as the
population observable, SH would not conserve energy.
Now let’s turn to the XF-based MQC methods. CTMQC-
E gives an improvement over CTMQC in the popula-
tions, coherence, and total energy. We note that to avoid
numerical instabilities occurring when the velocity be-
comes too small in the denominator of Eq. (14) (an issue
for reflecting trajectories), we apply a velocity threshold
such that the new definition of accumulated force from

Eq. (14) is used only above a small threshold (10−5), and
otherwise the original definition Eq. (7) is used. This
procedure can lead to small discontinuities in the en-
ergy, as seen in the red curve in Fig 2 at around 2000 a.u.
when the energy jumps up a little above the initial value.
Further work will involve stabilizing the algorithm, but
we see already the improvement in energy-conservation
in CTMQC-E over CTMQC. Further, the populations are
slightly improved, and also the coherence. These results
may again be compared with the independent trajectory
XF-based schemes in Fig. 4 of Ref. [41], where the results
were quite sensitive to details in the algorithm, and a
time-dependent auxiliary-trajectory width was needed
to capture the exact dynamics in the energy-conserving
scheme.

Our second example is a three-dimensional model of
the the photo-induced isomerization of the 2-cis-penta-
2,4-dieniminium cation (PSB3), which in turn is a model
of the retinal cromophore of Rhodopsin (rPSB11), re-
sponsible for dim-light vision in vertebrates. This was
extensively studied in Ref. [29], by means of quantum
and mixed quantum-classical dynamics. The reduced-
dimensionality model is based on 3 degrees of freedom
(rB , θT , φH ) developed in Ref [43]. These are the bond-
length-alternation stretching (BLA) defined as the aver-
age length difference between single and double bonds

rB =
dC1C2

+ dC3C4

2
− dNC1

+ dC2C3
+ dC4C5

3
, (18)

the torsional deformation around the double reactive
bond C2=C3 (TORS)

θT = dihedral(C1C2C3C4) , (19)

and the hydrogen-out-of-plane wagging (HOOP) de-
fined as the difference between the TORS and
H2C2C3H3 dihedral angles

φH = θT − dihedral(H2C2C3H3) (20)

These three modes which drive the ultrafast cis-
trans isomerization of rPSB11 [44–47] also drive the iso-
merization of cis-PSB3 after photo-excitation from the
ground (S0) to the first singlet excited state (S1) [48, 49].
We propagated 600 Wigner-distributed trajectories start-
ing in the S1 state, with centers at 0.154449 a.u. for the
BLA coordinate and at zero angle for TORS and HOOP,
all with zero center momentum. The variances were
0.154449 a.u. for BLA, 0.183302 for TORS, and 0.406143
for HOOP. We used a time-step of 0.01a.u; a larger time-
step gave qualitatively similar results but, for this sys-
tem, led to larger energy-conservation violation in CT-
MQC and also larger jumps in CTMQC-E. Note that
Ref. [29] dealt with the energy non-conservation simply
by reverting to Ehrenfest dynamics after 120 fs.

Fig. 3 shows the quantum yield of the photo-
isomerization process, defined as the ratio between the
trans and all reaction products, as indicated in the fig-
ure. All methods overestimate the quantum yield at
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short times; Ref. [29] attributed this to the lack of nu-
clear quantum effects. After about 120 fs CTMQC-E re-
sults oscillate around the exact quantum yield, giving a
small improvement over CTMQC which shows an un-
derestimate, and over EH and SH.

QY(t) = P trans
S0 + P trans

S1
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FIG. 3. Quantum yield of the PBS3 photo-isomerization as a
function of time.

The top panel in Fig. 4 shows the trajectory-averaged
total energy as well as the nuclear kinetic energies along
the BLA , TORS and HOOP modes, as compared with
EH and SH dynamics and exact calculations. Although
not entirely, CTMQC-E strikingly reduces the total en-
ergy violation of CTMQC. The residual deviation from
constant energy in CTMQC-E is caused by two ef-
fects. First, for trajectories for which the denominator in
Eq. (17) becomes smaller than a fixed threshold, the ac-
cumulated force reverts to its original definition, which
does not conserve energy. Second, even when the new
definition is used, the quantum momentum computa-
tion may revert to the original quantum momentum Q0

definition when a denominator involved in imposing
Eq. (9) becomes too small [26, 42]; our redefined force
is guaranteed to conserve energy only when used in
conjunction with the modified definition Qm. Consider-
ing now the kinetic energy along BLA (lowest panel), in
the exact system it oscillates around an average that in-
creases in a monotonic way due to the wavepacket mov-
ing through the conical intersections towards S0, while
the oscillations decrease in amplitude as a result of a
loss in vibrational coherence as the wavepacket spreads
along the TORS degree of freedom. CTMQC captures
the initial behavior well but starts increasing at around
80 fs and deviating significantly from the exact calcula-
tions; EH and SH, in contrast, over-damp the BLA os-
cillations and average. On the other hand, CTMQC-E
reproduces the exact kinetic energy along BLA reason-
ably. For the torsional kinetic energy all MQC schemes
yield an overestimate of the kinetic energy from around
40 fs. In CTMQC-E, EH and SH, this gain in TORS ki-
netic energy is compensated by a loss in HOOP kinetic
energy and a loss in potential energy (not shown here)
compared with the exact results. On the other hand

in CTMQC, the kinetic energies of all three degrees of
freedom increase simultaneously after 120 fs as a con-
sequence of energy violation. This example appears to
be among the most challenging so far for CTMQC for
energy conservation, and further work is underway to
study this in more detail.
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FIG. 4. Trajectory-averaged total energy deviation for PSB3 as
a function of time (top panel); kinetic energy along the TORS
(second from top panel), HOOP (third panel), and BLA (lowest
panel) degrees of freedom.

In summary, we have presented a modification of the
CTMQC algorithm, CTMQC-E, that imposes energy-
conservation over the ensemble of nuclear trajectories
through a redefinition of the accumulated force. Much
like the modified definition of the quantum momen-
tum that imposes the exact condition of zero population
transfer in regions of zero NAC, the new definition in-
volves all trajectories in its computation. It has similar-
ities in form to that used in the independent-trajectory
version of CTMQC, but results in a more physical con-
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dition, being imposed on the ensemble of trajectories
rather than on the individual trajectories. Future work
includes refinement of the algorithmic implementation
to better deal with instabilities arising from small ve-
locities in the denominator of the new definition of the
accumulated force and to reduce the jumps occurring in
the energy without going to very small time-steps which
may be untenable for larger systems. Generally, for most
of systems where CTMQC has been applied energy vio-
lation is often too small to have much of an effect on its
dynamics or physical observables. However as shown
here, this is not guaranteed, and future work will also
attempt to characterize situations where CTMQC is ex-
pected to yield significant energy non-conservation, for
which the use of CTMQC-E gives significant improve-

ment.
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