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A B S T R A C T   

A critical difference between decimal and whole numbers is that among whole numbers the number of digits 
provides reliable information about the size of the number, e.g., double-digit numbers are larger than single-digit 
numbers. However, for decimals, fewer digits can sometimes denote a larger number (i.e., 0.8 > 0.27). 
Accordingly, children and adults perform worse when comparing such Inconsistent decimal pairs relative to 
Consistent pairs, where the larger number also has more digits (i.e., 0.87 > 0.2). Two explanations have been 
posited for this effect. The string length congruity account proposes that participants compare each position in 
the place value system, and they additionally compare the number of digits. The semantic interference account 
suggests that participants additionally activate the whole number referents of numbers – the numbers unadorned 
with decimal points (e.g., 8 < 27) – and compare these. The semantic interference account uniquely predicts that 
for Inconsistent problems with the same actual rational distance, those with larger whole number distances 
should be harder, e.g., 0.9 vs. 0.81 should be harder than 0.3 vs. 0.21 because 9 < < 81 whereas 3 < 21. Here we 
test this prediction in two experiments with college students (Study 1: n = 58 participants, Study 2: n = 78). 
Across both, we find a main effect of consistency, demonstrating string length effects, and also that whole 
number distance interferes with processing conflicting decimals, demonstrating semantic interference effects. 
Evidence for both effects supports the semantic interference account, highlighting that decimal comparison 
difficulties arise from multiple competing numerical codes. Finally, for accuracy we found no relationship be
tween whole number distance sensitivity and math achievement, indicating that whole number magnitude 
interference affects participants similarly across the spectrum of math achievement.   

1. Introduction 

Rational numbers are a critical bottleneck in the elementary school 
mathematics curriculum (Bailey, Hoard, Nugent, & Geary, 2012; Fazio, 
Bailey, Thompson, & Siegler, 2014; Siegler et al., 2012). One source of 
difficulties with rationals is that many properties of whole numbers (i.e., 
natural numbers) do not apply to this number class. For example, whole 
numbers have unique symbols and successors while rational numbers do 
not. However, some properties of whole numbers do apply to rationals, 
but only some of the time, making them especially challenging proper
ties to master (Rosenberg-Lee, 2021). For example, among whole 
numbers, more digits always indicates a larger number (8 < 27), but this 
is not always the case for decimal numbers (0.8 > 0.27). Unsurprisingly, 
both children and young adults perform worse on these incongruent 

problems relative to those congruent with whole number knowledge 
(0.87 > 0.2) (Avgerinou & Tolmie, 2019; Coulanges et al., 2021; Huber, 
Klein, Willmes, Nuerk, & Moeller, 2014; Ren & Gunderson, 2021; Varma 
& Karl, 2013). Two explanations have been offered for this behavioral 
pattern. The string length congruity account proposes that participants 
independently compare each position in the place value system, and 
they compare the number of digits (Huber et al., 2014). In contrast, the 
semantic interference account proposes that participants additionally 
activate the whole number referents of numbers – the numbers un
adorned with decimal points – and compare these numbers, further 
influencing comparison processing (Varma & Karl, 2013). Across two 
studies, we examine the source of interference effects in decimal com
parison to determine if just string length drives behavior, or if the whole 
number magnitudes of decimals also impact performance. 
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Distance effects – worse performance on near (8 versus 9) than far (2 
versus 9) comparisons – are a hallmark of numerical magnitude pro
cessing (Moyer & Landauer, 1967). Studies of distance effects in rational 
numbers confirm that decimals, like fractions, display distance effects 
based on their actual, rational magnitudes (DeWolf, Grounds, Bassok, & 
Holyoak, 2014; Hurst & Cordes, 2016; Hurst & Cordes, 2018). Rational 
numbers, however, afford more than one distance dimension, which can 
be leveraged to identify whether participants are processing rational 
magnitudes holistically or componentially, that is with respect to the 
distances between their whole number components (i.e., numerators 
and denominators) (Bonato, Fabbri, Umiltà, & Zorzi, 2007; Ischebeck, 
Schocke, & Delazer, 2009; Schneider & Siegler, 2010). Unfortunately, 
for fractions, rational and componential distances are correlated, and 
confounded with fraction type (i.e. congruent with whole number 
knowledge, 3/4 > 1/2 vs. incongruent with whole number knowledge 
4/7 < 3/5). For example, for congruent comparisons, larger numerator 
distance results in larger rational distance, but for incongruent com
parisons larger numerator distance results in smaller rational distance 
(Rosenberg-Lee, 2021). These inherent relations in the stimulus space 
make it challenging to disentangle respective contributions of whole and 
rational distance in fraction comparison. 

Decimals from zero to one, by contrast, are an ideal domain to 
investigate rational versus whole number distance effects because they 
have only one whole number dimension. In fact, it is possible to select 
stimuli that orthogonalize this dimension from rational distance 
(Rosenberg-Lee, 2021). To do so, we introduce the concept of “whole 
number distance” in decimal comparison, by which we mean the dis
tance between decimal number pairs when ignoring the decimal point 
and processing the digits as whole numbers. Fig. 1a depicts several 
example stimuli for comparisons that are Consistent with whole number 
knowledge where the larger number has more digits (e.g., 0.2 versus 
0.74), and Inconsistent comparisons with whole number knowledge 
where the larger number has fewer digits (e.g., 0.8 versus 0.26). In both 
cases, the rational distance between these numbers is 0.54. However, if 
we ignore the decimal place we find that comparing 2 vs. 74 has a dif
ference of 72, whereas comparing 8 versus 26 has a difference of 18. 

Critically, whole number distance may have different effects for 
these two problem types. For Consistent problems, larger whole distance 
should make the problem easier, because ignoring the decimal point still 
leads to the correct response. By contrast, for Inconsistent problems, 
larger whole distance should make the problem harder, because 
ignoring the decimal point provides evidence for the incorrect response. 
To illustrate that whole number interference can vary while holding 
rational distance constant, consider the following examples (Fig. 1a). 
The comparisons 0.3 vs. 0.21 and 0.9 vs. 0.81 are both inconsistent with 
whole number knowledge, and both have the same rational distance of 
0.09. If the semantic interference account is correct, and hence whole 
number interpretations are also being processed (i.e., 3 vs. 21 and 9 vs. 
81), then the first example is a much closer comparison (i.e., a distance 
of 18) than the second (a distance of 72), making it easier to correctly 
ignore the whole number comparison and process the decimal infor
mation. Among Consistent problems, comparisons like 0.1 vs. 0.19 and 
0.7 vs. 0.79 should be equally difficult based on their rational distance of 
0.09, but based on whole distance, the first is a much closer comparison 
(18) than the second (72). The semantic interference account predicts 
that even when rational distance is held constant, whole number in
formation is processed and affects performance, and thus the latter 
comparison should be easier, because both the decimal and whole 
number interpretations lead to the same judgment (Varma & Karl, 
2013). In contrast, the string length congruity account proposes that 
only the magnitude of the individual digits (and the number of digits) 
matters for decimal comparison and therefore would not predict an ef
fect of whole distance on comparison performance (Huber et al., 2014). 

No studies to date have considered rational distance, string length, 
and whole number distance simultaneously in a decimal comparison 
task, as we do here. However, one prior study has investigated these 
accounts in the context of number line estimation (Schiller, Abreu- 
Mendoza, & Rosenberg-Lee, 2023). The authors reported that decimals 
are estimated as smaller than the equivalent whole number with the 
same number of digits; that is, placing 0.20 on a 0–1 number line to the 
left of the position of 20.0 on a 0–100 number line. Moreover, the same 
quantity presented as single digit-decimals (e.g., 0.2) was estimated as 
further to the left still, consistent with the string length congruity ac
count of Huber et al. (2014) that numbers with fewer digits are 
considered “smaller”. In the realm of number line estimation, the se
mantic interference hypothesis makes an additional prediction beyond 
the string length congruity effect, namely that larger single-digit deci
mals (closer to 1) should be underestimated more than smaller decimals 
(closer to 0) because of the larger mismatch between their actual 
rational magnitude and that of the corresponding whole number. For 
example, 0.2 should activate 20 but additionally activates 2, a difference 
of 18, whereas 0.8 should activate 80, but additionally activates 8, a 
difference of 72. Consistent with the semantic inference account (Varma 
& Karl, 2013), overall, participants showed greater underestimation for 
larger decimals relative to smaller ones. Interestingly, disaggregating 
the data revealed that this semantic interference effect was only present 
among participants who estimated decimals after estimating whole 
numbers, while string length effects were present for all participants 
regardless of presentation order. Together, these results suggest that 
string length and semantic interference effects might both be present in 
the decimal comparison task, although string length effects may be more 
robust. 

To disentangle these two accounts for decimal difficulties, we 
manipulated string length congruity, rational and whole distance. As 
can be seen in Fig. 1b, these dimensions are – as in fractions – inherently 
correlated and confounded, making it necessary to select a subset of the 
stimuli. Study 1 employed a stimulus set where rational distance was 
matched between Consistent and Inconsistent trials (Fig. 1c, Table 1). 
However, in this stimulus set, whole distance was not matched across 
the two trial types. Study 2 overcomes this shortcoming by employing a 
stimulus set where both distances are perfectly matched (Fig. 1d, 
Table 1). These designs enabled us to determine if the string length 
congruity, semantic interference, or both effects explain decimal com
parison performance. In all cases, we expect rational distance to influ
ence performance; it is the interplay between consistency and whole 
distance that adjudicates between the alternatives. The string length 
congruity account predicts consistency effects but no impact for whole 
distance (Huber et al., 2014). The semantic interference account pre
dicts consistency effects, but also that whole distance will impact per
formance (Varma & Karl, 2013). A final possibility is whole distance 
impacts performance but there are no effects of consistency. This 
outcome is not predicted by either account but would indicate that 
previously reported consistency effects actually reflect interference from 
the magnitude of whole numbers. Together these studies provide a 
comprehensive assessment of the role of whole number interference in 
rational number comparison. 

A final question afforded by these studies is whether broad math 
achievement relates to the proposed distance effects. Rational number 
distance effects are a hallmark of magnitude-based processing of 
rational numbers and a primary goal of rational number instruction 
(Schneider & Siegler, 2010; Siegler & Braithwaite, 2017). Math 
achievement is associated with rational number outcomes for both 
decimal (Coulanges et al., 2021) and fraction (Gómez, Jiménez, Boba
dilla, Reyes, & Dartnell, 2015) comparison. Yet, no studies have 
considered math achievement's relationship to numerical distance ef
fects. Given that understanding the magnitude of rational numbers is 
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foundational for other rational number capacities, like arithmetic (Kai
nulainen, McMullen, & Lehtinen, 2017; Van Hoof, Degrande, Ceule
mans, Verschaffel, & Van Dooren, 2018), we would expect greater 
sensitivity to rational distance to be related to better math achievement. 
Conversely, if sensitivity to whole number magnitude represents inter
ference from the whole number referents when processing decimals, we 
would expect greater sensitivity to this distance dimension to be related 
to worse math outcomes. 

Fig. 1. Decimal comparison stimuli. 
Comparison of single-digit vs. double-digit decimals can be mapped in terms of their rational distance and their whole number distance ignoring the decimal point. a) 
All possible stimuli for comparing [0.1 to 0.9] versus [0.10–0.99]. Consistent stimuli are those where the larger decimal also has more digits (e.g. 0.2 vs 0.74, blue 
points), while for Inconsistent stimuli, the larger decimal has fewer digits (e.g. 0.8 vs. 0.26). b) Example stimuli highlighted in panel 1a demonstrate that problems of 
the same rational distance can have different whole distance (and vice versa). Near and far comparison highlighted for illustration purposes only. c) Study 1 Mixed 
stimuli (larger saturated dots) among all comparisons (small pale dots). Consistent stimuli have larger whole distance than Inconsistent stimuli but are matched on 
rational distance. Zero condition stimuli are not shown because for them, whole and rational distance are equivalent. d) Study 2 Overlap stimuli (larger saturated 
black dots) and Unique stimuli (larger saturated red and blue dots) among all comparisons (small pale dots). Crucially, in the Overlap stimuli, both whole and rational 
distances are matched between Consistent and Inconsistent stimuli. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Table 1 
Stimulus properties.   

Consistent Inconsistent t P 

Study 1 (Mixed)     
Rational Distance 0.243 0.237 0.124 .902 
Whole Distance 69.267 21.333 8.865 <.001 

Study 2 (Overlap)     
Rational Distance 0.169 0.169 0.000 1.000 
Whole Distance 45.000 45.000 0.000 1.000  
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2. Study 1 

2.1. Methods 

2.1.1. Participants 
Undergraduate students taking psychology courses at Rutgers Uni

versity - Newark received course credit for participation in this study. 
Data were collected in-person in Fall 2018 and Spring 2019. Informed 
consent was obtained prior to data collection and the study was 
approved by the Rutgers University Institutional Review Board. We 
implemented a two-step cleaning protocol to ensure 1) participants had 
sufficient data for analysis (Abreu-Mendoza, Coulanges, Ali, Powell, & 
Rosenberg-Lee, 2020; Schiller et al., 2023) and 2) they were engaged in 
the task and not using a strategy that resulted in high accuracy in one 
condition and low accuracy in the other condition, such as, always 
selecting the side with more digits in the Mixed conditions. Among the 
73 individuals who participated in the study, we excluded those who 
had fewer than 70% usable trials after trial-level data cleaning, in each 
condition (n = 3; see below). Also, we excluded participants who did not 
perform above 50% in each condition (n = 12). Thus, the final sample 
consisted of 58 participants (see Table 2 for demographics). 

Given that no prior studies have examined whole number distance 
interference effects, we could not conduct an a priori power analysis to 
determine a sample size to detect this effect. Instead, we opted to ensure 
that we had sufficient power to detect other known effects in decimal 
comparison, namely consistency effects and rational distance effects. For 
consistency, we employed effect sizes from Coulanges et al. (2021), and 
entered them into G*Power with a target power of 80%, an alpha level of 
0.05, and 0.0 correlation between measurements. For accuracy, Cohen's 
d = 0.549 leads to a sample size of 29; for reaction time, Cohen's d =
− 0.641 leads to a sample size of 22 participants. 

For rational distance, we employed values from Mock et al. (2018) 
which used double-digit decimal comparison (e.g. 0.78 vs. 0.67). As that 
study employed linear mixed effects (LME) models, we used the recently 
developed multilevel power calculator of Murayama, Usami, and Sakaki 
(2022). This method leverages the equivalence of mixed effect modeling 
and summary statistics, and therefore only requires summary statistics 
(i.e., t-scores from the second/participant level) and number of 

participants from the prior research to determine the target sample sizes. 
We again sought power of 80% and specified an alpha level of 0.05, with 
the sample size of n = 24 from Mock et al. (2018). For reaction times, we 
used the reported summary statistic of t = 3.85, which led to the sample 
size of 17 participants. The Murayama tool is not set up for generalized 
linear models of the type used here for accuracy computations (i.e., lo
gistic regression), as these yield z-scores not t-scores. However, we 
reasoned that because z-scores and t-scores converge as sample sizes 
approach 30, using the z-scores would prove a rough effect size estimate. 
Specifically, the summary statistic of z = 1.96 from (Mock et al., 2018) 
leads to a suggested sample size of 50. Thus, in all cases, our sample size 
of 58 is sufficiently powered to detect these known effects. 

2.1.2. Procedure 
The decimal comparison task was collected as part of a larger study, 

where participants completed several tasks. First, they completed two 
paper- and-pencil assessments: the Math Fluency and Calculation sub
tests of the Woodcock-Johnson III (Woodcock, McGrew, & Mather, 
2001). Next, they completed a series of computerized tasks implemented 
in PsychoPy: the decimal comparison task, a Colour-Word Stroop task 
(Stroop, 1935), a fraction comparison task, a Backward Spatial Span 
task, and a number line estimation task. Finally, they completed a de
mographic questionnaire on the Qualtrics survey platform. The whole 
session took approximately 60 min. 

2.1.3. Math assessments 
Participants first completed the Math Fluency subtest of the 

Woodcock-Johnson III (Woodcock et al., 2001). This timed test requires 
participants to complete as many single-digit arithmetic (addition, 
subtraction, and multiplication) problems as possible in 3 min. Next, 
they completed the Calculation subtest, a measure of math achievement 
that starts with single digit arithmetic, continues through double digit 
and rational arithmetic, and culminates with integral calculus. We 
focused on the Calculation measure as it provides a better assessment of 
broad math achievement than Math Fluency. Following prior work in 
college students finding decreasing standardized math scores with age 
(Coulanges et al., 2021), we did not use standard scores in the analyses. 
Instead, we computed the sum of number of correct responses for each 
participant, which we z-normed for use in the linear mixed effect 
models. We report the mean and range of the standard scores in Table 2 
to provide interpretable information on the participants' math 
achievement. 

2.1.4. Decimal comparison task 
The visual display and task timing were modeled after the experi

ment in Coulanges et al. (2021). The task was implemented in PsychoPy 
2, version 1.90.1 (Peirce, 2008), on a 14-in. Lenovo ThinkPad laptop. It 
began with a practice block consisting of four trials of single-digit dec
imal comparisons. Each trial began with a 500 ms fixation screen, fol
lowed by presentation of the decimal pair for 3000 ms, followed by a 
blank screen for 500 ms. Participants were instructed to indicate which 
decimal was greater by pressing either the “Z” key if the larger quantity 
was on the left or the “M” key if it was on the right (corresponding to the 
spatial locations of the decimals on the screen). Participants' responses 
during the blank screen were allowed; thus, participants had 3500 ms to 
respond. All text was rendered in Arial font in white characters with a 
black background. The decimals stimuli were displayed with letter 
height of 0.15 (normalized units in PsychoPy), which resulted in 
numbers of height 1 cm on the laptop. 

All decimal stimuli began with “0.”, but differed in the number and 
type of digits following the decimal. 1) Mixed stimuli were comprised of 
one decimal with one digit after the decimal point and the other with 
two digits. 2) Zero stimuli were constructed by adding a “0” after the 
single-digit decimal in the Mixed condition. These conditions followed 
Coulanges et al. (2021), but we omitted the Uniform condition of that 
study, which consisted of pairs where both decimals had two digits after 

Table 2 
Sample demographics.   

Study 1 Study 2 

Mean Age (SD) 18.78 (0.44) 20.00 (1.44) 
Mean WJ Calculation (range) 112 (87–131) 107 (86–133) 
Mean WJ Fluency (range) 101 (77–132) 98.5 (67–124) 
Gender Identity   

Female 40 46 
Male 17 27 
Not Reported 1 5 

Race   
Asian or Asian American 18 16 
Black or African American 8 13 
Latino or Hispanic or Chicano or Puerto Rican 14 24 
Middle Eastern or North African 5 12 
White or European American 6 5 
Multiracial 5 8 
Not Reported 2 – 

Major   
Biology 16 12 
Business – 3 
Computer Science 6 4 
Criminal Justice 6 5 
Mathematics 2 1 
Neuroscience 1 11 
Nursing/Medicine 0 1 
Other 8 4 
Psychology 6 21 
Undeclared 6 16 
Declined to answer 7 –  
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the decimal point. Consistency was also manipulated (Consistent and 
Inconsistent). For Mixed stimuli, both the number of digits (i.e., string 
length) and the numerical quantity (i.e., decimal magnitudes) led either 
to the same judgment (Consistent: 0.2 versus 0.87) or not (Inconsistent: 
0.27 versus 0.8). For the Zero stimuli, adding the zero removes the 
inconsistency between number of digits and magnitude; however, we 
still use the terminology of Consistent (0.20 versus 0.87) and Inconsis
tent (0.27 versus 0.80) to align with the corresponding Mixed condi
tions. Including Zero stimuli enabled us to confirm that poorer 
performance in the Mixed Inconsistent condition was due to interference 
from the number of digits, not the specific numerical values employed. 

There were 15 unique pairs in each of the four conditions, and each 
pair was presented twice – once with the larger stimulus on the right and 
once with it on the left, yielding a total of 120 trials. Presentation of 
decimal pairs were counterbalanced across two blocks, with a self-paced 
break between them, which also reminded participants of the task in
structions. Fig. 1c presents the specific stimuli plotted in rational vs. 
whole distance space (see Appendix A for a full list of all stimuli). 
Notably, the Consistent and Inconsistent stimuli were well matched on 
rational distance (t(30) = 0.12, p = .902), but not matched on whole 
distance (t(30) = 8.87, p < .001); see Table 1. 

2.1.5. Trial-level data cleaning and statistical analyses 
We excluded anticipatory responses (reaction times shorter than 250 

ms) and outlier responses (reaction times >3 SD from an individual's 
mean). After applying these criteria, we analyzed 6822 out of the total of 
6960 trials (98.0%). All statistical analyses were performed using R 
4.2.0 (R Core Team, 2019). ANOVAs for accuracy and reaction time 
were conducted with the ez package (Lawrence, 2016), and with the stats 
package for pairwise comparisons. Generalized linear mixed effects and 
linear mixed-effects models were conducted using the glmer and lmer 
functions, respectively, from the lme4 package (Bates, Machler, Bolker, 
& Walker, 2015). For generalized linear mixed effect models of accu
racy, we report BIC values as computed by the glmer function and use the 
values to test for overfitting of the data (larger values indicate worse fit). 
Current approaches to linear mixed effect modeling suggest that BIC is 
not an appropriate measure and it is not included in the lmer output. 
Therefore we did not consider overfitting when interpreting the lmer 
output for reaction times. Post-hoc comparisons and simple slope ana
lyses were performed using the emmeans and emtrends functions from the 
emmeans package (Lenth, Love, & Hervé, 2018). Interactions that 
involved continuous variables (e.g., fraction distance) were plotted 
using either simple linear regressions or using the ggpredict function 
from the ggeffects package (Lüdecke, Aust, Crawley, & Ben-Shachar, 
2018). We report Cohen's d for t-test effect sizes. For ANOVA's, we 
report partial η2, to facilitate comparison with prior work (Coulanges 
et al., 2021; Varma & Karl, 2013). We also report generalized η2, which 
affords comparisons of between and within participant designs (Bake
man, 2005). 

2.2. Results 

2.2.1. Decimal task performance 
The full design included Mixed (e.g., 0.27 versus 0.8) and Zero (e.g., 

0.27 versus 0.80) conditions. As expected, accuracy was lowest on the 
Mixed Inconsistent condition (91.01%), relative to the Mixed Consistent 
condition (97.03%) and both Zero conditions (Consistent = 96.23%, 
Inconsistent = 97.66%, Fig. 2a). A 2-way repeated measures ANOVA 
confirmed a significant interaction between Format (Mixed, Zero) and 
Type (Consistent, Inconsistent) (F(1, 57) = 31.89, p < .001, partial η2 =

0.359, η2
g = 0.113). There was also a main effect of Format (F(1, 57) =

29.00, p < .001, partial η 2 = 0.337, η2
g = 0.073) and of consistency Type 

(F(1, 57) = 17.05, p < .001, partial η 2 = 0.230, η2
g = 0.046). Post-hoc t- 

tests confirmed that Mixed Inconsistent trials were significantly less 
accurate than each of the three other conditions (all ps < 0.001). The 
same pattern held for the analysis of reaction times on correct trials (RT, 

Fig. 2b). A 2-way repeated measures ANOVA confirmed a significant 
interaction (F(1, 57) = 56.08, p < .001, partial η 2 = 0.495, η2

g = 0.020) 
between Format and Type. There was also a main effect of Format (F(1, 
57) = 5.59, p = .002, partial η 2 = 0.089, η2

g = .002) and a main effect of 
Type (F(1, 57) = 29.39, p < .001, partial η 2 = 0.340, η2

g = .014). Post-hoc 
t-tests confirmed that Mixed Inconsistent trials were significantly slower 
than each of the three other conditions (all ps < 0.001). 

2.2.2. Whole and rational distance effects 
To examine the effects of rational and whole distance on perfor

mance, we used a series of generalized and linear mixed effect models 
(Table 3, Table 4, top panels). For accuracy, confirming the ANOVA 
results, there was a significant Consistency effect with lower accuracy 
for Inconsistent than Consistent comparisons (z = − 4.90, p < .001). 
Fig. 3a depicts the relationship between rational distance and accuracy 
for both Consistent and Inconsistent trials. Generalized linear mixed 
effects models revealed a positive main effect of rational distance on 
accuracy (z = 2.10, p = .035), with no interaction between consistency 
type and rational distance (z = − 0.62, p = .532). This pattern, higher 
accuracy for larger distances for both Consistent and Inconsistent pairs, 
indicates a typical distance effect for rational distances. By contrast, 
when accuracies were analyzed by whole number distance (Fig. 3b), 
there was no main effect of whole number distance (z = 0.37, p = .708). 
Instead, there was an interaction between consistency type and whole 
number distance (z = − 3.17, p = .002) such that larger whole number 
distance led to worse performance on Inconsistent problems (i.e., a 
reverse effect), but not for Consistent problems. Including terms from 
both distance models, the resulting Combined model maintained the 
main effect of rational distance (z = 2.16, p = .031), and the interaction 
between whole number distance and consistency (z = − 2.08, p = .038). 
These results align with the hypothesis that difficulties with Inconsistent 
decimal comparisons stem not just from the number of digits (i.e., string 
length congruity), but also from the whole number magnitudes that 
these decimals elicit (i.e., semantic interference). 

To examine any potential interactions between rational and whole 
distance, we also computed the Full interaction model for accuracy 
(Supplementary Table S1). As in the Combined model, we found a sig
nificant main effect of consistency (z = − 4.49, p < .001) and an inter
action between consistency and whole number distance (z = 2.42, p =
.015), although the main effect of rational distance was no longer pre
sent (z = 0.44, p = .660). There were no other significant effects or 
interaction (all ps > .400), including no interactions between whole and 
rational distance directly or with consistency. Further, the BIC of the Full 
model (1507) was higher than the Combined model (1494) and the 
other simple models (1490–1493), suggesting that adding the interac
tion terms did not improve the fit of the data. 

In terms of reaction time, the first model again confirmed a main 
effect of Consistency (z = 6.99, p < .001), with slower performance for 
Inconsistent than Consistent comparisons (Table 4). Turning to distance 
modulation, there was a main effect of rational distance (z = − 3.04, p =
.002) with no interaction (z = − 0.02, p = .985; Fig. 3c), demonstrating 
faster performance for larger distance regardless of consistency. There 
was also a main effect of whole number distance (z = − 7.10 p < .001), 
and a significant interaction (z = 4.40, p < .001; Fig. 3d), indicating that 
whole number distance strongly modulated RT in the Consistent com
parisons but not in the Inconsistent ones (Fig. 3d). However, when both 
distance metrics and their interactions with consistency were entered 
into the Combined model, the main effect of rational distance became an 
interaction (z = − 2.31, p = .031), likely due to the positive correlation 
between whole and rational distance for Consistent problems. Crucially, 
the interaction of consistency with whole distance was significant in this 
model (z = − 2.80, p = .005). 

Finally, we examined a Full model which included interaction terms 
between the distance metrics (Supplementary Table S2). Here, we found 
a 3-way interaction of consistency, rational distance and whole distance. 
As illustrated in Supplementary Fig. S1, for Consistent comparisons, 
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there was the expected whole number distance effect of larger distance 
eliciting faster performance. For Inconsistent comparisons, there was an 
interaction with smaller rational distances showing slower responses at 
larger whole distance, and the opposite pattern for larger rational dis
tance. This pattern suggests that when rational distance is close, whole 
number information dominates performance. However, these results 
should be interpreted with caution as whole and rational distance are 
correlated in these stimuli (Appendix A). 

2.2.3. Distance effects and mathematics achievement 
To examine whether the rational and whole number distance effects 

were related to math achievement, we again employed a series of 
generalized and linear mixed effect models. Crucially, here we focused 
on the Inconsistent comparisons as these stimuli display the predicted 
effect of semantic interference from whole referents (Varma & Karl, 
2013). We first considered whether individual differences in math 
achievement predicted overall performance on Inconsistent 

comparisons, then for each of the distance metrics we examined whether 
math achievement interacted with distance modulation. Specifically, 
this analysis addresses whether students with higher (or lower) math 
achievement show stronger (or weaker) distance effects. Finally, we 
computed Combined and Full models, to determine the strength of any 
math achievement by distance interaction effects in the context of the 
other terms. For visualization purposes, we displayed performance 1.5 
standard deviations below the mean (lower math achievement) and 1.5 
standard deviations above the mean (higher math achievement). We also 
used emtrends to compute slopes at each of these levels. 

Consistent with prior studies relating math achievement and rational 
number comparison (Coulanges et al., 2021; Gómez et al., 2015), we 
found that Calculation scores significantly predict accuracy on Incon
sistent comparisons. In the Combined model this effect was no longer 
significant (z = 0.95, p = .344). Instead, we found a main effect of 
rational distance (z = − 3.09, p = .002) and a marginal interaction of 
rational distance with math ability (z = 1.72, p = .085), driven by 

Fig. 2. Consistency effects in all conditions. 
Individual responses and sample averages for Consistent and Inconsistent comparisons. a) Participants were less accurate on Mixed Inconsistent than Mixed 
Consistent pairs, whereas there were no differences on the Zero stimuli. b) Reaction times (RT) were slower on the Mixed Inconsistent than Mixed Consistent pairs. c) 
Participants were less accurate on the Inconsistent than the Consistent stimuli for both the Overlap and Unique stimuli. d) Performance on the Unique stimuli showed 
the expected pattern of slower reaction times for Inconsistent versus Consistent pairs, but the opposite pattern for the Overlap stimuli. Error bars represent ±1 
Standard Error. 
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greater sensitivity to rational distance (i.e. a steeper slope) in higher 
achieving students (estimate = 0.513, SE = 0.182, p = .005), than those 
with lower (estimate = 0.041, SE = 0.143, p = .775) math scores. 
(Table 5, Fig. 4). There was also a negative main effect of whole distance 
(z = − 3.70, p < .001), confirming our key finding of worse performance 
for larger whole number distances. However, there was no interaction 
between math achievement and whole number distance (z = − 0.78, p =
.434). In the Full model, only the main effects of rational (z = 2.74, p =
.006) and whole distance (z = − 4.01, p < .001) were significant. There 
were no significant interactions with math achievement (all ps > 0.14), 
although there was marginal interaction with between rational and 
whole distance (z = 1.93, p < .053), driven by ceiling level performance 
when rational distance is larger, but lower overall accuracy and mod
ulation by whole distance when rational distance is smaller (see Sup
plementary Fig. S2). Notably, the BIC value for the Full model (1014) 
was worse than the other models (BIC from 999 to 1003) suggesting 
including these interaction terms was overfitting the data. 

For reaction time, in the Base model, we found a main effect of 
Calculation with faster performance among those with better math 
scores (z = 2.10, p = .041). Again, in the Combined model, this effect of 
Calculation was no longer significant (z = − 0.73, p = .465). However, 
we found a main effect of rational distance (z = − 4.01, p < .001), that is, 
faster responses for larger rational distances, but no interaction with 
math achievement (z = 0.88, p = .381). While there was no main effect 
of whole distance (z = − 0.90, p = .369), there was an interaction with 
math achievement (z = 2.08, p = .037). Specifically, participants with 
lower math achievement were slower overall, but had a tendency to be 
faster for larger whole distances (estimate = − 0.072, SE = 0.036, p =
.032), while participants with higher math achievement (estimate =
0.044, SE = 0.032, p = .182) did not show distance modulation. These 
effects were maintained in the Full model, and there was no 3-way 
interaction of math achievement, rational, and whole distance (z =
− 0.26, p = .927). There was a significant 2-way interaction between 
rational and whole distance (z = − 2.98, p = .003), reflecting the 3-way 
interaction reported in the analyses with consistency (Supplementary 

Table S2 and Fig. S1). All told, these results suggest modest contribu
tions of math achievement on sensitivity to distance metrics, with a 
possible pattern of higher math-performing participants showing more 
rational modulation in accuracy and lower math-performing partici
pants being unexpectedly faster for larger whole distances. However, the 
correlation between whole and rational distance in the stimuli suggests 
caution in interpreting these results (Appendix A). 

2.3. Discussion 

In Study 1, we extend prior work showing typical distance effects for 
rational distance for decimal comparisons of equal string length (Mock 
et al., 2018) to comparisons of differing lengths. Crucially, we demon
strated for the first time that decimal comparison performance is 
interfered with by the referents of whole numbers, i.e., the whole 
number interpretations that result from ignoring the decimal point. 
Specifically, participants display a reverse distance effect, with worse 
accuracy on Inconsistent trials when the whole number distances are 
large and better performance when they are small. While math 
achievement predicted performance on the challenging Inconsistent 
comparisons, in terms of accuracy, math achievement did not relate to 
sensitivity to rational or whole distance. For reaction time, there was 
some indication that lower math achievement was leading to speeding 
up on problems with more whole number interference. 

The accuracy results of both consistency and whole number magni
tude interference effects align with the semantic interference account of 
Varma and Karl (2013). However, they should be interpreted with 
caution given some features of the experimental design. Specifically, the 
stimuli in Study 1 control for the rational distance between Consistent 
and Inconsistent comparisons. However, they differ on whole number 
distance (Fig. 1c, Table 1). Moreover, whole and rational distance are 
positively correlated among the Consistent stimuli (r(15) = 0.40) and 
negatively correlated among the Inconsistent stimuli (r(15) = − 0.35), 
suggesting that additional caution is needed when interpreting models 
that include both terms. Specifically, the main effect of rational distance 

Table 3 
Accuracy regression results.  

Accuracy Study 1 Base Rational Distance Whole Number Distance Combined 

Fixed Factors Estimate (SE) z-value Estimate (SE) z-value Estimate (SE) z-value Estimate (SE) z-value 

Intercept 3.78 (0.23) 16.43 3.83 (0.23) 16.26 3.70 (0.31) 11.76 3.94 (0.34) 11.62 
Consistency ¡1.29 (0.26) ¡4.90 ¡1.28 (0.27) ¡4.75 ¡2.04 (0.39) ¡5.27 ¡2.15 (0.42) ¡5.16 
Rational   0.43 (0.20) 2.10   0.46 (0.22) 2.16 
Consistency:Rational   − 0.14 (0.22) − 0.62   − 0.22 (0.23) − 0.95 
Whole     0.09 (0.25) 0.37 − 0.13 (0.27) − 0.48 
Consistency:Whole     ¡1.11 (0.35) ¡3.17 ¡0.78 (0.38) ¡2.08 

Marginal / conditional R2 .098/.223  .123/.247  .105/.231  .132/.255  
BIC 1493  1490  1490  1494  
Participants 58        
Observations 3405         

Accuracy Study 2 Base Rational Distance Whole Number Distance Combined 

Fixed Factors Estimate (SE) z-value Estimate (SE) z-value Estimate (SE) z-value Estimate (SE) z-value 

Intercept 3.52 (0.19) 18.48 3.52 (0.19) 18.48 3.52 (0.19) 18.47 3.53 (0.19) 18.47 
Consistency ¡1.04 (0.21) ¡5.04 ¡1.00 (0.21) ¡4.82 ¡1.01 (0.21) ¡4.86 ¡0.98 (0.21) ¡4.68 
Rational   0.02 (0.10) 0.17   0.01 (0.10) 0.12 
Consistency:Rational   0.29 (0.13) 2.30   0.28 (0.13) 2.22 
Whole     0.15 (0.10) 1.45 0.15 (0.10) 1.44 
Consistency:Whole     ¡0.45 (0.12) ¡3.60 ¡0.42 (0.12) ¡3.42 

Marginal / conditional R2 .061/.256  .067/.262  .070/.264  .074/.269  
BIC 2413  2412  2410  2411  
Participants 78        
Observations 4897        

Bolded cells indicate significant effects (p < .05). 
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on RT disappears when both whole and rational distance (and their in
teractions with consistency) are included in the model. Further, the RT 
results suggested that whole number distance does not influence 
Inconsistent performance. To address these shortcomings and potential 
confounds, we developed a stimulus set that fully orthogonalizes both 
rational and whole number distance and investigated whether these 
distance effects are acting independently during decimal comparison. 

3. Study 2 

3.1. Methods 

3.1.1. Participants 
The participants were Rutgers University - Newark undergraduate 

students taking psychology courses who received course credit. Data 
were collected in person in Fall 2019 and Spring 2020 (prior to the 
COVID-19 shutdown). Informed consent was obtained prior to data 
collection according to a study protocol approved by the Rutgers Uni
versity Institutional Review Board. Following Study 1, among the 89 
individuals who participated in the study, we excluded participants who 
had <70% usable trials in each condition (n = 3) and did not have ac
curacy above 50% in each condition (n = 8). The final sample consisted 
of 78 participants (see Table 2 for demographics). 

Study 1 demonstrated that whole distance influences decimal com
parison, and we used that effect size to estimate the sample size for the 
replication in Study 2. We employed the multilevel power calculator of 
Murayama et al. (2022), with 80% power, an alpha level of 0.05, and the 
sample size from Study 1 of n = 58. For accuracy, we used the interac
tion term from the consistency and whole distance model (z = − 3.17, 
Table 3); this led to a sample size of 49, while for reaction time this same 
interaction (t = 4.40, Table 4) led to a sample size of 28. The final sample 
of 78 participants exceeded these values. Another approach would be to 
use the interaction terms from the Combined models as the summary 
statistics. For both accuracy and reaction time, the effects are weaker (z 
= − 2.08; t = 2.80), driven by the co-linearity introduced by the corre
lation between whole and rational distance in the stimuli set (Appendix 
A). Using these values results in target sample sizes of 107 for accuracy 

and 61 for reaction time. Based on these more conservative effect sizes, 
the sample of 78 participants may be under powered to detect accuracy 
effects. Due to COVID-19 restrictions, we were unable to collect more 
data on this protocol. 

3.1.2. Decimal comparison task 
The visual display of the stimuli, response mode, and task timing 

were unchanged from Study 1. The only difference was the experimental 
stimuli. We focused on the Mixed condition, where stimuli differ in the 
number of digits after the decimal place (e.g., 0.27 versus 0.8). Fig. 1b 
displays the full space of stimuli. For the Overlap set, we identify points 
where Consistent and Inconsistent stimuli had the exact same rational 
and whole number distance (Fig. 1d, Table 1). Notably, these stimuli 
occurred at regular 0.09 intervals in the rational distance dimension but 
only for distances <0.45. To fully sample the stimuli space and provide 
less challenging stimuli to combat participant fatigue, we also included 
problems at the same interval (Fig. 1d). Thus, the Unique set comprises 
stimuli that are matched between Consistent and Inconsistent condition 
in terms of rational distance, but not whole number distance. Given 
these confounds, the Unique trials are not considered in the mixed ef
fects analyses presented below. 

For the Consistent stimuli, there were 16 distinct pairs in the Overlap 
condition and 12 distinct pairs in the Unique condition; the same was 
true for the Inconsistent stimuli (see Appendix B). Each pair was pre
sented twice – once with the larger stimulus on the right and once with it 
on the left – for a total of 112 trials. Presentation order of decimal pairs 
was counterbalanced across two blocks, with a self-paced break between 
them, which also reminded participants of the task instructions. 

3.1.3. Procedure 
The decimal comparison task was collected as part of a larger study, 

where participants completed two sets of paper- and-pencil assessments 
and computerized tasks. In the first set, they completed the Addition and 
Subtraction subtests of the Wechsler Individual Achievement Test – 
Third Edition (Wechsler, 2009), the Spinners task (Jeong, Levine, & 
Huttenlocher, 2007) implemented for computer (Abreu-Mendoza et al., 
2020), the Hearts and Flower task (Davidson, Amso, Anderson, & 

Table 4 
RT regression results.  

RT Study 1 Base Rational Distance Whole Number Distance Combined 

Fixed Factors Estimate (SE) t-value Estimate (SE) t-value Estimate (SE) t-value Estimate (SE) t-value 

Intercept 0.95 (0.02) 44.02 0.95 (0.02) 44.06 1.01 (0.02) 43.40 1.00 (0.02) 42.83 
Consistency 0.09 (0.01) 6.99 0.09 (0.01) 6.96 0.04 (0.02) 1.85 0.02 (0.03) 0.79 
Rational   ¡0.02 (0.00) ¡3.04   − 0.001 (0.008) − 0.18 
Consistency:Rational   − 0.00 (0.07) − 0.02   ¡0.02 (0.01) ¡2.31 
Whole     ¡0.07 (0.01) ¡7.10 ¡0.07 (0.01) ¡6.43 
Consistency:Whole     0.08 (0.02) 4.40 0.06 (0.02) 2.80 

Marginal / conditional R2 .024/.387  .029/.392  .034/.396  .037/.399  
Participants 58        
Observations 3203         

RT Study 2 Base Rational Distance Whole Number Distance Combined 

Fixed Factors Estimate (SE) t-value Estimate (SE) t-value Estimate (SE) t-value Estimate (SE) t-value 

Intercept 1.13 (0.03) 40.88 1.13 (0.03) 40.85 1.13 (0.03) 40.88 1.13 (0.03) 40.85 
Consistency ¡0.04 (0.01) ¡3.81 ¡0.04 (0.01) ¡3.73 ¡0.04 (0.01) ¡3.92 ¡0.04 (0.01) ¡3.84 
Rational   ¡0.03 (0.01) ¡4.51   ¡0.03 (0.01) ¡4.60 
Consistency:Rational   0.002 (0.01) 0.23   − 0.002 (0.01) 0.33 
Whole     ¡0.05 (0.01) ¡7.20 ¡0.05 (0.01) ¡7.26 
Consistency:Whole     0.02 (0.01) 2.42 0.02 (0.01) 2.52 

Marginal / conditional R2 .003/.367  .008/.373  .012/.377  .017/.383  
Participants 78        
Observations 4543        

Bolded cells indicate significant effects (p < .05). 
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Diamond, 2006), and a symbolic version of the Spinners task. In the 
second set, they completed a fraction comparison task, the Math Fluency 
and Calculation subtests of the Woodcock-Johnson III (Woodcock et al., 
2001), the decimal comparison task, a Colour-Word Stroop task (Stroop, 
1935), a backward spatial span task, and a number line estimation task 
reported elsewhere (Schiller et al., 2023). Finally, they completed a 
demographic questionnaire on the Qualtrics survey platform. The full 
session took approximately 90 min. 

3.1.4. Trial-Level -data cleaning and statistical analyses 
Data cleaning and statistical analyses followed the same procedures 

as Study 1. After applying these criteria, we analyzed 8575 out of a total 
of 8736 trials (98.16%). 

3.2. Results 

3.2.1. Decimal task performance 
In Study 2, the full design comprised Overlap (matched on rational 

and whole distance) and Unique (matched only on rational distance) 
conditions. As expected, accuracy was lower for Inconsistent relative to 
Consistent trials in both the Overlap and Unique conditions (Fig. 2c). A 
2-way repeated measures ANOVA confirmed a significant main effect of 
Type (Consistent vs. Inconsistent; F(1, 77) = 29.18, p < .001, partial η 2 

= 0.275, η2
g = 0.089). There was also a main effect of Set (F(1, 77) =

25.66, p < .001, partial η 2 = 0.250, η2
g = 0.037) reflecting lower 

accuracy in the Overlap condition than the Unique condition. Finally, 
there was an interaction between the two factors (F(1, 77) = 6.64 p =
.001, partial η2 = 0.079, η2

g = 0.008), suggesting that the difference 
between Consistent and Inconsistent trials was larger in the Overlap 
condition than the Unique condition. Post-hoc t-tests confirmed that the 
simple effect on Type was larger in the Overlap condition (t(77) = 5.20, 
p < .001, Cohen's d = 0.590) than the Unique condition (t(77) = 4.00, p 
< .001, Cohen's d = 0.448). 

For correct trial reaction times, surprisingly, there was no overall 
difference in latency between Inconsistent and Consistent trials, instead 
the direction of the effects differed between the Overlap and Unique 
conditions (Fig. 2d). A 2-way repeated measures ANOVA confirmed no 
significant main effect of Type (Consistent vs. Inconsistent; F(1, 77) =
0.17, p = .683, partial η2 = 0.002, η2

g < 0.001). There was a main effect of 
Set (F(1, 77) = 140.56, p < .001, partial η2 = 0.646, η2

g = 0.0245), driven 
by slower responses in the Overlap condition than the Unique condition. 
Finally, the interaction was significant (F(1, 77) = 38.39 p < .001, partial 
η2 = 0.333, η2

g = 0.009). Post-hoc t-tests reveal significant effects of 
Type, but in opposite directions for each condition: for Overlap, 
Consistent was slower than Inconsistent (t(77) = − 3.70, p < .001, 
Cohen's d = 0.424), and for Unique, Consistent was faster than Incon
sistent (t(77) = 4.40, p < .001, Cohen's d = 0.501, Fig. 2d). The reversal 
of RT differences between Inconsistent and Consistent stimuli among the 
Overlap set is critical: it indicates that when whole and rational dis
tances are equated between problem types, there is not the typical 

Fig. 3. Distance effects. 
Rational and whole distance effects for Studies 1 and 2. a) In Study 1, participants' accuracy was modulated by rational distance for both Consistent (blue) and 
Inconsistent (red) comparisons, with better performance for large distances. b) Inconsistent comparisons showed a reverse effect of whole distance, that is worse 
performance for large distances. There was no influence on Consistent accuracy. c) For reaction times (RT), both Consistent and Inconsistent problems displayed the 
expected distance effect of faster performance for large distances. d) Whole distance only impacted Consistent reaction times, with faster performance for large 
distances. e) In Study 2, rational distance only impacted Inconsistent accuracy, with higher accuracy for large distances. f) Again, whole distance negatively 
modulated Inconsistent accuracy with worse performance for large distances. g) For RT, both Consistent and Inconsistent problems displayed the expected distance 
effect of faster performance for large distances. h) Finally, whole distance impacted both Consistent and Inconsistent comparisons, with faster performance for larger 
distance, although the effect was stronger for Consistent than Inconsistent comparisons. 
Note: Plotted fit lines represent simple regression lines, not the fits from the corresponding models. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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consistency effect in RT, with worse performance on Inconsistent 
problems, a challenge to the string length congruity account. 

3.2.2. Whole and rational distance effects 
The Overlap stimuli in Study 2 were designed to overcome the 

confound between whole number distance and consistency among the 
Study 1 stimuli. The goal was to replicate the finding of whole number 

referents interfering with processing of decimals in the Inconsistent 
comparisons. We again used a series of generalized and linear mixed 
effect models to examine the effects of rational and whole number dis
tance on performance (Table 3, Table 4, bottom panels). Fig. 3e depicts 
the relationship between rational distance and accuracy for both 
Consistent and Inconsistent trials. Here, we found a significant interac
tion between rational distance and consistency type (z = 2.30, p = .022), 

Table 5 
Accuracy and math achievement regression results.  

Accuracy Study 1 Base Rational Distance Whole Number Distance Combined 

Fixed Factors Estimate (SE) z-value Estimate (SE) z-value Estimate (SE) z-value Estimate (SE) z-value 

Intercept 2.49 (0.13) 18.90 2.56 (0.14) 18.55 1.62 (0.23) 7.05 1.75 (0.25) 7.05 
Calculation 0.35 (0.13) 2.70 0.40 (0.13) 2.97 0.18 (0.24) 0.77 0.24 (0.26) 0.95 
Rational   0.32 (0.08) 3.84   0.28 (0.09) 3.09 
Calculation: Rational   0.14 (0.09) 1.65   0.16 (0.09) 1.72 
Whole     ¡1.07 (0.25) ¡4.32 ¡1.01 (0.27) ¡3.70 
Calculation:Whole     − 0.22 (0.26) − 0.86 − 0.22 (0.28) − 0.78 

Marginal / conditional R2 .029/.127  .077/.174  .075/.171  .129/.223  
BIC 1003  1002  999  1003  
Participants 57        
Observations 1672         

Accuracy Study 2 Base Rational Distance Whole Number Distance Combined 

Fixed Factors Estimate (SE) z-value Estimate (SE) z-value Estimate (SE) z-value Estimate (SE) z-value 

Intercept 2.43 (0.13) 19.35 2.47 (0.13) 19.30 2.48 (0.13) 19.27 2.51 (0.13) 19.22 
Calculation 0.34 (0.13) 2.57 0.33 (0.14) 2.43 0.38 (0.14) 2.76 0.36 (0.14) 2.60 
Rational   0.31 (0.08) 4.06   0.29 (0.08) 3.79 
Calculation: Rational   − 0.08 (0.09) − 0.89   − 0.09 (0.09) − 1.07 
Whole     ¡0.31 (0.07) ¡4.43 ¡0.29 (0.07) ¡4.22 
Calculation:Whole     − 0.13 (0.08) − 1.61 − 0.12 (0.08) − 1.59 

Marginal / conditional R2 .024/.187  .044/.207  .057/.219  .069/.232  
BIC 1550  1547  1545  1544  
Participants 78        
Observations 2457        

Bolded cells indicate significant effects (p < .05). 

Table 6 
RT and math achievement regression results.  

RT Study 1 Base Rational Distance Whole Number Distance Combined 

Fixed Factors Estimate (SE) t-value Estimate (SE) t-value Estimate (SE) t-value Estimate (SE) t-value 

Intercept 1.04 (0.03) 38.10 1.04 (0.03) 38.12 1.05 (0.03) 38.38 1.03 (0.03) 32.14 
Calculation ¡0.06 (0.03) ¡2.10 ¡0.06 (0.03) ¡2.10 − 0.03 (0.03) − 0.93 − 0.02 (0.03) − 0.73 
Rational   ¡0.02 (0.01) ¡3.93   ¡0.02 (0.01) ¡4.01 
Calculation: Rational   0.001 (0.01) 0.13   0.005 (0.01) 0.88 
Whole     0.01 (0.02) 0.58 − 0.02 (0.02) − 0.90 
Calculation:Whole     0.03 (0.02) 1.85 0.04 (0.02) 2.08 

Marginal / conditional R2 .031/.411  .037/.416  .033/.412  .039/.418  
Participants 57        
Observations 1523         

RT Study 2 Base Rational Distance Whole Number Distance Combined 

Fixed Factors Estimate (SE) t-value Estimate (SE) t-value Estimate (SE) t-value Estimate (SE) t-value 

Intercept 1.09 (0.03) 41.34 1.09 (0.03) 41.36 1.09 (0.03) 41.23 1.09 (0.03) 41.26 
Calculation − 0.04 (0.03) − 1.48 − 0.04 (0.03) − 1.50 − 0.04 (0.03) − 1.46 − 0.04 (0.03) − 1.48 
Rational   ¡0.03 (0.01) ¡4.60   ¡0.03 (0.01) ¡4.50 
Calculation: Rational   0.01 (0.01) 2.13   0.01 (0.01) 2.06 
Whole     ¡0.03 (0.01) ¡4.11 ¡0.03 (0.01) ¡4.00 
Calculation:Whole     0.01 (0.01) 2.14 0.01 (0.01) 2.08 

Marginal / conditional R2 .011/.373  .017/.379  .016/.279  .022/.385  
Participants 78        
Observations 2210        

Bolded cells indicate significant effects (p < .05). 
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such that only Inconsistent trials were modulated by rational distance, 
while performance was flat for Consistent problems (indicating a ceiling 
effect). By contrast, in Study 1 both Consistent and Inconsistent prob
lems showed an effect of rational distance. With respect to whole 
number distance (Fig. 3f), there was again no main effect of whole 
number distance (z = 1.45, p = .145), and again an interaction between 
consistency type and whole distance (z = − 3.60, p < .001). As in Study 
1, larger whole distance led to worse performance on Inconsistent 
problems, but not Consistent problems. Including terms from both 
models into the Combined model maintained all of these effects, most 
notably the interaction of consistency with whole distance (z = − 3.42, p 
< .001). When we consider the Full model, we found no interactions 
between rational and whole distance alone (z = − 0.22, p = .828) or with 
consistency (z = 1.13, p = .260). Notably, the interaction of consistency 
and whole distance was no longer significant in this model (z = − 1.61, p 
= .107). However, the BIC values for this Full model (2425) relative to 
other models (2410–2413) again suggested including the interactions 
terms in the model resulted in overfitting. Together these results confirm 
that, when we control for the confounds between consistency and whole 
distance that were present in Study 1, we find evidence for the inter
fering effects of whole number distance on Inconsistent decimal com
parisons. That is, the farther the distance between the incorrect whole 
number interpretations of the decimals, (i.e. the more the semantic 
interference), the lower the accuracy. 

In terms of reaction time, as in the ANOVA results, there was an 
unexpected effect of worse performance on Consistent than Inconsistent 
pairs (z = − 3.81, p < .001), which was maintained in all the subsequent 

models (Table 4). Turning to the distance metrics, there was a main 
effect of rational distance (z = − 4.51, p < .001) and no interaction (z =
0.23, p = .820; Fig. 3g). There was also a negative main effect of whole 
distance (z = − 7.20, p < .001) and a significant interaction (z = 2.42, p 
= .016; Fig. 3h), driven by faster performance for larger distances for 
Consistent and to a lesser extent for Inconsistent comparisons. These 
effects were all maintained in the Combined and Full models, with no 
significant interactions between rational and whole distance alone (z =
− 0.60, p = .546) or with consistency (z = 0.51, p = .612). To further 
examine the effects of whole distance, we conducted a follow-up anal
ysis which showed that whole distance more strongly modulates per
formance on Consistent comparisons (z = − 7.63, p < .001) than 
Inconsistent comparisons (z = − 3.32, p = .001), a significant difference 
(z = − 2.84, p = .005). For Inconsistent pairs, negative modulation of RT 
for whole distance is unexpected, as larger whole distance should make 
these problems more difficult because ignoring the decimal point pro
vides even greater evidence for the incorrect response. In sum, for re
action times, when whole and rational distance are equated, we do not 
see the expected detriment in performance for the Inconsistent condi
tion, nor interfering effects for whole distance. 

3.2.3. Distance effects and mathematics achievement 
As in Study 1 and prior research (Coulanges et al., 2021; Gómez 

et al., 2015), Calculation scores significantly predicted accuracy on 
Inconsistent comparisons (z = 2.57, p = .010). For accuracy, in the 
Combined model, we found the expected positive effect of rational 
distance (z = 3.79, p < .001) and a negative effect of whole number 

Fig. 4. Interplay of math achievement and distance effects for Inconsistent comparisons. 
Rational and whole distance effects modulated by math achievement among Inconsistent trials for Studies 1 and 2. In Study 1, a), accuracy was marginally modulated 
by an interaction between rational distance and math achievement. This interaction is illustrated by stronger rational distance effects among higher achieving 
students (1.5 SD above the mean, red solid line) than lower achieving students (1.5 SD below the mean, black dashed line). b) In contrast, there was only a main effect 
of whole distance and no interactions with math achievement. c) For reaction times (RT), there was a main effect of rational distance but no interaction with math 
achievement. d) Notably, there was a significant interaction between whole distance and math achievement on reaction times. While higher achieving students did 
not show any whole distance modulation, lower achieving students showed an unexpected pattern of faster performance for larger whole distance. In Study 2, e and 
f), there were main effects of math achievement, rational and whole distance, but no interactions between math and distance metrics. g) For RT, rational distance and 
math achievement showed an interaction, with higher achieving students faster overall, but not sensitive to rational distance and lower achieving students showing 
the expected effect of faster response for larger distances. h) As in Study 1, there was a significant interaction between whole distance and math achievement. While 
higher achieving students did not show any whole distance modulation, lower achieving students again showed the unexpected pattern of faster performance for 
larger whole distance. 
Note: Lines represent the fitted lines from the corresponding generalized and linear mixed effect models (Table 5 and Table 6), and shaded areas represent 95% 
confidence intervals. †p < .10, *p < .05, **p < .01, ***p < .001. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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distance (z = 2.08, p = .037) but no interactions between these distance 
metrics and Calculation performance (rational: z = − 1.07, p = .284; 
whole: z = − 1.59 p = .112). In the Full model, the main effects of 
Calculation and rational distance were maintained, and there were no 
significant interactions with math achievement. We also found again a 
marginal interaction between rational and whole number distance (z =
1.93, p = .053), driven by strong distance modulation for whole number 
distance when rational distance is small, but higher performance and no 
whole number interference for larger rational distances. As in Study 1, 
the BIC value for the Full model (1557) is worse than the other models 
(BIC from 1544 to 1550) suggesting this model was overfitting the data. 

For reaction time, in the Base model, we did not find a main effect of 
Calculation (t = − 1.48, p = .140). However, in the Combined model, we 
found the expected main effect of rational distance (t = − 4.50, p < .001) 
and an interaction between Calculation and rational distance (t = 2.06, 
p = .039), driven by faster responses for larger rational distances for 
lower achieving students (estimate = − 0.049, SE = 0.013, p < .001) but 
faster responses overall with no distance modulation for higher 
achieving students (estimate = − 0.007, SE = 0.011, p = .512). The same 
pattern held for whole number distance, with a main effect (t = 4.00, p 
< .001) and interaction with math achievement (t = 2.08, p = .038). 
Again, lower achieving students had faster responses for larger whole 
number distances (estimate = − 0.047, SE = 0.013, p < .001), but higher 
achieving students were faster overall and and were not modulated by 
whole number distance (estimate = − 0.004, SE = 0.011, p = .725). All 
told, these results suggest that math achievement is primarily influ
encing reaction time, with higher achievers showing less sensitivity to 
rational or whole number distance, likely because they are faster overall, 
while low achievers are faster for large distances, as predicted for 
rational distance, but unexpectedly for whole number distance. 

3.3. Discussion 

Study 1 provided initial evidence that the whole number referents of 
decimal numbers impact their comparison, especially for Inconsistent 
problems, i.e., when the incorrect whole number interpretations and the 
correct decimal interpretations pull for different judgments. However, 
the whole number distances in that study were not well-controlled be
tween the Consistent and Inconsistent problems, making unclear the 
independent role of whole distance in decimal comparison. Study 2 
overcomes this limitation by exactly matching whole distance among 
the Overlap stimuli. For accuracy, we again find a string length consis
tency effect and a negative distance effect, that is worse performance for 
larger whole number distances on Inconsistent comparisons, supporting 
the semantic interference account of Varma & Karl, 2013. Interestingly, 
math achievement was not related to sensitivity to either rational or 
whole distance. With regards to RT, participants did not display a typical 
consistency effect and were in fact worse for the Consistent than 
Inconsistent condition. Further, not only did whole number distance not 
interfere with performance, it seemed to facilitate it, and this effect was 
strongest in students with low math achievement. Together, these re
sults provide further evidence of the role of whole number interference 
on decimal performance and hint at a strategy that lower performing 
students may be employing when working with Inconsistent decimals. 

4. General discussion 

Across two studies, we found that both rational and whole number 
distance impacted decimal comparison performance. Specifically, for 
Inconsistent pairs, where the larger number has fewer digits, we found a 
typical rational distance effect, with better accuracy for far than near 
problems. However, performance on these pairs also demonstrated a 
reverse distance effect for whole distance, that is, worse accuracy for far 
than near pairs. Or put another way, the larger the “signal” for an 
incorrect judgment from the corresponding whole number comparison, 
the larger the interference on the decimal comparison, and the worse the 

accuracy. Notably, we also found an independent effect of consistency, 
with lower accuracy for Inconsistent pairs than Consistent pairs, even 
after including rational and whole distance in the models. This pattern of 
results – both consistency effects and whole number magnitude effects – 
aligns with the predictions of the semantic interference account (Varma 
& Karl, 2013) over the string length congruity account (Huber et al., 
2014), which posits that only the number of digits is the source of 
interference effects in decimal comparison. Taken together, these results 
demonstrate that decimal comparison performance is impacted by the 
number of digits, their rational magnitude, and the magnitude of the 
whole number referents. 

Several studies have demonstrated that rational numbers display 
distance effects (Binzak & Hubbard, 2020; Bonato et al., 2007; DeWolf 
et al., 2014; Hurst & Cordes, 2016; Hurst & Cordes, 2018; Kalra, Binzak, 
Matthews, & Hubbard, 2020). Other efforts have attempted to disen
tangle the effects of rational vs. whole distance (Ischebeck et al., 2009; 
Obersteiner, Van Dooren, Van Hoof, & Verschaffel, 2013; Toledo, Abreu- 
Mendoza, & Rosenberg-Lee, 2023). These studies have focused on 
fractions, where the actual rational distance between fraction pairs has 
been contrasted with the distance between the components (numerators 
and denominators). Unfortunately, for rational numbers expressed as 
fractions, these distances are inherently correlated (Rosenberg-Lee, 
2021). Furthermore, the correlations differ between different problem 
types, such as, congruent problems where larger numerals indicate 
larger fractions (7/8 > 1/2) and incongruent problems where smaller 
numerals indicate larger fractions (3/5 > 4/9) (Rosenberg-Lee, 2021). 
In an imaging paper, Ischebeck et al. (2009) examined fraction pairs 
where the components could be near (i.e., 1) or far distance (i.e., 3), 
while continuously varying rational distance. Interestingly, while 
component distance drove accuracy, the intraparietal sulcus, a key re
gion for whole number magnitude processing (Sokolowski, Fias, Mousa, 
& Ansari, 2017), was sensitive to rational distance regardless of condi
tion. Conversely, no brain region's activity was related to whole dis
tance. While this result suggests that only rational distances are 
processed neurally by skilled adults, the confounds in the stimuli war
rant caution (Rosenberg-Lee, 2021). 

Decimals, like fractions, also show correlations between rational 
number and whole number distance in the full stimulus space (Fig. 1b). 
Fortunately, the Overlap stimuli introduced in Study 2 overcome these 
limitations by selecting decimal stimuli where rational distance and 
whole distance are perfectly orthogonal. This orthogonalization was 
successful, as indicated by the numerical similarity of the estimates of 
models which look at one distance metric vs. both. This stimulus set 
enabled us to definitely demonstrate, in Study 2, that both rational 
distance and whole distance affect rational number comparison, setting 
the stage for more conclusive neuroimaging investigations of whole vs. 
rational distance processing. 

The two explanations posited for performance decrements on 
Inconsistent decimal comparison – the string length congruity account 
(Huber et al., 2014) and semantic interference account (Varma and Karl 
(2013) – are not mutually exclusive. Since both accounts predict worse 
performance on Inconsistent comparisons than Consistent comparisons, 
the semantic interference account can be seen as a superset of the string 
length congruity account which includes the effects of interference from 
the magnitude of whole number referents. The accuracy results bore out 
the semantic interference account by identifying significant indepen
dent effects of consistency and whole number distance. In the current 
studies, string length was only manipulated in terms of single-digit 
versus double-digit numbers, rather than the continuously varying 
whole number distance. Directly manipulating the number of digits (e. 
g., including triple-digit decimals) along with whole distance would be 
one approach to capturing the limits of each effect. 

A somewhat different pattern emerges for the reaction time data. 
Specifically, both studies found the expected main effect of rational 
distance for both Inconsistent and Consistent comparisons, with no in
teractions. However, for whole distance, we found the expected effect 
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for Consistent problems (better performance for far distances) but flatter 
effects for Inconsistent problems. For Study 1, we interpreted the lack of 
whole distance effect for Inconsistent comparisons to mean that if par
ticipants are able to reply correctly, they must be doing so by completely 
ignoring whole distance. In Study 2, both Consistent and Inconsistent 
problems show the typical, negative distance effect of better perfor
mance for far than near whole distances. Although the effect was less 
steep for Inconsistent comparisons, it still contradicts the prediction that 
larger whole number distances should lead to worse performance. A 
challenge to both accounts is the result of slower reaction times for the 
Consistent than Inconsistent stimuli in Study 2. Neuroimaging studies 
could provide insights into how individuals are able to overcome whole 
number interference on accuracy to successfully and quickly compare 
these decimals pairs. 

Many studies report relations between rational number comparison 
and math achievement (Coulanges et al., 2021; Gómez et al., 2015; 
Gómez & Dartnell, 2018). However, none have looked explicitly at 
sensitivity to numerical magnitude and math achievement. We pre
dicted that greater sensitivity to rational distance would be related to 
better math skills, while greater whole number magnitude interference 
would be associated with lower math achievement. With respect to ac
curacy, these results were not borne out as there were no significant 
interactions between math achievement and either distance metric. 
Interestingly, however, we found relationships between math achieve
ment and numerical distance for reaction times. For both whole and 
rational distance, individuals with higher math scores were faster and 
had less modulation by distance relative to those with lower scores, 
likely indicating a floor effect. Examining math scores also provided 
insights into the unexpected reaction time finding of a negative distance 
effect for whole distance, that is, faster performance for larger distances. 
This aggregate pattern was driven by lower math achieving students. 
One possible explanation for the pattern of performance in these stu
dents is that they may have been using some form of “reverse strategy”. 
In fraction comparison, a common approach after students realize that 
larger numerals do not always indicate larger fractions (e.g. 3/5 > 4/9) 
is for them to instead decide that larger fractions have smaller numerals 
(Leib et al., 2023; Miller Singley, Crawford, & Bunge, 2020; Rinne, Ye, & 
Jordan, 2017). Use of these reverse strategies in fraction comparison is 
associated with worse math achievement (Gómez & Dartnell, 2018). In 
decimal comparison, a small subset of students report always selecting 
the number with fewer digits, regardless of magnitude (Ren & Gun
derson, 2019; Resnick et al., 1989). In the current context, it is possible 
that lower achieving students may be considering the larger mismatch 
between whole and rational outcomes as further reason to select the 
decimal with fewer digits. This interpretation would also explain the 
unexpected finding of faster reaction times for Inconsistent than 
Consistent comparisons in Study 2. Strategy self-reports may be a 
method to determine the origin of this unexpected effect. 

An alternative explanation for the whole number distance effects 
reported here is that they reflect the ratio between the decimal values, 
rather than the distance. Indeed, 0.3 vs. 0.21 and 0.9 vs. 0.81, while 
matched in rational distance (0.09), do differ in ratio (1.43 vs. 1.11), 
making the first one easier than the second, as is also predicted by se
mantic interference account. While debate surrounds whether ratio or 
distance effects best explain whole number comparison, these constructs 
are intrinsically linked (Dehaene, Izard, Spelke, & Pica, 2008). In the 
current studies, within the Inconsistent stimuli sets, the two metrics 
(rational distance and ratio) are strongly correlated (Study 1: r(13) =
0.87; Study 2: r(14) = 0.82). Decimal ratio also correlates with whole 
distance, but less strongly and in the negative direction (Study 1: r(13) 
= − 0.74; Study 2: r(14) = − 0.53). Given the stronger co-linearity with 
rational distance, we reasoned that in Study 2, where rational distance 
and whole distance are orthogonal (i.e. r(14) = 0.00), rational ratio 
could not explain the reported effects. Another possibility is that par
ticipants are comparing the ratio of whole number referents, rather than 
their whole distance (3 vs. 21, ratio = 7; 9 vs. 81, ratio = 9). Such an 

outcome would still be consistent with semantic interference account, 
just refining the metric used for comparing these automatically acti
vated whole magnitudes. Future work, with appropriately tuned stimuli, 
is needed to more fully explore the impact of the ratio between the 
rational and whole magnitudes in decimal comparison. 

The question of whether the magnitude of whole number referents 
affects decimal processing is an important one that will require a multi- 
paradigm approach. It can also be addressed using the number line 
estimation (NLE) task. Schiller et al. (2023) found that decimals are 
consistently estimated as smaller than equivalent whole numbers. For 
example, 0.20 on a 0–1 number line is estimated as smaller than (e.g., 
farther to the left of) 20.0 on a 0–100 number line, and this effect is 
exacerbated for single-digits decimals (e.g., 0.2 vs. 0.20 on a 0–1 number 
line). Crucially, the semantic interference account also predicts that 
larger decimals should show even greater underestimation because 0.2 
should activate 20 but instead activates 2, a difference of 18 from the 
correct value, whereas 0.8 should activate 80, but only activates 8, a 
difference of 72. Interestingly, the predicted effect was found, but only 
for participants who first completed a whole number NLE task. This 
finding suggests that working with whole numbers negatively primes 
participants to (incorrectly) activate the whole number referents of 
decimals (Roell, Viarouge, Houde, & Borst, 2019). In the current study, 
we did not manipulate task order, and all participants completed a set of 
rational number activities. Potentially, the presence of two decimals 
differing in string length is sufficient to induce whole number magnitude 
effects. An important question for future work is whether exposure to 
whole numbers exacerbates the string length and whole distance inter
ference effects observed here for comparison tasks. The converse ques
tion is also interesting: Does exposure to decimal magnitudes, through 
first completing an NLE task, reduce whole number interference? 

A growing literature has linked the executive function capacity of 
inhibitory control with proficiency with rational numbers (Abreu- 
Mendoza et al., 2020; Avgerinou & Tolmie, 2019; Coulanges et al., 2021; 
Gómez et al., 2015; Leib et al., 2023). Moreover, Inconsistent decimal 
performance mediates the relationship between inhibition and math 
achievement (Coulanges et al., 2021). This finding suggests that in
terventions focused on bolstering decimal comparison in participants 
with poor inhibitory control could counteract some of the difficulties 
this group has with mathematics. The current study provides insights to 
further refine this educational implication. Specifically, having identi
fied two contradictory numerical codes as sources of interference in 
decimal comparison (the number of digits and the whole number ref
erents), we can ask which source is most affected by poor inhibitory 
control? Targeting this source in education interventions should yield 
larger gains in learning. Alternatively, inhibition itself can be trained 
and it would be interesting to see if these interventions act equally on 
each numerical code (Brookman-Byrne, Mareschal, Tolmie, & Dumon
theil, 2018; Wilkinson et al., 2019). Finally, coupled with the finding of 
underestimation of decimals in a numberline task (Schiller et al., 2023), 
this work highlights the importance of using a consistent number of 
significant digits when communicating numerical information. 

5. Conclusion 

This research has investigated the processes by which people 
compare decimals. Across two studies, we find a robust effect of problem 
consistency, as predicted by the string length congruity account of 
Huber et al. (2014). Crucially, we also find that performance is worse on 
conflicting decimal comparisons when the whole number distance is 
larger, pushing participants further towards the wrong answer. The 
presence of whole number magnitude-based interference aligns with the 
unique prediction of the semantic interference account of Varma and 
Karl (2013). Thus, we find evidence for two independent effects leading 
to decimal comparison difficulties (as well as the expected effect of 
rational distance). Interestingly, the interference effects were largely 
independent of math achievement, suggesting susceptibility to whole 
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number interference is present across the ability spectrum. Establishing 
the existence and robustness of multiple competing numerical codes 
within a single rational number task sets the stage for future work 
examining the development of these effects and their neural basis. 
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Appendix A. Stimuli for Study 1  

Consistent Inconsistent 

Mixed Item Zero Item Rational Distance Whole Number Distance Mixed Item Zero Item Rational Distance Whole Number Distance 

0.4 vs. 0.51 0.40 vs. 0.51 0.11 47 0.18 vs. 0.2 0.18 vs. 0.20 0.02 16 
0.6 vs. 0.74 0.60 vs. 0.74 0.14 68 0.28 vs. 0.3 0.28 vs. 0.30 0.02 25 
0.8 vs. 0.94 0.80 vs. 0.94 0.14 86 0.32 vs. 0.4 0.32 vs. 0.40 0.08 28 
0.2 vs. 0.37 0.20 vs. 0.37 0.17 35 0.17 vs. 0.3 0.17 vs. 0.30 0.13 14 
0.5 vs. 0.68 0.50 vs. 0.68 0.18 63 0.27 vs. 0.4 0.27 vs. 0.40 0.13 23 
0.7 vs. 0.92 0.70 vs. 0.92 0.22 85 0.34 vs. 0.5 0.34 vs. 0.50 0.16 29 
0.5 vs. 0.73 0.50 vs. 0.73 0.23 68 0.41 vs. 0.6 0.41 vs. 0.60 0.19 35 
0.7 vs. 0.83 0.70 vs. 0.83 0.23 76 0.26 vs. 0.5 0.26 vs. 0.50 0.24 21 
0.4 vs. 0.64 0.40 vs. 0.64 0.24 60 0.12 vs. 0.4 0.12 vs. 0.40 0.28 8 
0.6 vs. 0.84 0.60 vs. 0.84 0.24 78 0.31 vs. 0.6 0.31 vs. 0.60 0.29 25 
0.3 vs. 0.56 0.30 vs. 0.56 0.26 53 0.39 vs. 0.7 0.39 vs. 0.70 0.31 32 
0.6 vs. 0.93 0.60 vs. 0.93 0.33 87 0.47 vs. 0.8 0.47 vs. 0.80 0.33 39 
0.3 vs. 0.67 0.30 vs. 0.67 0.37 64 0.13 vs. 0.5 0.13 vs. 0.50 0.37 8 
0.5 vs. 0.91 0.50 vs. 0.91 0.41 86 0.14 vs. 0.6 0.14 vs. 0.60 0.46 8 
0.4 vs. 0.87 0.40 vs. 0.87 0.47 83 0.16 vs. 0.7 0.16 vs. 0.70 0.54 9 

Note. In the Consistent trials, the correlation strength between Rational and Whole Number distance was r = 0.45. In the Inconsistent trials, the correlation strength 
between Rational and Whole Number distance was r = − 0.35. 

Appendix B. Stimuli for Study 2  

Consistent Inconsistent 

Item Type Rational Distance Whole Number Distance Item Type Rational Distance Whole Number Distance 

0.1 vs. 0.19 Overlap 0.09 18 0.21 vs. 0.3 Overlap 0.09 18 
0.2 vs. 0.29 Overlap 0.09 27 0.31 vs. 0.4 Overlap 0.09 27 
0.3 vs. 0.39 Overlap 0.09 36 0.41 vs. 0.5 Overlap 0.09 36 
0.4 vs. 0.49 Overlap 0.09 45 0.51 vs. 0.6 Overlap 0.09 45 
0.5 vs. 0.59 Overlap 0.09 54 0.61 vs. 0.7 Overlap 0.09 54 
0.6 vs. 0.69 Overlap 0.09 63 0.71 vs. 0.8 Overlap 0.09 63 
0.7 vs. 0.79 Overlap 0.09 72 0.81 vs. 0.9 Overlap 0.09 72 
0.1 vs. 0.28 Overlap 0.18 27 0.32 vs. 0.5 Overlap 0.18 27 
0.2 vs. 0.38 Overlap 0.18 36 0.42 vs. 0.6 Overlap 0.18 36 
0.3 vs. 0.48 Overlap 0.18 45 0.52 vs. 0.7 Overlap 0.18 45 
0.4 vs. 0.58 Overlap 0.18 54 0.62 vs. 0.8 Overlap 0.18 54 
0.5 vs. 0.68 Overlap 0.18 63 0.72 vs. 0.9 Overlap 0.18 63 
0.1 vs. 0.37 Overlap 0.27 36 0.43 vs. 0.7 Overlap 0.27 36 
0.2 vs. 0.47 Overlap 0.27 45 0.53 vs. 0.8 Overlap 0.27 45 
0.3 vs. 0.57 Overlap 0.27 54 0.63 vs. 0.9 Overlap 0.27 54 
0.1 vs. 0.46 Overlap 0.36 45 0.54 vs. 0.9 Overlap 0.36 45 
0.6 vs. 0.78 Unique 0.18 72 0.22 vs. 0.4 Unique 0.18 18 
0.4 vs. 0.67 Unique 0.27 63 0.23 vs. 0.5 Unique 0.27 18 
0.5 vs. 0.77 Unique 0.27 72 0.33 vs. 0.6 Unique 0.27 27 
0.2 vs. 0.56 Unique 0.36 54 0.24 vs. 0.6 Unique 0.36 18 
0.3 vs. 0.66 Unique 0.36 63 0.34 vs. 0.7 Unique 0.36 27 
0.4 vs. 0.76 Unique 0.36 72 0.44 vs. 0.8 Unique 0.36 36 
0.1 vs. 0.55 Unique 0.45 54 0.25 vs. 0.7 Unique 0.45 18 
0.2 vs. 0.65 Unique 0.45 63 0.35 vs. 0.8 Unique 0.45 27 
0.3 vs. 0.75 Unique 0.45 72 0.45 vs. 0.9 Unique 0.45 36 
0.1 vs. 0.64 Unique 0.54 63 0.26 vs. 0.8 Unique 0.54 18 
0.2 vs. 0.74 Unique 0.54 72 0.36 vs. 0.9 Unique 0.54 27 
0.1 vs. 0.73 Unique 0.63 72 0.27 vs. 0.9 Unique 0.63 18 

Note. Within each of the four conditions, the correlation strength between Rational and Whole Number distance was r = 0.00. 

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cognition.2023.105608. 
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