- delivery of molecules into cells such as DNA
- functional delivery
 - permeabilized
 - recover and will die
 - even from cell-to-cell
- which to monitor different cell types to detect

RUTGERS

Difference in percent change between different cell types is possibly due to differences in cell size

Determining the Frequency that Leads to Optimal Detection of Cell Membrane Permeabilization

Dalia Fanik, Joseph Sherba, Jeffrey D. Zahn, David I. Shreiber Department of Biomedical Engineering, Rutgers University, Piscataway, NJ

Expand the variety of cell types

Rationale

- Cells are suspended in a conductive buffer solution Electrodes measure the current across the microfluidic channel
- When a cell enters between the electrodes, the current drops (ΔI_c) because of the increase in impedance due to the presence of the cell
 - This drop triggers pulse application (red
- When the cell is permeabilized, the current increases (ΔI_n) because of the decrease in cell impedance We have modeled how this change in impedance depends on frequency and measure the change in
- NIH 3T3 fibroblast cells • There is an optimal frequency for detecting
 - permeabilization

Research question: Does the optimal frequency to detect changes in impedance depend on the cell type?

3T3 Cell: 1.2kV/cm, 1 ms Pulse

- Un-electroporated Cell

- Electroporated Cell

Results

3T3 cells:

 Maximum percent change within frequency range 1->10 kHz: 4.21%

Frequency (Hz)

• Corresponding frequency: **1250 Hz**

Future Direction

- Collect impedance data on additional pulsing conditions

Jurkat cells:

- Maximum percent change within
- frequency range 1->10 kHz: 2.10%
- Corresponding frequency: **1000 Hz**

Zheng, M., Sherba, J. J., Shan, J. W., Lin, H., Shreiber, D. I., & Zahn, J. D. (2017). Continuousflow, electrically-triggered, single cell-level electroporation. *Technology*, 05(01), 31-41. doi:10.1142/S2339547817500017

RUTGERS School of Engineering

HEK293 cells:

- Maximum percent change within
- frequency range 1->10 kHz: 1.49%
- Corresponding frequency: **1000 Hz**

Acknowledgements

I would like to thank Dr. Shreiber for his guidance, Joseph for his mentorship, and the Electroporation Group for their support.

References