Kirsten Sutterlin, Emily Glavin, Andrea M. Spaeth

Department of Kinesiology and Health, Division of Life Sciences, School of Arts and Sciences Rutgers University New Brunswick

Background

Approximately, 44\% of college students report insufficient sleep (<7h/night on aperage)(1). Insufficient sleep is associated with Type 2 Diabetes,
cardiovascular disease, depression and obesity, all which may be cardiovascular disease, depression and obesity, all which may be
treated/modulated with physical activity (2-5). However, in addition to sleep deprivation, college students also report a lack of physical activity (6).
One measure of health that has been studied in relation to sleep health is physical fitness. Health-related physical fitness is broken down into cardiorespiratory fitness, muscular strength, muscular endurance, and
flexibility. One study found that as the academic year progresses, sleep disturbances in young adults increase, and physical activity decreases (7). Additionally, sleep disturbances in teenagers were associated with poor performances on sprinting tests, flexibility, muscular strength, and poor academics (1,8)

Previous studies on sleep and fitness have primarily focused on combative professions, such as those in the military, firefighters, or athletes $(2,9,10)$. These studies showed that there is an insignificant effect of sleep deprivation on exercise, however, the subjects used in these studies were accustomed to
sleep deprivation due to their professions. Previous studies that examined this relationship in young adults relied on subjective measures of sleep, and also have not examined the relationship between sleep architecture and lower extremity endurance. The present study aimed to evaluate the relationship between sleep architecture and physical fitness.

It was hypothesized that Rapid Eye Movement (REM) sleep, sleep duration and Wake After Sleep Onset (WASO) are negatively associated with cardiorespiratory fitness, muscular strength and endurance, and flexibility in young adults. It was also hypothesized that worse scores for subjective sleep
quality are associated with worse performance on cardiorespiratory finess, quality are associated with worse performance on cardiorespiratory fitness,
muscular strength and endurance, and flexibility tests in young adults

Methods and Materials
Young adults ages 18-26 years ($\mathrm{N}=28$; See Figure 1 and Table 1) were recruited from the Sleep Architecture and Body Composition parent study via flyer advertisement and in-person referral. Data collection
occurred between November 2019 and March 2020 in Loree Classroom

Methods and Materials

Measures:

Sleep: actigraphy and quality data collected in the parent study were linked to fitness data via a subject identification number.

Participants wore a wrist Actiwatch for 2 weeks to track
sleep-wake patterns.
A sleep profiler devic
nights to analyze sleep-wake patterns and the amount of time spent in sleep stages (NREM1-4 and REM), and other sleep variables (WASO, total sleep time, sleep quality). Subjects were then categorized as Sufficient Sleepers (>=7 hrs) or Insufficient Sleepers (<7 hrs). Pittsburgh Sleep Quality Index. Subjects were categorized as Good Sleepers (Global Score $<=5$) or Poor Sleepers
Outcomes: (Global Score >5),
ardiorespiratory fitness: VO2 Max; calculated from Heart Rate (beats per minute; measured via pulse-oximeter) after 3 -min Step-up Test.

Men: VO2 $\operatorname{Max}\left(m L \times k g^{\wedge}-1 \times \min ^{\wedge}-1\right)=111.33-(.42 \times$ Heart
Rate)
Women: VO2 Max (mL× kg ${ }^{\wedge}-1 \times$ min $^{\wedge}-1=65.81-(.1847 \times$
Mi.

Muscular strenath: Hand-grip Strength Test via hand-held dynamometer [Total Maximal Force (kilograms) = sum of left and right hand]. $\frac{\text { Muscular endurance: Push-up Test (until maximum fatigue), Curl-up Test }}{\text { (until maximum fatigue) and Squat test (as many as possible in one }}$ (until maximum fatigue) and Squat test (as many as possible in one minute).
Flexibility:
frunk flexion, centimeters)
Statistical Analysis:
Statistical Analysis:
Multiple Linear Regressions were run to evaluate the relationship between Mutipiele Linear Regressions were run to evaluate the relation
sleep architecture variables and physical fitness outcomes. Separate between-subjects ANOVAs were run to examine differences in physical fitness outcomes between Sufficient Sleepers vs. Insufficient Sleepers and Good vs. Poor Sleepers, respectively.

RUTGERS

