Database Analysis of Antimicrobial Peptides for Use in a Nanoparticle Antibiotic

INTRODUCTION

Bacterial infections that are managed with antibiotic treatments are becoming a thing of the past: Marked by the CDC there are 18 species of antibiotic resistant bacteria and counting with three million people a year becoming infected.¹ Antimicrobial Peptides (AMPs) look to be a novel solution to these growing concerns.

AMPs are a diverse class of peptides apart of the innate immune system. A specific class of AMPs, known as cationic antimicrobial peptides have been shown to have antibacterial properties.

AMPs experience a narrower mutation window when used against bacteria.² This is due to their:

- \succ Non specific Mechanisms of Action
- > Physiochemical Diversity
- \succ Time-Kill dynamics

To harness the the antibiotic qualities of AMPs, these peptides will be encapsulated in synthetic polymers to create nanocomplexes for targeted delivery into the lung tissues of patients with Cystic Fibrosis. This work

compiles a list of AMP candidates the polymer-AMP nanocomplex.

RESULTS								
Name	Source	Amino Acid Sequence	Structure	Charge	Effectiveness			Boman Index
					G-	G+	Pseudomonas spp.	(kcal/mol)
Myxindin	Myxine glutinosa	GIHDILKYGKPS	α-helix	+1	\checkmark	√	MIC: > 16 ug/ml	0.94
Paracentrin 1	Synthetic	EVASFDKSKLK	Unk.	+1	√		MIC: 1.5 ug/ml	2.29
Coprisin	Copris tripartitus	VTCDVLSFEAKGIAVNHSACALHCIALRKKGGSCQNGV CVCRN	Complex	+3	√	√	MIC: 2 ug/ml	0.96
LL-37	Homo sapiens	LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES	α-helix	+6	√	√	MIC: 0.05 ug/ml	2.99
Polymyxin B	Bacillus polymyxa	KTKKKFLKKT	Unk.	+6	\checkmark	~	MIC: 1.0 ug/ml	3.05
Protegrin 1	Sus scrofa	RGGRLCYCRRRFCVCVGR	β-sheet	+7		√	MIC: 0.5 ug/ml	3.65
Tachyplesin III	Tachypleus gigas	KWCFRVCYRGICYRKCR	β-sheet	+7	\checkmark	~	MIC: 2.0 ug/ml	2.98
SMAP-29	Ovis aries	RGLRRLGRKIAHGVKKYGPTVLRIIRIAG	α-helix	+9	√	√	MIC: 4.0 ug/ml	2.16

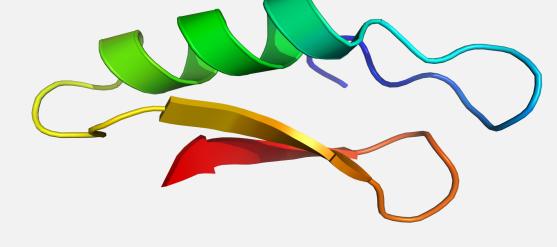
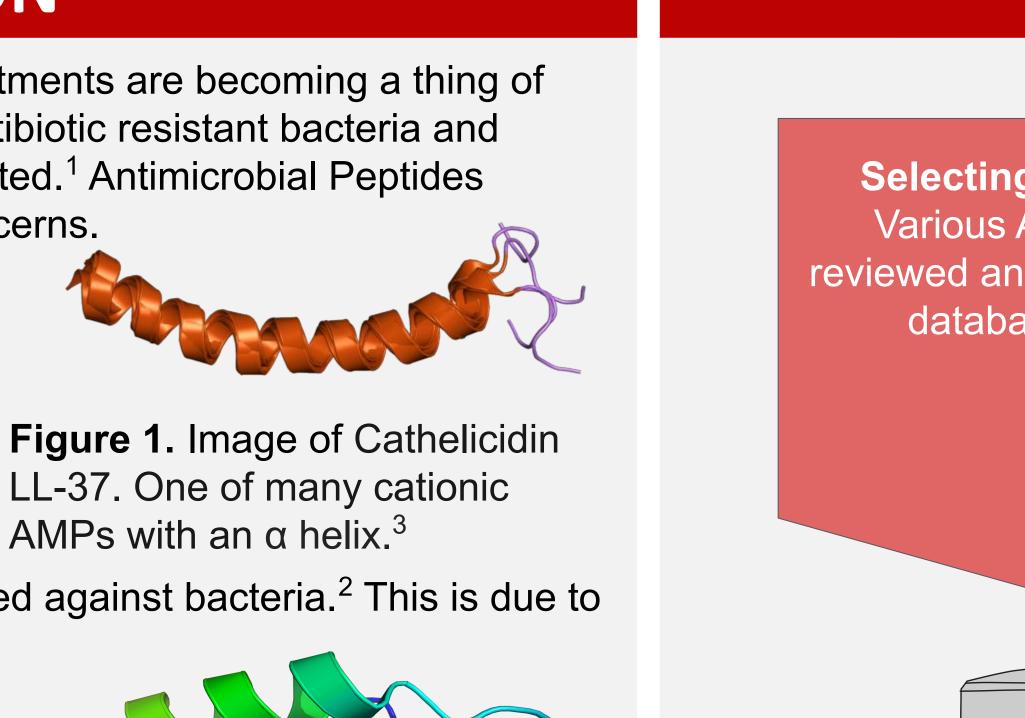
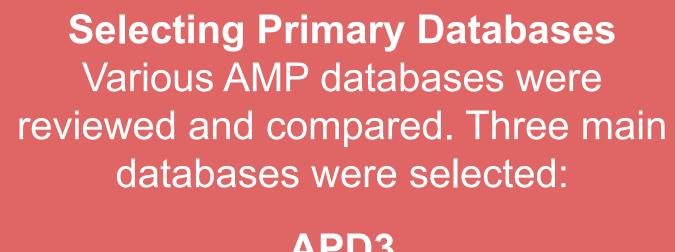
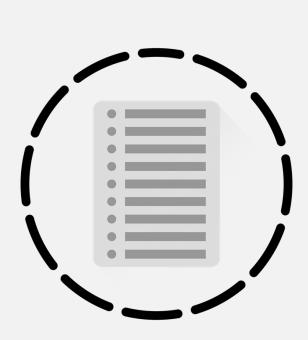




Figure 2. Image of Plectasin. An AMP with both a β sheet and α helix.³

Faith Northern¹, Charles Roth^{2,3}

¹Department of Biochemistry, Vassar College ²Department of Biomedical Engineering, Rutgers, The State University of New Jersey ³Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey



To be able to select AMPs for antibiotic use, we used a multi-step literature and database-guided review to compile a list. This list was then subjected to further research and comparison to obtain the final product.

METHODOLOGY

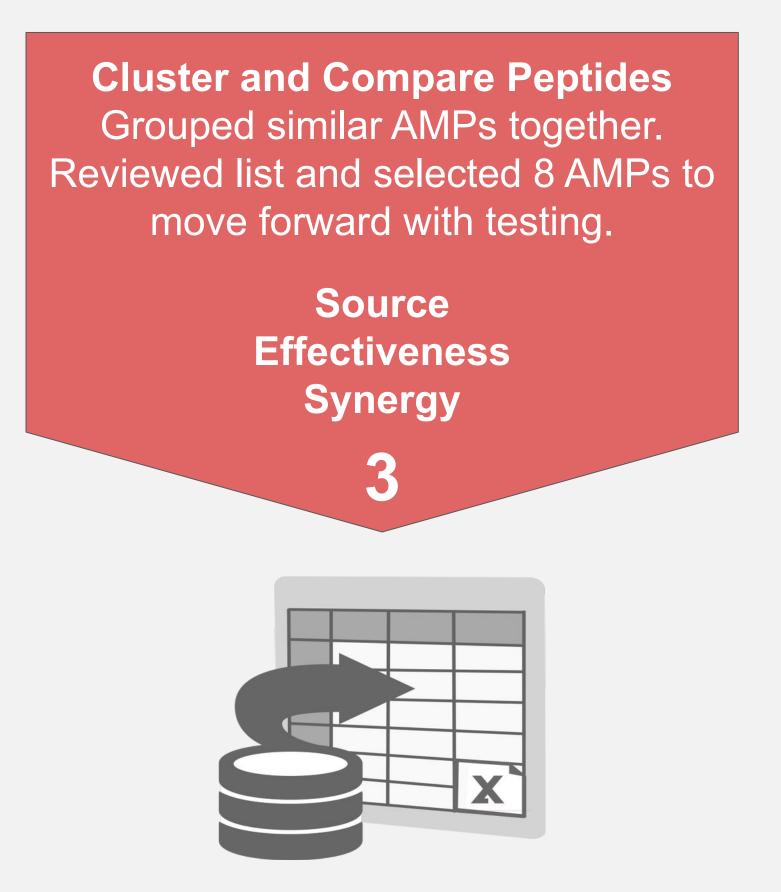
Compile a List General search for AMPs using database search features. Created an excel sheet to track selections.

Physicochemical Properties Antibacterial Activity Toxicity

contenders. The AMPs on this list show:

- Future projects include:
- be formed and enable sustained release

NIH


¹ Centers for Disease Control and Prevention. (2019). Antibiotic Resistance Threats in the United States.

² El Shazely B., et al. (2020). Resistance Evolution Against Antimicrobial Peptides in Staphylococcus aureus Alters Pharmacodynamics Beyond the MIC. Front. Microbiol. 11:103. ³ H.M. Berman, et al. (2000). The Protein Data Bank. *Nucleic Acids Research*, 28: 235-242.

ACKNOWLEDGEMENTS

I would like to thank the following individuals and organizations:

- R21AI151746

CONCLUSION

From the 3,000 AMPs available, we were able to identify 61 with antibacterial properties. By clustering and comparing the data, we created a final list with 8

 \succ Optimized activity against pathogenic bacteria known to reside in the lungs \succ Moderate to High protein binding efficiencies (Boman Index)

FUTURE DIRECTIONS

 \succ formulating selected AMPs with polymers to assess whether nanoparticles can

 \succ testings against planktonic and biofilm cultures of *Pseudomonas spp.*

REFERENCES

 \succ Dr. Charles Roth (Principal Investigator),

➤ RiSE/CB Mentor: Dr. David Shreiber

➤ The National Science Foundation, Grant #NSF EEC 1559968 REU Site:

Cellular Bioengineering- From Biomaterials to Stem Cells

National Institute for Health, research supported under Award Number

