Understanding SARS CoV-2: A Sequence and Structural Analysis of the Evolution of Non-Structural Protein 9, Nsp9 Lindsey Whitmore*, Erika McCarthy#, Sophia Staggers\$, Elliott Dolan%, Changpeng Lu%, Vidur Sarma%, Zhuofan Shen%, Maria Szegedy%,

Lingjun Xie%, Christine Zardecki@, Dr.Sagar Khare%, Dr.Stephen K. Burley@ Howard University*, Stevens Institute of Technology#, Frostburg State University\$, Rutgers University IQB%, RCSB PDB@

OVERVIEW

In January 2020, the World Health Organization (WHO) issued an announcement declaring COVID-19 (coronavirus disease 2019) a public health emergency of global concern. COVID-19 is an acute respiratory disease that is caused by the SARS CoV-2 virus. SARS CoV-2 has a large RNA viral genome that encodes many nonstructural and structural proteins.

The focus of this poster is SARS CoV-2 nonstructural protein 9,(Nsp9). Nsp9 is one of 16 nonstructural proteins represented within the SARS CoV-2 proteome. Research suggest that Nsp9 plays an important role in viral replication by acting as a single stranded RNA binding protein. Researchers are racing to visualize and understand the proteins used by SARS-CoV-2 in an effort to understand their mechanistic pathways and develop methods to inhibit the enzyme.

Figure 1a: Model of Nsp9 Monomer (beta sheets:purple, alpha helix:blue, random coils: gold) Figure 1b: Model of proposed Nsp9 Homodimer

METHODOLOGY

- We explored amino acid sequence and 3D atomic-level structure using various structural bioinformatics tools, including:
- Clustal Omega (<u>www.ebi.ac.uk/Tools/msa/clustalo/</u>) for sequence alignments and phylogenetic trees;
- Mol* (<u>molstar.org</u>) for 3D molecular visualization;
- and Foldit (fold.it) for structural/energetic effects of sequence mutations.

Models and Preliminary Results

Figure 2: Distribution of Mutated Amino Acids

RCSB PDB is funded by the National Science Foundation RUTGERS (DE-SC0019749), and the National Cancer Institute, National Institute of Allergy and Infectious Diseases, and National Institute of General Medical Sciences of the National Institutes of Health under grant R01GM133198.

Figure 4a and 4b: G104R Substitution at the Dimer Interface; Most energetically unfavorable mutant

Conclusion

program.

Acknowledgements

- RISE at Rutgers University RCSB PDB
- Brian Hudson

• The data generated will be used in a scientific manuscript submitted after the conclusion of the RISE

Lindsey Whitmore was supported by an NSF REU

