RUTGERS

OF NEW JERSEY

Background

- Molecular dynamics (MD) is a useful computational method used to model molecular interactions.
- In general, MD simulations go through 3 steps:
 - Energy Minimization
 - Equilibration
 - Production
- Force field set of parameters and functions used to determine energies and forces associated with molecular interactions.
- Total energy must be conserved.

Figure 1. Hamiltonian of the AMBER force field.¹

Introduction

- This study aimed to investigate the dynamics involved in the binding of naringenin with TtgR, a sensory protein, as a means to further understand why the binding occurs.
- Familiarization with computational chemistry methods was first needed before studying naringenin binded to TtgR.
- The following programs and softwares were learned using an alanine dipeptide:
 - AMBER (Assisted Model Building and Energy) Refinement) – a collection of softwares used to run molecular dynamics simulations and define molecular interaction parameters²
 - LEaP a program within AMBER that creates a complete description of a desired molecule and prepares files for AMBER simulations
 - VMD (Visual Molecular Dynamics) a program used to visualize molecules and simulations performed with programs such as AMBER
- A visual representation of naringenin in complex with TtgR was created using VMD.

Molecular Dynamics Simulations of Peptides and Proteins

Melany Contreras and Lu Wang **Department of Chemistry and Chemical Biology, Rutgers University**

MD Simulation of Alanine Dipeptide

Simulation conditions:

- Solvated with 630 water molecules
- 10000 MD steps (0.002 ps timesteps)
- 300 K temperature (through Langevin thermostat)
- atm pressure (through Berendsen barostat)

Figure 4. Stabilization of alanine dipeptide temperature through heating.

Figure 2. Alanine dipeptide interacting with water (left). The interaction was visualized using VMD. C – pink, N – mauve, H - white, O - red.

- syndrome.⁴
- cause damage.³
- A simulation will be performed with naringenin and TtgR using the same process as alanine dipeptide.

Figure 5. Naringenin in complex with TtgR visualized using VMD (right). PDB ID: 2UXU.

¹Madej, B. D.; Walker, R. An Introduction to Molecular Dynamics Simulations Using AMBER. https://ambermd.org/tutorials/basic/tutorial0/index.htm# Run_AmberMD_sander. (Accessed July 23, 2020). ²D.A. Case, K. Belfon, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, G. Giambasu, M.K. Gilson, H. Gohlke, A.W. Goetz, R. Harris, S. Izadi, S.A. Izmailov, K. Kasavajhala, A. Kovalenko, R. Krasny, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, V. Man, K.M. Merz, Y. Miao, O. Mikhailovskii, G. Monard, H. Nguyen, A. Onufriev, F.Pan, S. Pantano, R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, N.R.Skrynnikov, J. Smith, J. Swails, R.C. Walker, J. Wang, L. Wilson, R.M. Wolf, X. Wu, Y. Xiong, Y. Xue, D.M. York and P.A. Kollman (2020), AMBER 2020, University of California, San Francisco. ³Alam, M. A.; Subhan, N.; Rahman, M. M.; Uddin, S. J.; Rez, H. M.; Sarker, S. D. Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanism of Action. Adv. Nut. 2014, 5, 404-417. ⁴Alguel, Y. A.; Meng, C.; Teran, W.; Krell, T.; Ramos, J. L.; Gallegos, M.-T.; Zhang, X. Crystal Structures of Multidrug Binding Protein TtgT in Complex with Antibiotics and Plant Antimicrobials. J. Mol. Biol. 2007, 369, 829-840.

I would like to thank the RISE at Rutgers program and the NASA NJ Space Grant Consortium for funding and for providing me with the opportunity to work on this project.

Future Work

Naringenin is a flavonoid found in citrus fruits³ and plant roots⁴ and possesses antimicrobial properties.³ Naingenin also may help with the management of metabolic

Naringenin can bind to TtgR, a protein involved in the regulation of the transcription process of bacteria. TtgR helps keep out harmful substances out of bacteria cells. Through binding, naringenin can enter bacteria cells and

References

Acknowledgements