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Abstract: We present a statistical technique to characterizdead to undesirable results, since these processes are often
the global color distribution in an image. The result can beill-defined. Therefore, we apply regularization techniques in
used for color correction of a single image and for com- applications (such as automatic color correction) where
parison of different images. It is assumed that the objecwisual appearance is important. We also demonstrate how
colors are similar to those in a set of colors for which to use this characterization of the global color distribution
spectral reflectances are available (in our experiments wen an image as a tool in color-based search in image
use spectral measurements of the Munsell and NCS coldtatabasese 1999 John Wiley & Sons, Inc. Col Res Appl, 24, 98111,
chips). The logarithm of the spectra can be approximated by999

finite linear combinations of a small number of basis vec- . I

tors. We characterize the distributions of the expansionKey words: .color correction; color constancy; principal
coefficients in an image by their modes (the most probablé:omponents, robust statistics
values). This description does not require the assumption of

a special class of probability distributions and it is insen- INTRODUCTION

sitive to outliers and other perturbations of the distribu-

tions. A change of illumination results in a global shift of the A color image is always the result of a complex interaction
expansion coefficients and, thus, also their modes. Thietween three different components: the optical properties
recovery of the illuminant is thus reduced to estimating®f the scene, the illumination sources, and the sensors.
these shift parameters. The calculated light distribution isEStimating the influence of these three factors on the mea-
only an estimate of the true spectral distribution of theSUreéd signals is one of the main goals of color image

illuminant. Direct inverse filtering for normalization may analysis. The influence of the sensors is usually known, and
the remaining problem is to separate the effects of the scene

properties and the influence of the illumination. The human

*Current address: Department of Information Technology, Lappeenrant¥iSual system can approximately solve this problem, a phe-
University of Technology, P.O. Box 20, Fin-53851 Lappeenranta, Finlandnomenon known as color constancy (see Ref. 1 for an
* Correspondence to: R. Lenz, Department of Science and Engineeringntroduction and references). The problem is also actively
Campus Norrkping, Norrkiping University, SE-60174 Norikmong, Sweden nE)ursued in computer vision and image processing, but a

Contract grant sponsor: National Science Foundation; Contract gra tisfact uti f | d diti . tto b
number: IRI-9530546 satistactory solution tor real woria conditions 1S yet to be

Contract grant sponsor: Swedish Institute International Research Fefound?-18

lowship In this article, we describe the overall color distribution in
Contract grant sponsor: Swedish Research Council for Engineeringagn image (or an image-patch) as follows. First the color of
Sciences a single point in an image is defined by the logarithm of its

Contract grant sponsor: Wihuri Foundation t This | t is th . ted by th
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Foundation first few terms in a series expansion. The coefficients are

© 1999 John Wiley & Sons, Inc. computed for all points under consideration and for each
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TABLE I. The relative mean approximation error.

Error log
. coordinates
Order N Error E,, Ey

1 28.7639 34.5235
2 13.5956 15.9981
3 6.6864 7.9114
4 4.7054 6.3125
5 3.4572 5.2342
6 2.9545 4.4786
7 2.4831 3.6910
8 2.1312 3.3019
9 1.6335 3.0091
10 1.2080 2.3878
11 0.9910 2.2866
12 0.7635 1.6729
13 0.6565 1.6152
14 0.5690 1.54083
15 0.4471 0.9986

e., their most probable value. The use of the mode is
motivated by the need for a robust location estimator. We
want to extract the “center” of the distribution for each
coefficient. Using maximum likelihood would implicitly
assume that the underlying distribution is normal, which is
probably not the case for real data. The mode is insensitive
to both skew and more, importantly, long tails (outliers) of
the distribution. Note that the median (another robust loca-
tion estimator) will be biased for a skewed or long tailed
distribution. Modeling such distributions as a mixture of
Gaussians makes the analysis cumbersome. The mode, on
the other hand, can be computed by a simple algorithm,
essentially a window sliding over the data. It can be shown
that for unimodal distributions the result remains correct
even when almost half the data is distributed along one of
the tails. The mode is a maximuma posteriori (MAP)
estimator, since it corresponds to the maximum of the p.d.f.
of the given data.

coefficient the statistical distribution is characterized by its

Among the possible applications of Eq. (2) we mention

mode, i.e., its most probable value. The properties and thie following:

performance of the description will be demonstrated with
some examples, where we apply it to color image normal-
ization and color texture characterization.

In our image formation model, we assume that the spec-
tral distribution M(A, x), measured at locatiow in the
image can be written agl(A, X) = R(A, X) - L(A), where
R(A, x) is the reflectance function at that location dr(d)
the spectrum of the light-source. Using the logarithm, a
linear relationm(A, x) = r(A, X) + I(A), is obtained. Note
that the lighting is assumed to be uniform across the inves-
tigated part of the image. Here we do not model more
complicated interactions between the scene, the |IIum|na—
tion, and the sensors such as body-reflection or fluores-
cencel?20 Expressing the functions, r andl in the same
coordinate system spanned by functidng\), we obtain
the following series expansions:

m(A, X) = ) py (X)b(A),

E ab(A). (1)

k

(A, ) = 2 pd¥)bA), 1(A) =

Thus, for a giverk we obtain

i X) = p(X) + ay, (2

e., the effect of the illuminant on th&-th expansion
coefficient of the log-reflectance function is a location in-

dependent, constant shift. The coordinate system used |ng A

this article is based on an eigenvector expansion and will be
described later.

In our applications, we will not use Eq. (2) pointwise, i.e.,
for individual positionsx, but we will use the fact that the
probability distributions of the coefficienis,(x) andp,(X)
are related by the shift coefficient,. The value ofw, can,
thus, be estimated by comparing the two probability distri-
butions or parameters derived from them. In this article, we
choose to describe probability distributions by their modes,
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Color constancy: If the modes of the distributions of the
coefficientsu,, and p, are known, then the value af,
and, thus, an estimation of the light source spect(in)

can be computed. The modes of fhalistributions might

be known from previous experience or, in the case of a
dynamically changing illumination, they could be known
from an estimation computed from a previous image.
Image normalization: A desired global color impression
of a color-corrected image can be obtained through a
definition of the modes of,.

Color description: In image database searches, it is often
useful to find images with a given overall color impres-
sion. In this case, the modes of tpg distributions are
used as origin and the values®f characterize the color
distribution in the image. We will later introduce the
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FIG. 1. Error function of the approximation order.
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TABLE Il. Modes from database and gray world as- . Modes

2 T T T T T T T T T T T T T T
sumption.
Eigenvector Mode Coefficient ol ]
number database gray world
1 —9.1353 —9.7295 i |
2 1.3931 1.0771 . I
3 —0.5151 —0.2446 3
4 —0.0130 —0.1857 3
5 —0.1320 —0.0849 = ]
6 —0.1106 —0.0093 8
7 —0.2579 —0.0509 g ;
8 0.1048 0.0767 Y .
9 0.1099 0.0799 i
10 —0.2045 —0.1047 i
11 —0.0394 —-0.0105 & i N
12 0.1370 0.0806 i
13 0.0134 0.0096 i Y3 Detabase
14 —0.0439 —0.0110 o
15 0.1156 0.0508 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Approximation order

FIG. 2. Modes computed from the database and the “gray
o . . world” hypothesis.
concept of a relative illuminant and describe how to use

it for color image retrieval.
thousand representative col@PsThe representative colors

The rest of the article is organized as follows: In Section@re¢ chosen based on perceptual criteria, i.e., they incorpo-
2, we describe how the basis functidngA) are computed ate the subjectiveness of human color perception. The most
and we investigate the properties of the resulting coordinat@ell-known color-appearance systems are the Munsell sys-
system. In almost all applications, the spectral description ofen®* and the Natural Color System (NCS).
the color at a point in an image is not available. A conver- High-resolution measurements of the spectra of color
sion from the given color system to the spectral descriptior?hips for these representative colors are now available.* For
is, therefore, necessary before the basic algorithm can pach of the 1269 chips of the Munsell System, their spectra
applied. In Section 3, we discuss this conversion for the cas&as measured from 380-800 nm at 1-nm steps, while the
where the pixels are RGB-vectors. Section 4 describes th513 samples from the NCS system were measured from
estimation of the illumination light spectrum, and Section 5380-780 nm at 5-nm intervals. These measurements were
its application in the restoration or compensation of the
color shift. Section 6 discusses some useful postprocessing«the Munsell spectra are available from the Information Technology

techniques, and the last section illustrates the results afept., Lappeenranta University of Technology, Lappeenranta, Finland.
some experiments. The NCS spectra were obtained from the Scandinavian Color Institute in
Stockholm courtesy of B. Kruse.

BASIC ALGORITHM )
Reconstructed spectra based on four coefficients

T T T T T T T T

Since human color perception is based on three different
receptor types in the retina, the traditional approach towards osf ]
color is to use three-dimensional coordinate systems. Each |
of these systems was designed for a certain type of appli-

cation, and a substantial part of color science deals with the *7[

i e
-

study of their properties and the conversion procedures 0.6_!’ TIT Zmend |
among them. Examples are color monitors (RGB), color |/ (ZiI0 Maxbaabase

printing (CMY), computer vision and computer graphics °% )

(IHS), and the colorimetry (CIE-systems) such as Lab, Luv, o4} -
etc. For exact definitions and descriptions see Refs. 21 and
22. None of the systems is especially suited for investigation
of color constancy algorithms, because a change in the oz} 1
spectral characteristics of the illumination source often ,
leads to complicated transformations in the 3-D coordinate | _
S pace ) 200 4:;5 4;0 5(.)5 540 5;5 6; [} 645 680 75 750
Our approach is based on the assumption that the space of Wavelength

electro-magnetic spectra, which is relevant for human colog|G. 3.  Spectra computed from the database and the “gray
vision, can be described by a set of the order of a fewworld” hypothesis.

0.3
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FIG. 4. Chromaticity coordinates of the database spectra.

combined in one set consisting of 2782 spectra (usuallyf the first few eigenvectors. From this the original spectrum can

sampled in 5-nm steps from 400—750 nm). In the followingbe recovered by exponentiation. This expansion has always a

we refer to this set of spectra as the spectral database. higher minimum-mean-squared-error than the eigenvector expan-
These spectra are, of course, the spectra of the pigmensson, but we found that the differences for approximation orders

used in the production of the color chips, they are nothigher than two are small.

spectra of real world objects. The usage of these spectra is, If ) is a positive function of the wavelength varialdlge

however, necessary, because (to our knowledge) no equaltilens(A) = In(§(A)) is the logarithm of this function. Lower-

comprehensible, representative set of natural spectra ase letters always denote the logarithm of the capital symbols.

available. Furthermore, we are only interested in somdy b,(\), we denote the eigenvectors computed from the

statistical properties of larger collections of colors, and theoriginal spectral database, abg()) is the n-th eigenvector

assumption that these properties are very similar for theomputed from the logarithm of the spectra in the same spec-

color chips and the natural colors seems to be reasonabldral database. The number of eigenvectors used in the approx-
Most approaches to computational color constancy are basdahation isN. The N-term approximation of the vect&) in

on the assumption that the reflectance spectra can be describedthg b,(A) system is given byg,, and the corresponding ap-

a low-dimensional modéf—2° Usually, the coefficients in the proximation in theb,(A) system byS:

eigenvector expansion of the spectra are used as variables. In this

article, we do not approximate the spectra themselves by linear N
combinations of eigenvectors, but we use an expansion in loga- S =D b, andS, = e B, )
rithmic coordinates instead. We compute first the eigenvectors of k=1

the logarithmic spectra in the spectral database. Then we approx-
imate the logarithm of a given spectrum by a linear combinationThe mean approximation errors are computed as
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Estimated spectra for various intensily thresholds.
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FIG. 6. Estimated spectrum as a function of the intensity
threshold.

In Table | and Fig. 1, these errors are summarized. In our
image formation model 1, we will always use the eigenvec-
tors computed from the log-spectra.

In most applications, only a few measurements derived
from the spectrunM (A, X) (such as the tristimulus values)
will be available. In this case, the spectrum has to be
estimated from the measurements. One way this can be done

Foeauoncy

Third Coefficient Fourth Coefficient is described in the next section. Even when the whole
) spectrum is known, we see from Eqg. (2) that only the
FIG. 5. Histograms for log-database. distributions of the coefficients,(x) are available,

whereas the distributions of the reflection coefficignisx)

and the constants, are unknown.
mear|S — S| In §uc_h a case, we have t_o _make some assumptio_ns about
— = the distributions of the coefficientg or «,, or both. This is

mears similar to the Bayesian framework used by Brainard and

R mean|S — “S\I” “) Freemart In our calculations, these assumptions WiII,_hoyv-
Ey= 100X : ever, enter only as the values of the modes of the distribu-
tions of the coefficients. We do not need to specify the
where the mean is computed over all spectra in the databaseomplete distribution as in the Bayesian approach. Statisti-

E,= 100X

mean|| |

Mean veclor computed from the database Varksnco computed from the database
T T T T v o . ; . .

L L L
650 700 750

. L . R . L L . N .
400 450 500 550 500 650 700 750 400 450 500 550 600
Wavelength Wavelength

(a) (b)

FIG. 7. The mean- A(\) (a) and variance-function B2(\) (b) computed from the database.
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FIG. 8. The multiplicative (a) and additive (b) restoration functions a(A) and b () for various regularization levels.

cal properties of the set of possible illumination spectra (likenorm of the resulting constant vector has norm equal to the
the daylight spectfd) can also be incorporated, but they mean norm of the vectors in the spectral database. The
will not be used in the following. logarithm of this function is approximated by the eigenvec-
One hypothesis that we will often use is the assumptionior expansion, and the coefficients in this expansion are
that the distribution of the reflection coefficienis has the listed in the second column of Table Il. The first column of
same modes as the coefficients computed from the spectr@ihble Il contains the modes of the distributions of the
database. This is certainly not the case in reality, since thexpansion coefficients computed from the log-spectra in the
spectra in the database appear with different probabilities idatabase. Figure 2 shows these values in a diagram, and Fig.
real scenes. Better estimates of the modes opthéistri- 3 shows the corresponding spectra computed from the
butions can be obtained by incorporating further knowledgenodes of the first four coefficients (the upper and lower
about the image formation process. A simple way to comspectra are the spectra from the database, which have the
pensate the different probabilities of the colors is by counthighest and lowest norm, respectively). Apart from a small
ing each color only once. deviation in the shorter wavelength region, the two assump-
Another guess about the values of the modes of the&ons lead to nearly identical spectra.
distributions of thep, coefficients can be obtained via the  From the modes of the distributions of the measurement
“gray world hypothesis” (see Ref. 2, p. 512). This assumpcoefficientsu, and the modes computed from the spectral
tion states that the mean over all reflectance functions igatabase (column one in Table Il or the expansion coeffi-
independent oh: cients in the second column of Table I1), the values of the
) shift parametersy, can be computed. From thesg, a
spectrum can be derived by exponentiation of the linear
In our experiments, we selettin the range from 400-750 combination of the log-eigenspectra. This spectrum will be
nm and choose the value of the constansuch that the called a relative illuminant. In the case where the hypothesis

mean r(x,A) = .

Adonca 178, Facbr: W00 Acacirce Ueds, Farr: 800

Eror e
H H

0 « g 1 2 >
Aewrctmaton crimt Arpeondmaton crter

(a) LTS (b) LMedS

FIG. 9. Error distributions for two different images and A-source.
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using the CIE primary stimulk, Y, andZ.* From the ¥, Y,
Z) vector, the chromaticity vectorx( y, z) is computed as

X Y,2) 5
YD =55V 2 ©

In the following, denote the chromaticity vectors of the
image RGB-vector and the database spectrur@by (X;,
Y, Z;) and C(X,, Y. ZJ), respectively. The following
methods to compute the distance betwégrand C, were
used:

. ) . ) X, y): The distance betweed, andC, is thel* norm of the
about the statistical properties of the coefficients is true, th X, y)-part, i.e.:

relative illuminant is an approximation of the true illumi-
nant. For images in general, we can interpret the shift disty(C;, CJ = |x — xd + |yi — yd. (7)
parametersa, as a characterization of the global color

distribution of the image. The parameter vectof)(has  (u, v): This metric is thel* norm in the coordinates: =
then the role of a coordinate vector, which can be used i « X/(X + 15%Y + 3%Z) and v = 9=* Y/(X +
color-image retrieval applications. 15 + 3 = Z) resulting in

e S S SOOI VUM VU
S wo 4 sm 0 a0 e J0 70 o

FIG. 10. A-source spectrum and its estimators.

diSLv(Ci! CS) = |u| - US‘ + |vi - US|' (8)
RGB TO SPECTRUM CONVERSION

) ) o . (a, b): The chromaticity coordinates are defined as=
True multispectral imaging is today only used in a fewgqq x (X3 — Y13 = 200 (Y3 — 73 and

application areas such as remote sensing. The vast majority

of color images is, however, stored in one of the three- dist,(Ci, C) = |a; — ad + |b; — by. (9)
dimensional color systems such as RGB, or CIE-related
systems like Lal.22.30 (This is essentially thé.a*b* system, where reference

A conversion from these descriptions to the spectrawhite has K, Y, Z) coordinates (1, 1, 1) and large enough
domain is needed before the algorithm can be applied. Thimtensity values.)
is an ill-defined problem, since many different spectra will(log, log): Since we would like to use a table-lookup
be mapped to the same coordinate vector in a three-dimefrased conversion, we want the converted chromaticity
sional coordinate system, an effect known as metamerismiectors of the database spectra to fill a rectangle as

In the following, we assume that we are given a digitalevenly as possible. Therefore, we introduced the follow-
color image in RGB-format. Given the RGB vector at ing conversion of theX, Y, Z) vectors: First we compute:
positionx in an image, we have to estimate which spectral(¢, ) = (log(X) — log(Y), log(Y) — log(2)), which is
vectorm(A, x) corresponds to this RGB-vector. The sim- similar to the Lab conversion. Then we shift and scale
plest estimation computes the RGB-coordinates for all elethem as (£ — E(£))/S(€), (n — E(1))/S(n)) (whereE andS
ments in the spectral database and defines the spectruthenote the expectation and the standard deviation), and
m(A, x) as the nearest neighbor in RGB-space. This idinally a 45° rotation is applied. The chromatic distance
unreliable due to the noneuclidean structure of the RGBbetweenC, andC,is now thel® norm of the difference in
space. In the experiments described below, we first separatkese new coordinates.
the intensity and the chromaticity properties of the RGB- For each element in the spectral database, we computed
vector and then we find the database spectrum with the beis coordinates in each of the four coordinate systems de-
matching chromaticity values. scribed above. In Fig. 4, the distributions of the resulting

One motivation for this separation lies in the different position vectors are shown for the four coordinate systems.
ways that these values are obtained. The range of the RGB
values (usually . . .255) is given by the hardware require-
ments of the digital image processing hardware, whereas the ESTIMATING THE ILLUMINATION
scaling of the spectral measurements in the database is LIGHT SPECTRUM
determined by the physics of the measurement process.

Which spectrum is selected for a given RGB-vector de-Using the table lookup described in the previous section
pends on the coordinate system used in the chromaticitgives, for each selected RGB-vector in the image, the spec-
space. We experimented with the four different systems asum in the database with the most similar chromaticity
follows: a given RGB-vector is first converted ®YZ  properties. The norm of this spectrum vector is then multi-
coordinates using the linear transformation specified by thelied with a normalizing factor, which compensates the
CIE-1931 RGB- anXYZsystems (Ref. 1, p. 139). For the intensity differences between the image RGB-vector and the
spectra in the database, th& Zcoordinates are computed database spectrum. Expanding the logarithm of this spec-
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(a) (b)
FIG. 11. Postcard image: (a) indoor illumination; (b) blue light.

trum in eigenvectors of the set of log-database spectraach coefficient, a robust mode estimator has to be em-
results in the valueg, (x) introduced in Eq. (1). ployed. In a Bayesian framework, the mode is a MAP
The distribution of the expansion coefficients can be veryestimator, which minimizes the uniform error cost func-
diverse. This can be seen in Fig. 5, which shows the distrition [Ref. 31, p. 210]. In robust statistics several mode
bution of the first four componenis,, k = 1 ...3 com- estimators were developed. We used the least trimmed
puted from the spectral database. squares (LTS) and the least median of squares (LMedS)
To estimate the mode (the most probable value) foestimators$2 The same mode estimator is used to find the

»
VALLEDEB

(a) (b)
FIG. 12. Spectral normalization intensity threshold using (a) 37.46% vs. (b) 99.93% of the pixels.

—_——————

(a) (b)

FIG. 13. Spectral normalization based on 99.93% of the pixels: (a) with and (b) without histogram equalization.
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(a) (b)

FIG. 14. (a) Spectral normalization vs. (b) RGB normalization.

most probable value of the measurement coefficientshould take into account the intensity values at various
w(X) and the database coefficiemgx). The value of the positions. We include only the pixels with gray values
shift parameter, is given by the difference between the above a given threshold in the estimation process. Figure 6
two modes. shows how the estimated spectrum depends on this thresh-

In our experiments, we also found that, in the computa-old. (The numbers show the percentage of all pixels that
tion of the estimated relative illumination spectrum, onewere incorporated into the estimation.)

(b)

(c) (d)

FIG. 15. Regularization: (a) threshold 2, regularization 0; (b) threshold 2, regularization 60; (c) threshold 5, regularization 0;
(d) threshold 5, regularization 60.
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(a) (b)

FIG. 16. Image of the same scene captured with (a) normal lens and (b) telephoto lens.

CORRECTION The best linear estimator of the centered varidk{l®, x)

In the case where the image formation mosle= R+ Lis A(A) is [Ref. 33, Section 4.4.2]
correct and the estimated light souiicés equal to the true L) BAA)(M(A, %) — A(L))
sourceL, the reflection function can be computedRis= L2(A) B2 + »2
M/L. In reality, the spectrurh computed from the image is
only an estimation of the true illumination characteristic. ~For the original variabl®, this leads after some algebraic
This is a typical ill-posed problem in which small estimation manipulations to the estimator
errors may lead to large errors in the final result. Regular-
ization is a standard technique to avoid these effects. WE&( AX) ~
applied it as follows. '
In the original model:M(A, X) = R(A, X) - L()A) the 203y 2 2
reflectanceR(A, x) is regarded as a random variable with (L) 2L(/\)]ZB W) +2V) A
meanA(\) and variancd?(A). The values ofA andB? are LA B (A) + v
estimated from the database spectra. = M(A,%) - a,(\) + b (A).
The differences between the real imaging process and its ! !
simplified model are collected in the random variablgith ~ This is the restoration formula used in the implementation.
mean zero and varianag. This leads taM(A, x) = L(A) - The values oA andB are estimated from the database, and
R(A, X) + e. the value ofi? is a free parameter that describes the confi-

(10)

L(A) B%(A) M(A,x)
L%(A) B%(A) + v2

11)

FIG. 18. Result of spectral-based normalization experiments.
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i POSTPROCESSING

Using the spectral-based normalization method results in a
restored spectrunR(A, x), which is an estimation of the
. / AN reflectance properties of the object. It can, therefore, be used
I S to compute the appearance of the object under any other
T / illumination, simply by pointwise multiplication of the es-
timated spectrum and the spectrum of the light source.
LR o B For a conversion from the spectral domain to a three-
FIG. 19. Estimated illumination spectra from street images: dimensional coordln.at.e system, like RGB, to be megnmgfu},
(solid) normal lens; (dashed) telephoto lens. the spectrum must lie in the gamut of the output device. This
is not automatically the case, if we restore the spectrum with
the procedure described above. In practice it is, therefore,

dence in the estimate. (Note thatis global, whileA andB often necessary to apply some postprocessing to the esti-
depend on the wavelength.) ' mated spectra. In our current implementation, we first con-

The distribution of the variancB?(\) as computed from vert the spectra to RGB vectors and then we apply intensity-

the spectral database is shown in Fig. 7. It shows that fopased postprocessing methods. Usually we truncate

short wavelengtha the restored value dR(A, x) mainly nggatlve RGB \./alu.es and we apply a gray-valqe.based
depends on the average vald@\), whereas the measured hlstogram-equallgatlon to the correcteq image. This is usu-
valueM()) is dominating for the long wavelength region. ally necessary, since the.raw-rgstoratlon usually leads to a
Examples of the form of the functiorgg,(A) andb,,(A) for greatly reduced contrast in the image.

various values of the regularization parametere shown

in Fig. 8. EXPERIMENTS

In many correction problems, an input RGB-image has tq the first seri f . N imulated th i
be converted into an output RGB-image. For such applica_ ' - < ISt SETES oT experiments, we simuiated the estima-

tions it is often unnecessary to compute the nonlinear spe(E'—On of a known Itlggttsourcelﬁls foII:)vvls'. First, Elr']r? RGB.'?pL.Jt
tral-based correction pixel-by-pixel. A computationally Image IS converted to a mutispectral image. fhen pointwise

more attractive approach is to replace the nonlinear estingpu't?plicaﬂon with a known Iight source gi\{es the simulated
tion [like the one described in Eq. (11)] by the Iinearmultlspectral measurement image. The input to the algo-
approximation rithm is this RGB-converted multispectral image. From this

RGB image, the illumination spectrum is estimated and
re=A-r,+ b, (12) compared with the true spectrum.
In the series of experiments we investigated the role of
several factors:

wherer, is the corrected output RGB-vector, is the
original RGB-vectorA is a 3X 3 matrix, andb is a vector.
For the zero vectob, this is one of the most often used
methods for color correction (see Ref. 8 and Section 5.12 in
Ref. 22).

One general method to find a suitable mattixand a
vectorb for a given relative illuminant spectrutn is the
following. In the first step, it is assumed that the estimated
illuminant L is correct, and the spectra in the database are
multiplied with the illuminantL to find a representative
collection of reflected spectra. These spectra are then con-
verted to RGB coordinates. The result is a matixon-
taining the RGB-vectors of the spectra under the assumed ™
illumination. In the second step, the desired inversion pro-
cedure (as in Ref. 8) is applied to these simulated illumi-
nated object reflectance spectra given the corrected spectra. |
These corrected spectra are also converted to RGB resulting
in a matrixG of RGB-vectors. Now the matriA and the
vectorb are computed as solutions of the matrix equation
A - F + b = G. This equation can then be solved by
familiar methods like the least-squares or total-least-
squares. In our experiments, these two methods always

4 different input images

1-6 eigenvectors to approximate the log-spectra
LTS and LMedS mode detectors

Four CIE light sources A, B, C, and D65

. (X, y) and (log, log) chromaticity metric

arwN PP

‘Straata: hloan, sigenwactors & selected points Nermaized Straats: Momn, aigerwactors 8 talactad pointa

4/
P
P

G oz e% o8 o o4 045 05 085 B oz o4 o4 05 085
x

produced comparable results, and the resulting RGB-images (a) (b)
were visually more or less identical to the images obtaineg G, 20. Chromaticity distributions of normal and telephoto
by the spectral-based correction images. images: (a) original images; (b) after normalization.
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valley..000.jpg Valley..000.ipg Valley..000jpg Painti..000.jpg

Flowers,0000.ipg Leaves 0006 jpg Flowers.0000.jpg IMisc,0001.jpg valley..001.jpg

FIG. 21. Color-based search in image database.

The main conclusions from these experiments is that théion. In Figs. 12—-15 some of the results with these images
LMedS and the LTS estimators nearly always gave identicaire summarized.
results. The (log, log) metric was always slightly better than Figure 12 shows the result of the direct spectral normal-
the (x, y) metric, only in one case [Fig. 9(a), solid line ization procedure [regularization parameier= 0 in Eq.
based on (log, log) and dashed line basedxry)] was this  (11)] based on the spectra estimated from 37.46% and
difference significantly higher. Using three eigenvectors t@99.93% of the input pixels (see Fig. 6 for the estimated
approximate the log-spectrum usually gave the lowest erroispectra).
The error distribution for one of the images illuminated by Figure 13 illustrates the effect of the gray-value based
the A-source (which has the strongest effect on the imaghistogram equalization on the final image. Figure 14
colors) is shown in Fig. 9(b). The spectrum of the A-sourcecompares the result of the normalization in the spectral
and the estimated spectral distributions computed from thdomain with the normalization based on the RGB-to-
same image as in Fig. 9(b) is shown in Fig. 10. Here thre)RGB conversion method described in Eq. (12). Both
eigenvectors and the LMedS and LTS-estimators were usedormalization procedures are combined with the gray-

The next experiment used more realistic conditions. Avalue histogram-equalization. The resulting images are
simple scene was captured under two different illumina-more or less identical.
tions. In Fig. 11(a), normal indoor light conditions were The images in Fig. 15 finally show the effect of the
used, whereas in Fig. 11(b) the light box 2412 of the Aristoregularization parameterin Eq. (11). In the upper row
Grid Lamp Products, Inc. provided a mostly blue illumina- [images (a) and (b)], 37.46% of the pixels were used in

o )

Mtall..000.jpg MtWall..000.jpg mMtvall..000.jpg Painti..000.jpg Fabric.0016.ipg

Fabric.0015.jpg Fabric,0016.jpg Fabric.0015.jpg Food.0002,ipg Paintl..000.jpg

FIG. 22. Color-based search in image database.

CrassL.006,jpg CrassL..006.jpg GrassL..008,jpg GrassL.004.jpa

Terrain0002.jpg Leaves 0003 jpg GrassP..006.jpg Leaves.0016.pa Leaves.0016.jpg

FIG. 23. Color-based search in image database.
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the estimation, whereas 66.39% entered in the computaty distributions. They are shown with the solid line cursor
tion of the images in the lower row [(c) and (d)]. In the for the normal lens images, and with the dashed cursor for
computation of the images in the left column [(a) and (c)]the telephoto images. The effect of the normalization is
no regularization is used, whereas for the right imageslearly revealed.
[(b) and (d)] the regularization value 60 was used. (See In the last experiment, we use the relative illuminant to
Fig. 8 for the form of the multiplicative and additive locate images in a database. The database used consisted of
restoration functions, andb,.) the 473 color texture images in the VISTEX database.* For
Beside the well-known dependence on the spectral comeach of the images in the database we compute first the
position of the illuminant (e.g., the recorded colors changeelative illuminant as described before. In the experiments
significantly when the illumination changes from daylight to below, we used 6 eigenvectors and we estimated the relative
indoor incandescent light), an image can also appear signifluminant from 5000 randomly selected pixels in each
icantly different when recorded in differently calibrated image. Once these spectra are computed, they can be used to
systems (photographic and/or electronic). search in the database for images that have a certain global
In Fig. 16, two color images of the same scene are showrgolor distribution. In Figs. 21-23, we illustrate some of the
scanned in from Ref. 34, pp. 90-91. The image in Fig. 16(ajesults. In these experiments, we select first one image in the
was taken from 50 m, while the image in Figure 16(b) wasdatabase as a prototype image and then we find those
taken with a telephoto lens from 1000 m. In the latter, all theimages in the database with the most similar color distribu-
colors appear less saturated and the gray tones dominatén. For this we normalize first all relative illuminant spec-
Note that the final result of the scanning process is not @&ra to norm one to eliminate the influence of intensity
photometrically correct description of the scanned imagevyariations, and then we use the scalar product of the two
since commercial scanners usually apply color transformanormalized relative illuminants as similarity measure for the
tions to produce visually more pleasing results. global color distributions of these two images. Intensity
We then investigated the normalization of the street im-{properties of the images are ignored, because only normal-
ages in Fig. 16. First, the illuminants relative to the com-ized spectra enter the similarity computations. Figures
plete Munsell/NCS system were computed. This informa-21-23 show the prototype image in the upper-left corner of
tion characterizes the chromatic properties of the imagethe image. The other nine images are the most similar
and can be used for indexing into a database. They arenages found in the database (where the images are sorted
shown in Fig. 19. Note that the less saturated telephotérom left to right, top to bottom with falling similarity
image leads to a flatter estimated spectrum. values). Note that the database contains several images of
For each of the two images, its estimated relative illumi-the same texture at different resolutions and, therefore, the
nant was then used to adjust the global color distribution oame texture may appear more than once.
the image to the distribution of the Munsell/NCS system. Figures 21 and 22 show that the matching results are
Using both the spectral- and the RGB-normalization procereasonable for homogeneous textures, whereas the results
dures we obtained two normalized images. The results oére less intuitive for images with different textures such as
these experiments are shown in Fig. 17 for the RGB-baseHig. 23.
normalization and in Fig. 18 for the spectral based normal-
ization.
The top row shows the original images as in Fig. 16. In DISCUSSION AND CONCLUSIONS

the middle row are the results from the RGB-normaIization,We have shown that the log-eigenvector expansion of color

and in the bottom row the results for the spectral normalgpecira defines a coordinate system that allows an efficient
Ization. o e o solution to problems related to color constancy. Combining
A more quantitative description of the normalization ef- ;4 log-spectral space with color-appearance systems

fects can also be obtained. In Fig. 20, the chromaticityhich are based on human color vision) allows a reliable
distributions (in CIE-xy space) of the two images (a) beforéggiimation of the global color characteristics of a color

and (b) after normalization are shown. The distributions ar€mage. The conversion procedures between this and other
based on the chromaticity vectors of the same, 1000 ransqqor systems however, need, further study.

domly selected .pi.xels. The points originating in the qormal The interpolation procedures used to convert RGB-vec-
Ien; images (original and processgd) are me}rked with a 45 1o spectra were sufficient in our application, because
while the points from the telephoto images witbaFor all o)y statistical properties of a large number of spectra were
four images it was assumed that the images are vieweflggged. More difficult was the conversion from the spectral
under D65 daylight and the chromaticity coordinates werqnresentation to quantized three-dimensional color repre-

computgd agcordingly. . sentations like RGB. Here we found that a number of
The directions of the two eigenvectors of each chroma-

. Rt "“practical problems influenced the final results in a funda-
ticity distribution were then computed, and are shown with

solid lines for the normal lens images and dashed lines for

the_telephoto images. The centers of these eigenvector Co-« hitp://www-white.media.mit.edu/vismod/imagery/VisionTexture/
ordinate systems are located at the means of the chromaticistex.html.
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mental way. Problems that had to be considered included:2
the handling of spectra that are outside the gamut of the

chosen output device, and quantization methods that use tHé

available number of colors efficiently and that at the same,
time preserve the structure in the spectral space.

15.
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