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Abstract: We present a statistical technique to characterize
the global color distribution in an image. The result can be
used for color correction of a single image and for com-
parison of different images. It is assumed that the object
colors are similar to those in a set of colors for which
spectral reflectances are available (in our experiments we
use spectral measurements of the Munsell and NCS color
chips). The logarithm of the spectra can be approximated by
finite linear combinations of a small number of basis vec-
tors. We characterize the distributions of the expansion
coefficients in an image by their modes (the most probable
values). This description does not require the assumption of
a special class of probability distributions and it is insen-
sitive to outliers and other perturbations of the distribu-
tions. A change of illumination results in a global shift of the
expansion coefficients and, thus, also their modes. The
recovery of the illuminant is thus reduced to estimating
these shift parameters. The calculated light distribution is
only an estimate of the true spectral distribution of the
illuminant. Direct inverse filtering for normalization may

lead to undesirable results, since these processes are often
ill-defined. Therefore, we apply regularization techniques in
applications (such as automatic color correction) where
visual appearance is important. We also demonstrate how
to use this characterization of the global color distribution
in an image as a tool in color-based search in image
databases.© 1999 John Wiley & Sons, Inc. Col Res Appl, 24, 98–111,

1999
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INTRODUCTION

A color image is always the result of a complex interaction
between three different components: the optical properties
of the scene, the illumination sources, and the sensors.
Estimating the influence of these three factors on the mea-
sured signals is one of the main goals of color image
analysis. The influence of the sensors is usually known, and
the remaining problem is to separate the effects of the scene
properties and the influence of the illumination. The human
visual system can approximately solve this problem, a phe-
nomenon known as color constancy (see Ref. 1 for an
introduction and references). The problem is also actively
pursued in computer vision and image processing, but a
satisfactory solution for real world conditions is yet to be
found.2–18

In this article, we describe the overall color distribution in
an image (or an image-patch) as follows. First the color of
a single point in an image is defined by the logarithm of its
spectrum. This log-spectrum is then approximated by the
first few terms in a series expansion. The coefficients are
computed for all points under consideration and for each
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coefficient the statistical distribution is characterized by its
mode, i.e., its most probable value. The properties and the
performance of the description will be demonstrated with
some examples, where we apply it to color image normal-
ization and color texture characterization.

In our image formation model, we assume that the spec-
tral distribution M(l, x), measured at locationx in the
image can be written asM(l, x) 5 R(l, x) z L(l), where
R(l, x) is the reflectance function at that location andL(l)
the spectrum of the light-source. Using the logarithm, a
linear relation,m(l, x) 5 r (l, x) 1 l (l), is obtained. Note
that the lighting is assumed to be uniform across the inves-
tigated part of the image. Here we do not model more
complicated interactions between the scene, the illumina-
tion, and the sensors such as body-reflection or fluores-
cence.19,20 Expressing the functionsm, r and l in the same
coordinate system spanned by functionsbk(l), we obtain
the following series expansions:

m~l, x! 5 O
k

mk ~ x!bk~l!,

r ~l, x! 5 O
k

rk~ x!bk~l!, l ~l! 5 O
k

akbk~l!. (1)

Thus, for a givenk we obtain

mk~ x! 5 rk~ x! 1 ak, (2)

i.e., the effect of the illuminant on thek-th expansion
coefficient of the log-reflectance function is a location in-
dependent, constant shift. The coordinate system used in
this article is based on an eigenvector expansion and will be
described later.

In our applications, we will not use Eq. (2) pointwise, i.e.,
for individual positionsx, but we will use the fact that the
probability distributions of the coefficientsmk( x) andrk( x)
are related by the shift coefficientak. The value ofak can,
thus, be estimated by comparing the two probability distri-
butions or parameters derived from them. In this article, we
choose to describe probability distributions by their modes,

i.e., their most probable value. The use of the mode is
motivated by the need for a robust location estimator. We
want to extract the “center” of the distribution for each
coefficient. Using maximum likelihood would implicitly
assume that the underlying distribution is normal, which is
probably not the case for real data. The mode is insensitive
to both skew and more, importantly, long tails (outliers) of
the distribution. Note that the median (another robust loca-
tion estimator) will be biased for a skewed or long tailed
distribution. Modeling such distributions as a mixture of
Gaussians makes the analysis cumbersome. The mode, on
the other hand, can be computed by a simple algorithm,
essentially a window sliding over the data. It can be shown
that for unimodal distributions the result remains correct
even when almost half the data is distributed along one of
the tails. The mode is a maximuma posteriori (MAP)
estimator, since it corresponds to the maximum of the p.d.f.
of the given data.

Among the possible applications of Eq. (2) we mention
the following:

● Color constancy: If the modes of the distributions of the
coefficientsmk and rk are known, then the value ofak

and, thus, an estimation of the light source spectrumL(l)
can be computed. The modes of therk distributions might
be known from previous experience or, in the case of a
dynamically changing illumination, they could be known
from an estimation computed from a previous image.

● Image normalization: A desired global color impression
of a color-corrected image can be obtained through a
definition of the modes ofrk.

● Color description: In image database searches, it is often
useful to find images with a given overall color impres-
sion. In this case, the modes of therk distributions are
used as origin and the values ofak characterize the color
distribution in the image. We will later introduce the

FIG. 1. Error function of the approximation order.

TABLE I. The relative mean approximation error.

Order N Error ÊN

Error log
coordinates

EN

1 28.7639 34.5235
2 13.5956 15.9981
3 6.6864 7.9114
4 4.7054 6.3125
5 3.4572 5.2342
6 2.9545 4.4786
7 2.4831 3.6910
8 2.1312 3.3019
9 1.6335 3.0091

10 1.2080 2.3878
11 0.9910 2.2866
12 0.7635 1.6729
13 0.6565 1.6152
14 0.5690 1.5403
15 0.4471 0.9986
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concept of a relative illuminant and describe how to use
it for color image retrieval.

The rest of the article is organized as follows: In Section
2, we describe how the basis functionsbk(l) are computed
and we investigate the properties of the resulting coordinate
system. In almost all applications, the spectral description of
the color at a point in an image is not available. A conver-
sion from the given color system to the spectral description
is, therefore, necessary before the basic algorithm can be
applied. In Section 3, we discuss this conversion for the case
where the pixels are RGB-vectors. Section 4 describes the
estimation of the illumination light spectrum, and Section 5
its application in the restoration or compensation of the
color shift. Section 6 discusses some useful postprocessing
techniques, and the last section illustrates the results of
some experiments.

BASIC ALGORITHM

Since human color perception is based on three different
receptor types in the retina, the traditional approach towards
color is to use three-dimensional coordinate systems. Each
of these systems was designed for a certain type of appli-
cation, and a substantial part of color science deals with the
study of their properties and the conversion procedures
among them. Examples are color monitors (RGB), color
printing (CMY), computer vision and computer graphics
(IHS), and the colorimetry (CIE-systems) such as Lab, Luv,
etc. For exact definitions and descriptions see Refs. 21 and
22. None of the systems is especially suited for investigation
of color constancy algorithms, because a change in the
spectral characteristics of the illumination source often
leads to complicated transformations in the 3-D coordinate
space.

Our approach is based on the assumption that the space of
electro-magnetic spectra, which is relevant for human color
vision, can be described by a set of the order of a few

thousand representative colors.23 The representative colors
are chosen based on perceptual criteria, i.e., they incorpo-
rate the subjectiveness of human color perception. The most
well-known color-appearance systems are the Munsell sys-
tem24 and the Natural Color System (NCS).25

High-resolution measurements of the spectra of color
chips for these representative colors are now available.* For
each of the 1269 chips of the Munsell System, their spectra
was measured from 380–800 nm at 1-nm steps, while the
1513 samples from the NCS system were measured from
380–780 nm at 5-nm intervals. These measurements were

* The Munsell spectra are available from the Information Technology
Dept., Lappeenranta University of Technology, Lappeenranta, Finland.
The NCS spectra were obtained from the Scandinavian Color Institute in
Stockholm courtesy of B. Kruse.

FIG. 2. Modes computed from the database and the “gray
world” hypothesis.

FIG. 3. Spectra computed from the database and the “gray
world” hypothesis.

TABLE II. Modes from database and gray world as-
sumption.

Eigenvector
number

Mode
database

Coefficient
gray world

1 29.1353 29.7295
2 1.3931 1.0771
3 20.5151 20.2446
4 20.0130 20.1857
5 20.1320 20.0849
6 20.1106 20.0093
7 20.2579 20.0509
8 0.1048 0.0767
9 0.1099 0.0799

10 20.2045 20.1047
11 20.0394 20.0105
12 0.1370 0.0806
13 0.0134 0.0096
14 20.0439 20.0110
15 0.1156 0.0508
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combined in one set consisting of 2782 spectra (usually
sampled in 5-nm steps from 400–750 nm). In the following
we refer to this set of spectra as the spectral database.

These spectra are, of course, the spectra of the pigments
used in the production of the color chips, they are not
spectra of real world objects. The usage of these spectra is,
however, necessary, because (to our knowledge) no equally
comprehensible, representative set of natural spectra is
available. Furthermore, we are only interested in some
statistical properties of larger collections of colors, and the
assumption that these properties are very similar for the
color chips and the natural colors seems to be reasonable.

Most approaches to computational color constancy are based
on the assumption that the reflectance spectra can be described by
a low-dimensional model.26–29 Usually, the coefficients in the
eigenvector expansion of the spectra are used as variables. In this
article, we do not approximate the spectra themselves by linear
combinations of eigenvectors, but we use an expansion in loga-
rithmic coordinates instead. We compute first the eigenvectors of
the logarithmic spectra in the spectral database. Then we approx-
imate the logarithm of a given spectrum by a linear combination

of the first few eigenvectors. From this the original spectrum can
be recovered by exponentiation. This expansion has always a
higher minimum-mean-squared-error than the eigenvector expan-
sion, but we found that the differences for approximation orders
higher than two are small.

If S(l) is a positive function of the wavelength variablel,
thens(l) 5 ln(S(l)) is the logarithm of this function. Lower-
case letters always denote the logarithm of the capital symbols.
By b̂n(l), we denote the eigenvectors computed from the
original spectral database, andbn(l) is the n-th eigenvector
computed from the logarithm of the spectra in the same spec-
tral database. The number of eigenvectors used in the approx-
imation isN. TheN-term approximation of the vectorS(l) in
the b̂n(l) system is given byŜN, and the corresponding ap-
proximation in thebn(l) system bySN:

ŜN 5 O
k51

N

akb̂k andSN 5 e(k51
N bk bk. (3)

The mean approximation errors are computed as

FIG. 4. Chromaticity coordinates of the database spectra.
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EN 5 1003
meaniS2 SNi

meaniSi
(4)

ÊN 5 1003
meaniS2 ŜNi

meaniSi ,

where the mean is computed over all spectra in the database.

In Table I and Fig. 1, these errors are summarized. In our
image formation model 1, we will always use the eigenvec-
tors computed from the log-spectra.

In most applications, only a few measurements derived
from the spectrumM(l, x) (such as the tristimulus values)
will be available. In this case, the spectrum has to be
estimated from the measurements. One way this can be done
is described in the next section. Even when the whole
spectrum is known, we see from Eq. (2) that only the
distributions of the coefficientsmk( x) are available,
whereas the distributions of the reflection coefficientsrk( x)
and the constantsak are unknown.

In such a case, we have to make some assumptions about
the distributions of the coefficientsrk or ak, or both. This is
similar to the Bayesian framework used by Brainard and
Freeman.2 In our calculations, these assumptions will, how-
ever, enter only as the values of the modes of the distribu-
tions of the coefficients. We do not need to specify the
complete distribution as in the Bayesian approach. Statisti-

FIG. 5. Histograms for log-database.

FIG. 6. Estimated spectrum as a function of the intensity
threshold.

FIG. 7. The mean- A(l) (a) and variance-function B2(l) (b) computed from the database.
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cal properties of the set of possible illumination spectra (like
the daylight spectra22) can also be incorporated, but they
will not be used in the following.

One hypothesis that we will often use is the assumption
that the distribution of the reflection coefficientsrk has the
same modes as the coefficients computed from the spectral
database. This is certainly not the case in reality, since the
spectra in the database appear with different probabilities in
real scenes. Better estimates of the modes of therk distri-
butions can be obtained by incorporating further knowledge
about the image formation process. A simple way to com-
pensate the different probabilities of the colors is by count-
ing each color only once.

Another guess about the values of the modes of the
distributions of therk coefficients can be obtained via the
“gray world hypothesis” (see Ref. 2, p. 512). This assump-
tion states that the mean over all reflectance functions is
independent ofl:

meanx r ~ x,l! 5 g. (5)

In our experiments, we selectl in the range from 400–750
nm and choose the value of the constantg such that the

norm of the resulting constant vector has norm equal to the
mean norm of the vectors in the spectral database. The
logarithm of this function is approximated by the eigenvec-
tor expansion, and the coefficients in this expansion are
listed in the second column of Table II. The first column of
Table II contains the modes of the distributions of the
expansion coefficients computed from the log-spectra in the
database. Figure 2 shows these values in a diagram, and Fig.
3 shows the corresponding spectra computed from the
modes of the first four coefficients (the upper and lower
spectra are the spectra from the database, which have the
highest and lowest norm, respectively). Apart from a small
deviation in the shorter wavelength region, the two assump-
tions lead to nearly identical spectra.

From the modes of the distributions of the measurement
coefficientsmk and the modes computed from the spectral
database (column one in Table II or the expansion coeffi-
cients in the second column of Table II), the values of the
shift parametersak can be computed. From theseak, a
spectrum can be derived by exponentiation of the linear
combination of the log-eigenspectra. This spectrum will be
called a relative illuminant. In the case where the hypothesis

FIG. 8. The multiplicative (a) and additive (b) restoration functions an(l) and bn(l) for various regularization levels.

FIG. 9. Error distributions for two different images and A-source.
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about the statistical properties of the coefficients is true, the
relative illuminant is an approximation of the true illumi-
nant. For images in general, we can interpret the shift
parametersak as a characterization of the global color
distribution of the image. The parameter vector (ak) has
then the role of a coordinate vector, which can be used in
color-image retrieval applications.

RGB TO SPECTRUM CONVERSION

True multispectral imaging is today only used in a few
application areas such as remote sensing. The vast majority
of color images is, however, stored in one of the three-
dimensional color systems such as RGB, or CIE-related
systems like Lab.1,22,30

A conversion from these descriptions to the spectral
domain is needed before the algorithm can be applied. This
is an ill-defined problem, since many different spectra will
be mapped to the same coordinate vector in a three-dimen-
sional coordinate system, an effect known as metamerism.

In the following, we assume that we are given a digital
color image in RGB-format. Given the RGB vector at
positionx in an image, we have to estimate which spectral
vector m(l, x) corresponds to this RGB-vector. The sim-
plest estimation computes the RGB-coordinates for all ele-
ments in the spectral database and defines the spectrum
m(l, x) as the nearest neighbor in RGB-space. This is
unreliable due to the noneuclidean structure of the RGB-
space. In the experiments described below, we first separate
the intensity and the chromaticity properties of the RGB-
vector and then we find the database spectrum with the best
matching chromaticity values.

One motivation for this separation lies in the different
ways that these values are obtained. The range of the RGB
values (usually0 . . .255) is given by the hardware require-
ments of the digital image processing hardware, whereas the
scaling of the spectral measurements in the database is
determined by the physics of the measurement process.

Which spectrum is selected for a given RGB-vector de-
pends on the coordinate system used in the chromaticity
space. We experimented with the four different systems as
follows: a given RGB-vector is first converted toXYZ-
coordinates using the linear transformation specified by the
CIE-1931 RGB- andXYZ-systems (Ref. 1, p. 139). For the
spectra in the database, theXYZ-coordinates are computed

using the CIE primary stimuliX, Y, andZ.1 From the (X, Y,
Z) vector, the chromaticity vector (x, y, z) is computed as

~ x, y, z! 5
~X, Y, Z!

~X 1 Y 1 Z!
. (6)

In the following, denote the chromaticity vectors of the
image RGB-vector and the database spectrum byCi 5 (Xi,
Yi, Zi) and Cs(Xs, Ys, Zs), respectively. The following
methods to compute the distance betweenCi andCs were
used:
(x, y): The distance betweenCi andCs is thel1 norm of the
( x, y)-part, i.e.:

distxy~Ci, Cs! 5 uxi 2 xsu 1 uyi 2 ysu. (7)

(u, v): This metric is thel1 norm in the coordinates:u 5
4 p X/(X 1 15 p Y 1 3 p Z) and n 5 9 p Y/(X 1
15 p 1 3 p Z) resulting in

distuv~Ci, Cs! 5 uui 2 usu 1 uv i 2 vsu. (8)

(a, b): The chromaticity coordinates are defined as:a 5
500 p (X1/3 2 Y1/3), b 5 200 p (Y1/3 2 Z1/3) and

distab~Ci, Cs! 5 uai 2 asu 1 ubi 2 bsu. (9)

(This is essentially theLa* b* system, where reference
white has (X, Y, Z) coordinates (1, 1, 1) and large enough
intensity values.)
(log, log): Since we would like to use a table-lookup
based conversion, we want the converted chromaticity
vectors of the database spectra to fill a rectangle as
evenly as possible. Therefore, we introduced the follow-
ing conversion of the (X, Y, Z) vectors: First we compute:
(j, h) 5 (log(X) 2 log(Y), log(Y) 2 log(Z)), which is
similar to the Lab conversion. Then we shift and scale
them as ((j 2 E(j))/S(j), (h 2 E(h))/S(h)) (whereE andS
denote the expectation and the standard deviation), and
finally a 45° rotation is applied. The chromatic distance
betweenCi andCs is now thel1 norm of the difference in
these new coordinates.

For each element in the spectral database, we computed
its coordinates in each of the four coordinate systems de-
scribed above. In Fig. 4, the distributions of the resulting
position vectors are shown for the four coordinate systems.

ESTIMATING THE ILLUMINATION
LIGHT SPECTRUM

Using the table lookup described in the previous section
gives, for each selected RGB-vector in the image, the spec-
trum in the database with the most similar chromaticity
properties. The norm of this spectrum vector is then multi-
plied with a normalizing factor, which compensates the
intensity differences between the image RGB-vector and the
database spectrum. Expanding the logarithm of this spec-

FIG. 10. A-source spectrum and its estimators.
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trum in eigenvectors of the set of log-database spectra
results in the valuesmk( x) introduced in Eq. (1).

The distribution of the expansion coefficients can be very
diverse. This can be seen in Fig. 5, which shows the distri-
bution of the first four componentsrk, k 5 1 . . . 3 com-
puted from the spectral database.

To estimate the mode (the most probable value) for

each coefficient, a robust mode estimator has to be em-
ployed. In a Bayesian framework, the mode is a MAP
estimator, which minimizes the uniform error cost func-
tion [Ref. 31, p. 210]. In robust statistics several mode
estimators were developed. We used the least trimmed
squares (LTS) and the least median of squares (LMedS)
estimators.32 The same mode estimator is used to find the

FIG. 11. Postcard image: (a) indoor illumination; (b) blue light.

FIG. 12. Spectral normalization intensity threshold using (a) 37.46% vs. (b) 99.93% of the pixels.

FIG. 13. Spectral normalization based on 99.93% of the pixels: (a) with and (b) without histogram equalization.
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most probable value of the measurement coefficients
mk(x) and the database coefficientsrk(x). The value of the
shift parameterak is given by the difference between the
two modes.

In our experiments, we also found that, in the computa-
tion of the estimated relative illumination spectrum, one

should take into account the intensity values at various
positions. We include only the pixels with gray values
above a given threshold in the estimation process. Figure 6
shows how the estimated spectrum depends on this thresh-
old. (The numbers show the percentage of all pixels that
were incorporated into the estimation.)

FIG. 14. (a) Spectral normalization vs. (b) RGB normalization.

FIG. 15. Regularization: (a) threshold 2, regularization 0; (b) threshold 2, regularization 60; (c) threshold 5, regularization 0;
(d) threshold 5, regularization 60.
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CORRECTION

In the case where the image formation modelM 5 R z L is
correct and the estimated light sourceL̃ is equal to the true
sourceL, the reflection function can be computed asR 5
M/L. In reality, the spectrumL̃ computed from the image is
only an estimation of the true illumination characteristic.
This is a typical ill-posed problem in which small estimation
errors may lead to large errors in the final result. Regular-
ization is a standard technique to avoid these effects. We
applied it as follows.

In the original model:M(l, x) 5 R(l, x) z L(l) the
reflectanceR(l, x) is regarded as a random variable with
meanA(l) and varianceB2(l). The values ofA andB2 are
estimated from the database spectra.

The differences between the real imaging process and its
simplified model are collected in the random variablee with
mean zero and variancen2. This leads toM(l, x) 5 L(l) z
R(l, x) 1 e.

The best linear estimator of the centered variableR(l, x)
2 A(l) is [Ref. 33, Section 4.4.2]

L~l! B2~l!~M~l,x! 2 A~l!!

L2~l! B2~l! 1 n2 . (10)

For the original variableR, this leads after some algebraic
manipulations to the estimator

R~l,x! <
L~l! B2~l! M~l,x!

L2~l! B2~l! 1 n2

1
~@L2~l! 2 L~l!# B2~l! 1 n2! A~l!

L2~l! B2~l! 1 n2 (11)

5 M~l,x! z an~l! 1 bn~l!.

This is the restoration formula used in the implementation.
The values ofA andB are estimated from the database, and
the value ofn2 is a free parameter that describes the confi-

FIG. 16. Image of the same scene captured with (a) normal lens and (b) telephoto lens.

FIG. 17. Result of RGB normalization experiments.

FIG. 18. Result of spectral-based normalization experiments.
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dence in the estimate. (Note thatn2 is global, whileA andB
depend on the wavelength.)

The distribution of the varianceB2(l) as computed from
the spectral database is shown in Fig. 7. It shows that for
short wavelengthsl the restored value ofR(l, x) mainly
depends on the average valueA(l), whereas the measured
valueM(l) is dominating for the long wavelength region.
Examples of the form of the functionsan(l) andbn(l) for
various values of the regularization parametern are shown
in Fig. 8.

In many correction problems, an input RGB-image has to
be converted into an output RGB-image. For such applica-
tions it is often unnecessary to compute the nonlinear spec-
tral-based correction pixel-by-pixel. A computationally
more attractive approach is to replace the nonlinear estima-
tion [like the one described in Eq. (11)] by the linear
approximation

r c 5 A z r o 1 b, (12)

where rc is the corrected output RGB-vector,ro is the
original RGB-vector,A is a 33 3 matrix, andb is a vector.
For the zero vectorb, this is one of the most often used
methods for color correction (see Ref. 8 and Section 5.12 in
Ref. 22).

One general method to find a suitable matrixA and a
vector b for a given relative illuminant spectrumL is the
following. In the first step, it is assumed that the estimated
illuminant L is correct, and the spectra in the database are
multiplied with the illuminantL to find a representative
collection of reflected spectra. These spectra are then con-
verted to RGB coordinates. The result is a matrixF con-
taining the RGB-vectors of the spectra under the assumed
illumination. In the second step, the desired inversion pro-
cedure (as in Ref. 8) is applied to these simulated illumi-
nated object reflectance spectra given the corrected spectra.
These corrected spectra are also converted to RGB resulting
in a matrixG of RGB-vectors. Now the matrixA and the
vectorb are computed as solutions of the matrix equation
A z F 1 b 5 G. This equation can then be solved by
familiar methods like the least-squares or total-least-
squares. In our experiments, these two methods always
produced comparable results, and the resulting RGB-images
were visually more or less identical to the images obtained
by the spectral-based correction images.

POSTPROCESSING

Using the spectral-based normalization method results in a
restored spectrumR(l, x), which is an estimation of the
reflectance properties of the object. It can, therefore, be used
to compute the appearance of the object under any other
illumination, simply by pointwise multiplication of the es-
timated spectrum and the spectrum of the light source.

For a conversion from the spectral domain to a three-
dimensional coordinate system, like RGB, to be meaningful,
the spectrum must lie in the gamut of the output device. This
is not automatically the case, if we restore the spectrum with
the procedure described above. In practice it is, therefore,
often necessary to apply some postprocessing to the esti-
mated spectra. In our current implementation, we first con-
vert the spectra to RGB vectors and then we apply intensity-
based postprocessing methods. Usually we truncate
negative RGB values and we apply a gray-value based
histogram-equalization to the corrected image. This is usu-
ally necessary, since the raw-restoration usually leads to a
greatly reduced contrast in the image.

EXPERIMENTS

In the first series of experiments, we simulated the estima-
tion of a known light source as follows. First, the RGB input
image is converted to a multispectral image. Then pointwise
multiplication with a known light source gives the simulated
multispectral measurement image. The input to the algo-
rithm is this RGB-converted multispectral image. From this
RGB image, the illumination spectrum is estimated and
compared with the true spectrum.

In the series of experiments we investigated the role of
several factors:

1. 4 different input images
2. 1–6 eigenvectors to approximate the log-spectra
3. LTS and LMedS mode detectors
4. Four CIE light sources A, B, C, and D65
5. (x, y) and (log, log) chromaticity metric

FIG. 19. Estimated illumination spectra from street images:
(solid) normal lens; (dashed) telephoto lens.

FIG. 20. Chromaticity distributions of normal and telephoto
images: (a) original images; (b) after normalization.
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The main conclusions from these experiments is that the
LMedS and the LTS estimators nearly always gave identical
results. The (log, log) metric was always slightly better than
the (x, y) metric, only in one case [Fig. 9(a), solid line
based on (log, log) and dashed line based on (x, y)] was this
difference significantly higher. Using three eigenvectors to
approximate the log-spectrum usually gave the lowest error.
The error distribution for one of the images illuminated by
the A-source (which has the strongest effect on the image
colors) is shown in Fig. 9(b). The spectrum of the A-source
and the estimated spectral distributions computed from the
same image as in Fig. 9(b) is shown in Fig. 10. Here three
eigenvectors and the LMedS and LTS-estimators were used.

The next experiment used more realistic conditions. A
simple scene was captured under two different illumina-
tions. In Fig. 11(a), normal indoor light conditions were
used, whereas in Fig. 11(b) the light box 2412 of the Aristo
Grid Lamp Products, Inc. provided a mostly blue illumina-

tion. In Figs. 12–15 some of the results with these images
are summarized.

Figure 12 shows the result of the direct spectral normal-
ization procedure [regularization parametern 5 0 in Eq.
(11)] based on the spectra estimated from 37.46% and
99.93% of the input pixels (see Fig. 6 for the estimated
spectra).

Figure 13 illustrates the effect of the gray-value based
histogram equalization on the final image. Figure 14
compares the result of the normalization in the spectral
domain with the normalization based on the RGB-to-
RGB conversion method described in Eq. (12). Both
normalization procedures are combined with the gray-
value histogram-equalization. The resulting images are
more or less identical.

The images in Fig. 15 finally show the effect of the
regularization parametern in Eq. (11). In the upper row
[images (a) and (b)], 37.46% of the pixels were used in

FIG. 21. Color-based search in image database.

FIG. 22. Color-based search in image database.

FIG. 23. Color-based search in image database.
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the estimation, whereas 66.39% entered in the computa-
tion of the images in the lower row [(c) and (d)]. In the
computation of the images in the left column [(a) and (c)]
no regularization is used, whereas for the right images
[(b) and (d)] the regularization value 60 was used. (See
Fig. 8 for the form of the multiplicative and additive
restoration functionsan and bn.)

Beside the well-known dependence on the spectral com-
position of the illuminant (e.g., the recorded colors change
significantly when the illumination changes from daylight to
indoor incandescent light), an image can also appear signif-
icantly different when recorded in differently calibrated
systems (photographic and/or electronic).

In Fig. 16, two color images of the same scene are shown,
scanned in from Ref. 34, pp. 90–91. The image in Fig. 16(a)
was taken from 50 m, while the image in Figure 16(b) was
taken with a telephoto lens from 1000 m. In the latter, all the
colors appear less saturated and the gray tones dominate.
Note that the final result of the scanning process is not a
photometrically correct description of the scanned image,
since commercial scanners usually apply color transforma-
tions to produce visually more pleasing results.

We then investigated the normalization of the street im-
ages in Fig. 16. First, the illuminants relative to the com-
plete Munsell/NCS system were computed. This informa-
tion characterizes the chromatic properties of the images
and can be used for indexing into a database. They are
shown in Fig. 19. Note that the less saturated telephoto
image leads to a flatter estimated spectrum.

For each of the two images, its estimated relative illumi-
nant was then used to adjust the global color distribution of
the image to the distribution of the Munsell/NCS system.
Using both the spectral- and the RGB-normalization proce-
dures we obtained two normalized images. The results of
these experiments are shown in Fig. 17 for the RGB-based
normalization and in Fig. 18 for the spectral based normal-
ization.

The top row shows the original images as in Fig. 16. In
the middle row are the results from the RGB-normalization,
and in the bottom row the results for the spectral normal-
ization.

A more quantitative description of the normalization ef-
fects can also be obtained. In Fig. 20, the chromaticity
distributions (in CIE-xy space) of the two images (a) before
and (b) after normalization are shown. The distributions are
based on the chromaticity vectors of the same, 1000 ran-
domly selected pixels. The points originating in the normal
lens images (original and processed) are marked with a1,
while the points from the telephoto images with ao. For all
four images it was assumed that the images are viewed
under D65 daylight and the chromaticity coordinates were
computed accordingly.

The directions of the two eigenvectors of each chroma-
ticity distribution were then computed, and are shown with
solid lines for the normal lens images and dashed lines for
the telephoto images. The centers of these eigenvector co-
ordinate systems are located at the means of the chromatic-

ity distributions. They are shown with the solid line cursor
for the normal lens images, and with the dashed cursor for
the telephoto images. The effect of the normalization is
clearly revealed.

In the last experiment, we use the relative illuminant to
locate images in a database. The database used consisted of
the 473 color texture images in the VISTEX database.* For
each of the images in the database we compute first the
relative illuminant as described before. In the experiments
below, we used 6 eigenvectors and we estimated the relative
illuminant from 5000 randomly selected pixels in each
image. Once these spectra are computed, they can be used to
search in the database for images that have a certain global
color distribution. In Figs. 21–23, we illustrate some of the
results. In these experiments, we select first one image in the
database as a prototype image and then we find those
images in the database with the most similar color distribu-
tion. For this we normalize first all relative illuminant spec-
tra to norm one to eliminate the influence of intensity
variations, and then we use the scalar product of the two
normalized relative illuminants as similarity measure for the
global color distributions of these two images. Intensity
properties of the images are ignored, because only normal-
ized spectra enter the similarity computations. Figures
21–23 show the prototype image in the upper-left corner of
the image. The other nine images are the most similar
images found in the database (where the images are sorted
from left to right, top to bottom with falling similarity
values). Note that the database contains several images of
the same texture at different resolutions and, therefore, the
same texture may appear more than once.

Figures 21 and 22 show that the matching results are
reasonable for homogeneous textures, whereas the results
are less intuitive for images with different textures such as
Fig. 23.

DISCUSSION AND CONCLUSIONS

We have shown that the log-eigenvector expansion of color
spectra defines a coordinate system that allows an efficient
solution to problems related to color constancy. Combining
the log-spectral space with color-appearance systems
(which are based on human color vision) allows a reliable
estimation of the global color characteristics of a color
image. The conversion procedures between this and other
color systems however, need, further study.

The interpolation procedures used to convert RGB-vec-
tors to spectra were sufficient in our application, because
only statistical properties of a large number of spectra were
needed. More difficult was the conversion from the spectral
representation to quantized three-dimensional color repre-
sentations like RGB. Here we found that a number of
practical problems influenced the final results in a funda-

* http://www-white.media.mit.edu/vismod/imagery/VisionTexture/
vistex.html.
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mental way. Problems that had to be considered included:
the handling of spectra that are outside the gamut of the
chosen output device, and quantization methods that use the
available number of colors efficiently and that at the same
time preserve the structure in the spectral space.
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