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How odd it is that anyone should not see that all observation must be for or against some
view if it is to be of any service.

—Charles Darwin (1809-1882)

Abstract An attempt is made to present a (somewhat personal) history of how at the Com-
puter Vision Laboratory in the late 1980’s adopting robust techniques from statis-
tics naturally arose from a quest for better multiresolution image analysis algo-
rithms. While today these robust techniques are routinely used in the vision com-
munity, their rapid dissemination was in no small measure due to the unfettered
research atmosphere which characterized the lab. Beside trying to record an in-
stance of interdisciplinary research, a few technical issues (most of which were
yet to be understood then) are also discussed.

Keywords: multiresolution image analysis; image pyramids; robust estimators; least median
of squares; RANSAC; minimum volume ellipsoid
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When I arrived as a postdoc to the Center for Automation Research (CfAR)
at the beginning of April 1986 and joined the pyramid group of the Computer
Vision Laboratory, multiresolution image analysis was one of the main interests
of Azriel. His edited volume (Rosenfeld, 1984) contained the most complete
collection of papers dealing with hierarchical techniques in image analysis, and
was the de facto textbook for this subfield. The “pyramid” group was very ac-
tive, there were weekly meetings and a constant stream of technical reports (to
become published papers soon afterward) was generated.

The research in the group was focussed on exploiting the multiresolution rep-
resentation provided by an image pyramid to reliably delineate the significant
features in an image. Azriel’s technical report (Rosenfeld, 1986b) set clearly
the main directions of investigation for the group. A short quote from the re-
port best summarizes what were our goals.

It should be pointed out that the pyramid techniques described in this paper are
quite different from the ways in which pyramids have been used by other inves-
tigators (...). Pyramids are often used to generate a set of bandpass-filtered, sam-
pled versions of an image. Our use of pyramids is quite different; we employ
them for model fitting rather than for filtering.

For our purposes it suffices to describe only the simplest pyramid structure. As-
sume a ¥�¦§¥ , ¥©¨«ªK¬ , input image at the base of the pyramid. A cell, or par-
ent, on the ­ -th level of the pyramid is connected to an array of ª®¦�ª cells, its
children, on the ¯h­±°-²x³ -th level. Thus, the height of the pyramid is ´7¨«­>µ·¶±¸F¥ .
In the bottom-up stage of an image analysis task the value of a parent is estab-
lished based on the values of its children. The nature of the reduced resolution
representation depends on the operation associated with generating the parents.
At higher levels of the pyramid (lower resolution representations of the input)
the features of interest are reduced to a few pixels and thus can be discriminated
by local operations. A top-down tree growing process then recursively refines
the extracted low-resolution representations and delineates the features of inter-
est at the base of the pyramid, i.e., in the input image. The strong connection
of the hierarchical image analysis paradigm to perceptual grouping was well
documented (Rosenfeld, 1986a).

The above sketched hierarchical processing paradigm suggest two advan-
tages relative to the traditional, single resolution techniques. A carefully chosen
children ¹ parent operation can yield very reliable low-resolution representa-
tions for the features of interest, representations which enhance these features
against the background clutter. In order to have an effective noise reduction
process, however, a necessary condition has to be satisfied. The representa-
tions of the features of interest must remain disjoint at all the levels of the image
pyramid. Will return to this issue soon again since it is the starting point of our
exposition. For tasks where the separability condition can be satisfied, the im-
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age pyramid remains a valuable tool, as the achievements of the Sarnoff vision
group show. See —— pointer here to Peter Burt’s paper in the volume!!!!

The second advantage of image pyramids turned out to be less important.
The hierarchical nature of the processing transforms an image analysis task which
would require Ñ®¯�¥ ¸ ³ operations on a single processor into an Ñ®¯�­>µ·¶
¥Ò³ process
on a cellular pyramid computer. However, such machines never became widely
available, and by the early 90’s the trend in computing turned against parallel
computers on which pyramids could be emulated, e.g., (Sher and Rosenfeld,
1990). Today, in an era of 1Ghz personal computers, processing times are prob-
ably of lesser concern.

An important class of hierarchical algorithms we tried to develop was re-
lated to analyzing long, arbitrarily shaped features in an image. The difficulty
of handling such features (ribbons, curves, region boundaries, etc.) was closely
related to the limitations of image pyramids. Indeed, since these features could
have any complex shape, at higher levels of the pyramid a cell could “see” sev-
eral distinct fragments of it, without knowing that they belong to the same ob-
ject at the input. It is easy to find an example where a curve is kept as single
pixel fragments till the apex of the pyramid (Meer et al., 1990c), in which case
the information reduction quality of the hierarchical processing is completely
lost.

Earlier related work in the laboratory focussed on extraction of linear fea-
tures, such as roads from aerial images (Shneier, 1982), or on hierarchical sim-
ulation of Gestalt laws, such as good continuation (Hong et al., 1983). In these
applications the proposed algorithms only compensated for the rigid sampling
structure of the image pyramid and were not general enough for our goal. Adap-
tive hierarchical structures, in which the resolution reduction is controlled by
the local image content through reassignment of some child-to-parent links, were
also tried for image segmentation, e.g., (Burt et al., 1981), (Peleg et al., 1986)
and were subsequently investigated by other research groups as well (Spann
et al., 1989), (Baronti et al., 1990).

In November 1988 Michel Bister arrived to CfAR as a visiting graduate stu-
dent from the Vrije Universiteit, Brussels, Belgium. He was sent to learn more
about image segmentation with pyramids and use the best available algorithm
to analyze medical images. These images had ample fine structure and it was
required that the segmentation preserves, as much as possible, the perceived
topology of the input. In spite of best intentions (and a lot of work) Bister could
not achieve a satisfactory segmentation with any of the algorithms available in
the laboratory. He was then asked to perform an experiment in which the input
image was shifted one or two pixels on the lattice before being segmented. That
is, the relation between the image and the first pyramid level was slightly mod-
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ified. While these small local changes were not expected to have a strong in-
fluence on the final segmentation, significant differences were observed among
the obtained results. Bister concluded that the artifacts were intrinsic to any hi-
erarchical image segmentation technique, and wrote up the results of the anal-
ysis in a paper (Bister et al., 1990) which received the best paper award for a
publication in Pattern Recognition Letters in 1990.

By 1990 multiresolution image analysis already meant for most computer
vision practitioners wavelets, scale-space, diffusion, etc. The book (Jolion and
Rosenfeld, 1994) providing an excellent overview of what was achieved with
image pyramids, thus in a way was also the epitaph of an era.

ÔÌ� �ÀÕ×Ö#Ø�ÙÚ�,�ÀÕÛ�ÜØ �Ý¡¤£#�«�Þ�N���
�#�Ú� ß®�Ý�,�ÀÕ ���Ý�«�N�#� Öáàâ�Íãáä,�#£«�7�

The search for accurate hierarchical representation of arbitrarily shaped ob-
jects lead to the introduction of stochastic pyramids (Meer, 1989). A stochastic
pyramid is a hierarchy of graphs obtained by recursive graph contractions. The
set of vertices retained for the next level of the hierarchy are chosen by local op-
erations on the current level’s graph, with a probabilistic algorithm breaking the
tie situations. The local operations use the information extracted from the input
and carried by the children of the vertex. Since the hierarchy is not restricted to
a rigid sampling structure, it can mold itself to the features of interest. The ap-
proach was successfully applied to multiscale smoothing of chain-coded curves
(Meer et al., 1990c) and segmentation of gray level images (Montanvert et al.,
1991). Stochastic pyramids were also simulated on parallel computers (Ziavras
and Meer, 1994), and the proposed hierarchical graph structure generated inter-
esting theoretical questions e.g., (Kropatsch, 1995), as well as practical issues
e.g., (Mathieu and Magnin, 1996).

Applying the stochastic pyramids to gray level image segmentation was trig-
gered by a challenge posed by Walter Kropatsch during one of his short visits
at CfAR in 1989. Walter questioned the ability of a hierarchical structure to
efficiently manipulate information related to the topology of a complex binary
image. The challenge was taken up by Annick Montanvert who was a visiting
scientist with the pyramid group from the Joseph Fourier University in Greno-
ble. Annick had considerable expertise in digital geometry and soon we had
implemented a hierarchical connected component delineation algorithm using
the stochastic pyramid. Capturing the topology then became as simple as con-
necting the apexes of the individual graph hierarchies associated with the dif-
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ferent connected components. Encouraged by this success we moved on to try
to segment gray level images with a similar approach.

In the case of gray level image segmentation, the stochastic pyramid must
generate a hierarchy of region adjacency graphs (RAG). To describe the reso-
lution reduction process, lets assume for the moment that the input is homoge-
neous, i.e., all the pixels belong to the same region. The RAG of the input image
is defined by the 8-connected graph of the underlying lattice. To generate the
next level of the hierarchy only a subset of the vertices is retained, called the
survivors. An optimal graph contraction process should be based only on local
operations on the current level’s graph. This can be achieved if the survivors
satisfy the following two conditions on the graph:
(1) No two survivor vertices are neighbors.
(2) Any nonsurvivor vertex has a survivor neighbor.
The two conditions are equivalent with the vertices retained for the RAG of the
next level being a maximal independent set of the RAG at the current level.

The survivors are selected with a parallel, probabilistic symmetric breaking
algorithm (Meer, 1989). Every vertex in the graph is allocated a random num-
ber drawn from the æèç
éY²Rê uniform distribution. A vertex becomes a survivor
if its outcome is a local maximum and its neighbors on the graph are declared
nonsurvivors for the subsequent iterations. After less than five iterations the
algorithm converges and a maximal independent set of the graph is extracted.
Note that the two necessary conditions on the survivors are automatically sat-
isfied. The adjacency relations for the reduced resolution representation of the
next level, i.e., the edges of that level’s RAG, are obtained by using the paths
between the survivors of the current level’s RAG. Repeated runs of this prob-
abilistic resolution reduction procedure, yield slightly different RAG hierar-
chies, however, a homogeneous region is always reduced in a logarithmic num-
ber of steps to a single vertex, the apex of the hierarchy.

To segment real images, first the current level’s RAG must be decomposed
into similarity subgraphs which correspond to homogeneous patches at the in-
put. Given the parallel nature of the processing this has to be done exclusively
by local operations. The above described resolution reduction procedure is then
applied to each similarity subgraph and the results are combined into the next
level’s RAG.

The similarity subgraphs are defined using the maximum averaged contrast
computed for each vertex. Let ¶Ü¯@ëÜ³ be the gray level value associated with ver-
tex ë of an RAG and ¶Ü¯@ë·ì@³FéÜí0¨,²cé·îRîRî
éI´Üï , the values associated with its neigh-
bors on the graph. The attribute ¶Ü¯@ëÜ³ was computed as a weighted average of
its children’s values. A local threshold ð3¯@ëÜ³ was derived by first computing the
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differences

ò ì ¯TëU³0¨ôóõ¶U¯@ë ì ³"°7¶U¯@ëÜ³�ó í0¨,²oéRîRî·îUéI´ ï (1.1)

and then determining the largest jump between the left and right averages in the
ordered sequence

ò·ö ìW÷ ¯TëU³ for ø®¨,²cé·îRî·î
é3´Üï�°ù²
ú[û ¯@ëÜ³"¨

ü ûìSý�þ ò·ö ìW÷ ¯TëU³
ø

ÿ û ¯@ëÜ³0¨
ü ¬ �ìSý û � þ ò ö ìW÷ ¯@ëÜ³
´ ï °7ø (1.2)

ð3¯@ëÜ³0¨������
	����û æ ÿ û ¯@ëU³ ° ú û ¯@ëÜ³@êUî (1.3)

The neighbors whose
ò ì ¯@ëÜ³ was less or equal to the threshold were included into

the same similarity graph as the vertex ë . See (Montanvert et al., 1991) for a
more detailed description.

The local operation employed to set the threshold was extremely simple and
being based on averaging operations was certainly not robust. The obtained
segmentations, however, were remarkable accurate and the probabilistic com-
ponent did not seem to interfere with the delineation of the significant features.
The image in Figure 1.1a has complex elongated regions whose boundaries are
correctly recovered after the segmentation. The two different segmentations, in
Figures 1.1b and c, obtained with two different RAG hierarchies differ only in
the details where the implied piecewise constant image model is not accurate.
The variability of the segmentation induced by the probabilistic component of
the RAG hierarchy turned out to be more of an advantage than a drawback,
and it was exploited to associate a confidence measure with the result. This
research direction also has some connections with applying modern statistical
techniques to computer vision tasks, and we will return to it in Section 3.

The quality of the segmentations was satisfactory since the RAG pyramid
does not put any restrictions on the shape and the size of the delineated objects,
as long as they have a contrast large enough to be associated with a distinct
similarity subgraph. In the example in Figure 1.2 very fine features are delin-
eated simultaneously with large homogeneous regions. Nevertheless, in our
open ended quest for the “ultimate” hierarchical image segmenter it was just
natural to ask ourselves if something would be gained when the local operation
defining the similarity subgraphs becomes more sophisticated. This is how the
issue of robust data analysis sneaked into the pyramid group of the Computer
Vision Laboratory at CfAR.

The maximum averaged contrast is similar in spirit with Hinkley’s cumula-
tive sum (CUSUM) test for detecting jumps in the mean of a sequence of scalar
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(a)

(b)

(c)� C�V3Q2A\;������
An example of image segmentation with RAG pyramids. (a) The input image. (b)

and (c) The boundaries of the delineated regions for two different RAG hierarchies.



�

(a) (b)� C�V3Q2A\;������
Another example of image segmentation with RAG pyramids. (a) The input image.

(b) Segmented image.

measurements (Basseville and Benveniste, 1983). It was clear from the begin-
ning that a reliable local decision cannot be taken using only the values associ-
ated with the neighbors of the vertex and more data points will be required. We
assumed that this can be assured by using also the sequences available to the
children and if necessary the grandchildren of the vertex. However, once the
question of discontinuity detection was separated from the process of building
the RAG hierarchy, soon the effort was entirely focused on recovering the un-
derlying structure of a piecewise linear, noisy one-dimensional signal.

The new research direction, while arose from pyramid related activities, was
clearly moving away from the main themes of the pyramid group. Neverthe-
less, with Azriel’s full support resources were allocated to it and the investiga-
tion started in earnest.

We began with the classical Chow test (Chow, 1960). This test can only be
applied to one-dimensional sequences, and starts by fitting to the left and right
of a data point a polynomial (linear) model using least squares. The residuals
of these two fits, as well as of the fit to the combined region are used to build an
F-type statistics. We implemented a multiscale approach with ad-hoc pruning
of the discontinuity point candidates. While the results were satisfactory for
synthetic data, the algorithm could not deliver reliable results for real data, such
as a row of an image.

Dong Yoon Kim visited CfAR for a year in 1988 and 1989 on a fellowship
from the Korean government. He had a doctorate in applied statistics and was
very knowledgeable with recent developments in statistics where the issue of
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robustness was the hot topic. The fact that Dong Yoon also had a background in
computer science and could describe modern statistics in a simple, pragmatic
way, certainly should be mentioned.

When the difficulty of decomposing the one-dimensional sequences into ho-
mogeneous segments came up in an informal discussion, Dong Yoon proposed
to try robust estimation techniques. We were aware of the existence of M-estimators
(see below) since they just started to to penetrate the image processing litera-
ture, e.g., (Kashyap and Eom, 1988), (Hansen and Chellappa, 1988). However,
given the complexity of those applications, it was difficult to discriminate the
role of M-estimators in the reported performance improvement.

Before proceeding with the history further, will present in a nutshell the two
main robust techniques popular today in computer vision: M-estimators and
the least median of squares (LMedS) type methods. Considering the simplest
estimation problem suffices. Assume that ²U°�� percentage of the available mea-
surements � û é ø ¨,²céRî·îRîÜé3´ satisfy

� û ¨��Rþ �!�·¸ "�# û � ò � û (1.4)

where
ò � û is a zero-mean error term with unknown variance $ ¸ . Beside the

first two moments and the independence of the measurement errors, no other
assumption is required about the noise. The �&%�ç
î�' percentage of remaining
measurements do not obey (1.4), i.e., they are outliers relative to this model.
Note that the outliers can still satisfy a relation such as (1.4) but with a different
set of parameters ¯(� )þ é�� )¸ ³ .

In a rather simplistic definition, robust estimators are statistical techniques
which can tolerate the presence of outliers in the data. The breakdown point of
a robust estimator is the minimal percentage of contamination �+* that renders
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the estimate unreliable, i.e., its value becomes controlled by the outliers. The
breakdown point, capturing the influence of the entire data set, characterizes the
global robustness properties of the estimator.

Among the outliers we must distinguish an important subclass: the leverage
points. In Figure 1.3 both the outliers and the leverage points are marked. By
definition the leverage points are data points which have increased influence on
the estimation process. They are not necessarily outliers, points at the bound-
aries of the data set are usually leverage points. However, points which are both
outliers and leverage points (as those in the lower right corner) have an espe-
cially detrimental effect on the estimation process. For example, such points
are not tolerated by the M-estimators.

An M-estimator is defined as the solution of the minimization problem

./10 ¨����2�3	54768 ¬9
û ý�þ�: ¯;�

û=< / ³ (1.5)

subject to the constraint assumed for the inliers, i.e., � û(> ¨@?BAû;> / , where the
subscript µ stands for uncorrupted (true) values, and the components of the car-
rier vector ? û(> are known functions of the measurements. The objective func-
tion : ¯DC ³ must be positive valued and even symmetric with a unique minimum
at the origin. It should be also nondecreasing for CFE(ç and have piecewise
continuous first two derivatives. Different choices of : ¯DC ³ yield different M-
estimators. Note that : ¯DC ³�¨

þ¸ C ¸ is the traditional least squares estimator.
The minimization problem (1.5) is most often solved iteratively with a weighted
least squares procedure. The review paper (Li, 1985) is still the best practical
reference for all the related topics.

It can be shown that all M-estimators have poor global robustness properties.
Their breakdown point is zero since they cannot tolerate leverage points which
are also outliers. The example in Figure 1.4 shows such a situation. Neverthe-
less, M-estimators are frequently and successfully used in computer vision. The
reason is that extreme leveraging only rarely can appear in a vision task since
the domain of definition of the variables is most often rather compact. Only
the generalized M-estimators (GM-estimators), also known as bounded influ-
ence estimators have a nonzero breakdown point whose value is reciprocal to
the dimension of the space of the unknown parameter

/
.

The M-estimators have, however, an important advantage relative to the high
breakdown point methods to be described below. They have excellent local ro-
bustness properties. That is, an infinitesimal change in the input data can lead
to only an infinitesimal change in the output, i.e., the parameter estimate. In vi-
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A simple example illustrating the failure of M-estimators in the presence of out-

lier/leverage points. OLS is the traditional least squares solution, Huber and biweight are two
M-estimators which gave almost identical, and incorrect solution.

sion applications where the amount of outliers present in the data is small, such
a stability may be more important than the capacity of rejecting all the outliers.

Many of the above mentioned properties of M-estimators were not well un-
derstood (at least outside the statistical community) in the late 80’s. We did
some experiments for decomposing the one-dimensional waveforms and the
results were definitely better than using the Chow test. Nevertheless, the M-
estimators based approach was rapidly abandoned when we became aware of a
second family of robust estimation methods, that of the least median of squares
(LMedS) type techniques.

The LMedS estimator solves./1I 0KJML(N ¨O�����=	54768 medû P � û °Q?SRû;> /UT ¸ (1.6)

with the help of elemental subsets. An elemental subset is a p-tuple of randomly
chosen data points from which a candidate of the parameter estimate can be
uniquely determined. (The parameter vector

/
has dimension V .) The value of

the median of the squared residuals is then computed and stored. Repeating the
procedure several times, the LMedS estimate corresponds to the p-tuple which
yielded the smallest value, i.e., the best approximated the objective function
(1.6). The number of required trials can be determined from probabilistic con-
siderations by allowing a very small chance of not finding a satisfactory solu-
tion. This number never exceeds a few thousand.

The LMedS estimator as presented above solves a regression problem. The
minimum volume ellipsoid (MVE) estimator is its counterpart for multivariate
location problems. Using again elemental subsets, the region of highest den-
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An example of the LMedS estimator handling outlier/leverage ponts.

sity in a feature space is located by identifying the smallest ellipsoid containing
at least half the data points. This ellipsoid is then inflated to delineate the el-
liptical (normal) cluster associated with the inliers. The book (Rousseeuw and
Leroy, 1987) has a complete treatment of all the topics related to least median
of squares, and much more.

The LMedS family has excellent global robustness, its breakdown point be-
ing close to �W*À¨«ç
î�' . In Figure 1.5 an example is shown in which the presence
of a significant percentage of outlier/leverage points has no effect on the out-
come of the estimation.

However, the LMedS family of estimators (and similar high breakdown point
techniques) have poor local robustness properties. It is relative easy to find ex-
amples in which an infinitesimal change in the data drastically alters the output.
In Figure 1.6 such an example is shown where a small change in a close to bi-
modal data can render the performance of the LMedS estimator similar to that
of least squares.

The LMedS estimator also returns a scale estimate for the inlier noise, i.e.,
a quantity proportional with the estimated inlier noise variance. The scale esti-
mate is the value of the minimization criterion (1.6) for

./UI 0XJMLYN
. The inliers and

outliers in the data then can be separated by examining the residuals in relation
to a threshold derived from the scale estimate. Performing a least square post-
processing on all the inliers is recommended to improve the local robustness
behavior of the LMedS estimator. These results are labeled ‘Final’ in Figures
1.5 and 1.6. Note that, as expected, the postprocessing cannot recover from the
failure of the LMedS estimator.

A small confession is in order now. In the statistical literature the least me-
dian of squares estimator is known by the acronym LMS. So why did we change



º
»h¼2½�¾À¿0¼KÁ�ÂGÃ�ÄqÅbÇSÈI»�¾2»hÉ3Ê·Ë�Ä>¼Í¾ÍÅÌÇSÈI»�¾Y»�ÉIÊRË�¼TÎ�¿0¼GÁhÂGÃhÄSÏoÈ3ÃhÃ � Ð

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

20

y

z

OLS  
LMedS
Final

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

20

y

z

OLS  
LMedS
Final

� C�V3Q2A\; �H�[Z
An example of the poor local robustness properties of the LMedS estimator. The

only difference between the two data set is moving the point \^]`_Da�bdc�e in the left case to \^]`_;a`b f2e
in the right case.

its name to LMedS soon after our first conference publications? We were well
aware that in the engineering estimation literature (including image processing)
LMS stands for least mean squares, and did not want to create any confusion.
Today in the vision literature both acronyms are used, often with interesting ef-
fects when results from (Rousseeuw and Leroy, 1987) are cited using LMedS
as notation. To reveal the whole truth, for a moment we did consider defining
the acronym as Least Median of Squares (LMdS), but found it a little too tacky
for obvious reasons...

By the Fall of 1988 the work on applying the LMedS estimator to any low
level vision task begun at earnest. Azriel decided that two students, Doron Mintz
who was a Ph.D. candidate and John Kim who was an M.S. student, should ded-
icate most of their efforts to this topic. While we immediately realized the im-
portance of this new tool for solving vision problems, it was yet not clear what
can be achieved with it. We were also not aware that others were also discov-
ering the potential of robust statistics.

Given its similarity to weighted least squares, it is not surprising that the M-
estimators became popular before LMedS. Arguably the first two publications
on using robust estimators in computer vision are the two conference papers in
late 1988, (Besl et al., 1988) and (Haralick and Joo, 1988), and both employed
M-estimators. In (Besl et al., 1988) a rather complex hierarchical scheme was
proposed to adaptively model the local image structure by a low-order poly-
nomial surface whose order was determined by analyzing the residuals of M-
estimators. In (Haralick and Joo, 1988) the M-estimators were employed to im-
prove the performance of pose estimation in the presence of erroneous matches.
The vision group of the Artificial Intelligence Laboratory at the University of
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Michigan, Ann Arbor, was the only one also experimenting with the LMedS
estimator (Tirumalai and Schunk, 1988).

The first opportunity to publish our preliminary results came soon since the
deadline for the proceedings of the 1989 DARPA Image Understanding Work-
shop was in early Spring. It was decided that a large part of the pages allocated
to CfAR should be used to present the robust paradigm to the vision community.
The paper came out to be 18 single spaced pages and had two goals: to serve
as a tutorial for nonstatisticians on robust techniques, and to show what have
we achieved using the LMedS family of estimators (Kim et al., 1989). All the
experiments were based on simple synthetic data, but we have presented both
regression and clustering results. Thanks in part to the high visibility of the
workshop, and certainly due to the tutorial quality of the paper, the gospel of
robustness began to spread rapidly in the vision community.

The 1989 IUW was held in May in Palo Alto, CA, and by that time it was un-
deniable that robust estimators will have a big impact on the field of image un-
derstanding. To facilitate the exchange of ideas Azriel and Larry Davis quicky
decided to organize a workshop at CfAR on “Robust Estimation Techniques for
Computer Vision”. In retrospect, it seems that people were less overcommitted
those days, since all the ten invited speakers were happy to participate on a short
notice. The workshop took place on July 25 and 26, 1989 in College Park with
59 attendees. Beside the authors whose paper was already mentioned above,
image processing related applications of the groups lead by Rama Chellappa
(then at USC), Max Mintz and Saleem Kassam (both from UPenn) were also
presented. Instead of a proceedings every speaker distributed paper at the meet-
ing. This was certainly the first workshop in the vision community dedicated
to robust methods, probably one of the first in which statistics was such a cen-
tral topic. The next, larger international gathering on robust computer vision
was held more than a year later in October 1990, in Seattle, organized by Bob
Haralick and Wolfgang Förstner. By the late 1992 robust estimators became
mainstream techniques in computer vision.
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In one of the first discussions we had about the least median of squares, Azriel
casually remarked that it reminded him of RANSAC. The RAndom SAmple
Consensus was at that point a little known method, proposed in 1981 for pose
estimation and model fitting (Bolles and Fischler, 1981), (Fischler and Bolles,
1981). Since except Azriel nobody heard about it, the lead was not followed
up. We were, however, strongly called upon the fact again when the paper ver-
sion of our research was submitted to the International Journal on Computer



º
»h¼2½�¾À¿0¼KÁ�ÂGÃ�ÄqÅbÇSÈI»�¾2»hÉ3Ê·Ë�Ä>¼Í¾ÍÅÌÇSÈI»�¾Y»�ÉIÊRË�¼TÎ�¿0¼GÁhÂGÃhÄSÏoÈ3ÃhÃ � å
Vision. One of the reviewers bitterly complained about not giving more atten-
tion to RANSAC beside mentioning it and in the final manuscript an entire sec-
tion was dedicated to its relation to LMedS (Meer et al., 1991).

The similarity of RANSAC and LMedS is actually more on the computa-
tional than the theoretical level, but that was less clear a decade ago. Both use
elemental subsets to obtain the estimate candidates. However, in the case of
LMedS the median of the residuals squared is minimized, while in the case of
RANSAC the number of points within a given tolerance from the fit is maxi-
mized. LMedS does not require an a priori scale estimate, RANSAC does. The
advantage of a tuning parameter for RANSAC was recognized only relative re-
cently. Since most often in computer vision applications the geometry of the
problem allows to assess a reliable threshold for the inlier/outlier dichotomy,
RANSAC can be adapted to the problem at hand. To deliver a reliable esti-
mate LMedS by definition requires at least half of the data to be inliers, with
RANSAC this condition can be relaxed.

Today, whenever a high breakdown point estimator is needed in solving a vi-
sion task, more and more often RANSAC (under many disguises) is employed
instead of LMedS. It is somewhat paradoxical that one of the consequences of
“importing” a valuable tool from statistics was the rediscovery of a technique
proposed in our own field even before 1984 when LMedS appeared in statistics.

Another unexpected results was the poor performance of LMedS in the task
for which was initially intended for: image segmentation. The segmentation
employed the facet model, i.e., a piecewise polynomial surface representation
of the gray levels. The input image was nonoverlappingly tessellated with win-
dows in which LMedS was employed to find the zero or first order facet rep-
resenting the inliers. This was followed by robust region growing across the
boundaries of the tessellation to delineate the homogeneous regions. To say the
least, the method was cumbersome, see (Meer et al., 1990b). It had numerous
“patches” to make the region growing compensate for the known limitation of
LMedS: the returned fit always represents what the estimator considers to be
the absolute majority of the pixels in the window.

In spite of all the additions, the segmentation was clearly failing in some im-
age regions where the LMedS window operator should have provided satisfac-
tory performance. Furthermore, the quality of the segmentation was always in-
ferior to the output of an RAG pyramid based delineation, the method discussed
in Section 2. Recall that all the computational modules in the latter are nonro-
bust, simple local decisions. We did not expect this!

After some investigation the problem was isolated and reduced to its bare
essence as shown in Figure 1.7. To have LMedS fail the data should be close
to bimodal and significant noise present. Note that both the inliers and outliers
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An example of LMedS failure. (a) In moderate noise the inliers are correctly recov-

ered. (b) In large noise there is no qualitative difference between the least squares and LMedS
estimate.

obey the same model, only with different parameters, a situation typical to im-
age structures. The inliers are the points centered around 50 and this is what
the LMedS estimator should return. Nevertheless, once the measurement noise
becomes large in relation to the inlier outlier separation, the LMedS estimator
prefers a fit very similar to what the nonrobust least squares method yields (Fig-
ure 1.7b). Note that the two “clouds” of points are not overlapping, and when
represented as a neighborhood in an image the two noisy surfaces were clearly
distinguishable by eye, to our great frustration.

Extensive Monte Carlo simulations have shown that this erroneous behavior
is intrinsic to the method and once the conditions are satisfied will always ap-
pear. The reasons for it can be understood examining Figure 1.8. Assume that
the true fit is also available, i.e., was chosen by one of the elemental subsets.
The distribution of the absolute values of the residuals are shown in Figure 1.8b
for both the true fit and the LMedS fit which is the fit found as minimizing the
optimization criterion (1.6). The former is bimodal the latter is unimodal with
a long tail. Since the median selects the 50th percentile of these distributions,
the presence of bimodality introduces a severe bias which makes the LMedS
estimator to prefer the incorrect fit.

Some years later it was shown that similar problems appear with all the ro-
bust methods employed in vision applications (Stewart, 1997). Since data as in
Figure 1.7 is not typical for statistics, the robust techniques developed there are
not suitable to process it. Fortunately, such bimodal data with structured out-
liers only rarely appear in computer vision beyond low level tasks. One may
conclude that for low level vision successful robust approaches not necessarily
should take verbatim estimators from statistics. The Hough transform which
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An example of applying the CBD procedure. The close bimodal piecewise lin-

ear data is analyzed with a linear model. The LMedS estimator (dashed line) fails to correctly
identify all the inliers, the CBD procedure (solid line) does.

can also be interpreted as a multiple M-estimation, e.g., (Kiryati and Bruck-
stein, 1992), is probably the best example for an indigenous robust technique
with superior qualities.

Once the failure of LMedS was understood we succeeded to design a proce-
dure to avoid it. The procedure was called consensus by decomposition (CBD)
and integrated two ideas. First, was the observation that the highest order coef-
ficients of a polynomial surface are invariant under the translation of the coor-
dinate system. Second, if the measurement noise is isotropic this property can
be exploited to improve the performance of the zero-order LMedS estimator
(mode seeking) for data such as in Figure 1.7. The CBD procedure in a win-
dow recursively estimated the coefficients of the polynomial surface starting
from the highest order, reducing the estimation at each step to a mode seeking
step.

The CBD approach was an empirical attempt to improve the performance of
LMedS in the presence of difficult data. It did work satisfactorily, see the ex-
ample in Figure 1.9, and at hindsight some of the incorporated ideas are worth a
second look. When finally everything was in place at the beginning of the sum-
mer of 1990 the deadline for the proceedings of the 1990 DARPA Image Un-
derstanding Workshop just passed. Azriel nevertheless succeeded to squeeze
in a short four page note (Mintz et al., 1990b), while the full version became a
technical report in December (Mintz et al., 1990a). It was submitted to IEEE
PAMI, lingered for about three years on the desk of an Associate Editor and fi-
nally faded out through attrition. The CBD paper was the only publication on
robust methods from CfAR which did not get a wide exposure.
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A much more pleasant publishing experience was the generalized minimum

volume ellipsoid (GMVE) method for feature space analysis. Jean-Michel Jo-
lion from the Claude Bernard University, Villeurbanne, France, visited twice
CfAR in the late 80’s. During the first visit, on a NATO fellowship between
September 1987 to September 1988, he became the most active member of the
pyramid group and later wrote with Azriel a book on image pyramids (Jolion
and Rosenfeld, 1994). During his second visit, in the summer of 1989, Jean-
Michel became familiar with robust estimation and we started to work on a ro-
bust clustering method.

The GMVE approach was very simple. Use the minimum volume ellipsoid
as a computational module to find the currently most significant cluster in the
feature space. Once delineated the cluster is removed and the procedure re-
peated till all the data points were classified. Note that this peeling-off approach
did not require a priori knowledge of the number of clusters in contrast with
most traditional techniques. As long as the feature space was not too compli-
cated (contained only a few clusters), and more importantly a decomposition
through the elliptical tiles imposed by the MVE did not introduce too severe
artifacts, the method had an excellent performance.

The GMVE was used in several robust clustering applications: range im-
age segmentation of man made objects, analysis of the Hough accumulator, his-
togram based gray level image segmentation. Working remotely by E-mail in
those pre-Internet days, we finished a paper in the Fall of 1990 and submitted
it to IEEE PAMI in December. The reviews were unusually positive and the
paper was in print in a record time by August 1991 (Jolion et al., 1991).

In spite of its success we knew that GMVE was not the ultimate solution for
feature space analysis. For example, the complexity of a color space derived
from an outdoor image was beyond the capacity of GMVE to produce a reli-
able decomposition, and thus to segment the image. Such complex spaces can
be handled only with a fully nonparametric methods, and it took several more
years to develop one (Comaniciu and Meer, 1999).

Interestingly, the basic computational module of the nonparametric robust
clustering technique, the mean shift procedure, is again and old largely forgot-
ten pattern recognition method proposed more than 25 years ago (Fukunaga and
Hostetler, 1975). The mean shift is based on the observation that the vector of
the mean of the data points in a window is proportional to the locally estimated
gradient of the density of these points. Thus, recursively moving the window
along the mean vectors will lead to a region of maximum density, i.e., to a local
mode. A cluster is then delineated by the basin of attractions of the mode and
its shape its unconstrained.
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Information flow in a consensus based image segmentation algorithm.

There is a second connection between the multiresolution image analysis, as
performed by the region adjacency graph (RAG) pyramids and modern statis-
tics. The probabilistic component of the RAG pyramid based image segmenta-
tion implies that each time the algorithm is run the result will be slightly differ-
ent. The differences will be more significant in the neighborhoods where the as-
sumed homogeneity model (piecewise constancy) is less valid. This important
information can be extracted by pixelwise comparison of the labeled images,
for example, by defining the co-occurrence probabilities for pairs of adjacent
pixels. In Figure 1.10 information flow of the approach is shown. For visualiza-
tion the eight-dimensional vector of a pixel’s co-occurrence probabilities has to
be transformed into a scalar. The scalar field is then represented as a gray level
image, called the consensus image. In Figure 1.11a an example is shown for
the input image in Figure 1.1a. Note the richness of the extracted information,
which can be exploited for a satisfactory image segmentation (Figure 1.11b).
The segmentation algorithm is described in (Cho and Meer, 1997).

The above sketched approach is more general than just a method to improve
image segmentation. First the relation between the input data and the algo-
rithms applied to it is slightly perturbed. If after the perturbation the output
remains an unbiased estimate of the desired (true) result, by combining the per-
turbed outputs a more reliable final outcome can be obtained. When we real-
ized this, quickly a short paper was submitted to the next available workshop
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An example of a consensus based image segmentation. (a) A consensus image

obtained from 20 initial segmentations for the image in Figure 1.1a. (b) Segmented image.

describing the basic principles of what we called the consensus paradigm (Meer
et al., 1990a). Beside image segmentation, the paradigm was also employed for
edge detection (Mintz, 1991).

The consensus paradigm was a rather ad-hoc approach to improve the quality
of the output of a complex vision task. However, it turned out that the underly-
ing principle is very similar to that of the bootstrap methodology introduced in
statistics in 1979 by Efron. Bootstrap is a technique to obtain statistical mea-
sures from the available single data sample. It has solid theoretical foundations
and is slowly becoming a standard statistical tool. The book (Efron and Tibshi-
rani, 1993) provides an excellent introduction.

The idea behind bootstrap is to consider the available data as an empirical
distribution and generate “new” data, i.e., bootstrap samples from it by sam-
pling with replacement. The output of interest is computed for each bootstrap
sample and thus from the single input a distribution of outputs is obtained. (Note
the similarity with the approach shown in Figure 1.10.) This distribution can
then be used to obtain the statistical measures of interest, like the covariance
matrix of the output corresponding to the original data. Since in computer vi-
sion often analytical evaluation of the reliability of an estimate at the output of
a task with several computational steps is not feasible, bootstrap can be a valu-
able tool to achieve this goal. See (Matei and Meer, 1999) for an example where
bootstrap generated covariances for estimated 3D locations were used in rigid
motion estimation of a stereo head.

Today the importance of using the proper statistical formulation when solv-
ing an image understanding problem is widely recognized in the vision commu-
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nity. A lot of progress has been made in the last decade. To see this it is enough
to compare the first attempts of applying robust estimators to vision problems
(most of them mentioned in this paper), and the papers in the recent special issue
on “Robust Statistical Techniques in Image Understanding” which appeared in
April 2000 in the journal Computer Vision and Image Understanding. While
many of the problems addressed are similar, the proposed tools became much
more sophisticated. They are no longer straightforward “imports” from statis-
tics but are trying to suit the peculiarities of visual data. This hardly gained
awareness of what is needed to have reliable vision algorithms, raised more
open questions about optimal design of image understanding tools than we had
ten years ago. The availability of a computational power nobody could have
predicted in 1990, the ubiquity of visual information in the Internet era, are just
further increasing the pressure on us to finally deliver, what in the 1960’s was
assumed to be a trivial task: a general, autonomous vision system.
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There is a subtle message in the history of robust estimation in computer vi-
sion. It turned out that the best methods: Hough transform, RANSAC, mean
shift were all developed independently from statistics, and except of Hough
transform had to be rediscovered. The rigor of statistics is certainly a good thing
when defining problems, however, the role of intuition should not be underesti-
mated either. One cannot stop asking the question, how many hidden treasures
are still out there in the forgotten literature of the founding fathers?

The main goal of this narrative was to give a (possibly subjective) glimpse of
a narrow slice of activities in the Computer Vision Laboratory in the late 80’s.
The continuous parade of visitors, the open exchange of ideas, the quick reac-
tions to assure priority for important result characterized the entire lab. It was
a wonderful place to be part of, and you always felt as being in one of the focal
points of the computer vision community.

Today the community is much more distributed and research is often solely
application driven. Nevertheless, many of us who had the privilege of passing
through CfAR in those days are trying to preserve in our own laboratories that
special atmosphere of intellectual freedom which characterized CfAR. Without
a doubt, this is also part of Azriel Rosenfeld’s legacy to the vision community.
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