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The Chain Pyramid: Hierarchical Contour Processing

PETER MEER, MeEMBER, IEEE, C. ALLEN SHER, anp AZRIEL ROSENFELD, FELLOW, IEEE

Abstract—A novel hierarchical approach toward fast parallel pro-
cessing of chain-codable contours is presented. The environment, called
the chain pyramid, is similar to a regular nonoverlapping image pyr-
amid structure. The artifacts of contour processing on pyramids are
eliminated by a probabilistic allocation algorithm. Building of the chain
pyramid is modular, and for different applications new algorithms can
be incorporated. We describe two applications: smoothing of multi-
scale curves, and gap bridging in fragmented data. The latter is also
employed for the treatment of branch points in the input contours. A
preprocessing module allowing the application of the chain pyramid to
raw edge data is also described. The chain pyramid makes possible
fast, O{log(image_size)], computation of contour representations in
discrete scale-space.

Index Terms—Chain-codes, contour smoothing, image pyramids,
parallel processing.

1. INTRODUCTION

CONTOUR in a binary image is a string of (say)

black pixels, each having at most two black neigh-
bors. Such a string is a chain-codable curve [12]. The
problem of branch points on curves, i.e., pixels with more
than two neighbors, will be discussed later in the paper.
In a two-dimensional image, contours convey information
about the shapes of objects present in the image. Fast ex-
traction and analysis of contours from a digital image re-
quires that the processing take place in a parallel hierar-
chical environment. Different specialized parallel
architectures for contour extraction have been proposed
[11, [32]). Hartmann [14] described a hierarchical contour
coding scheme in the context of pattern recognition in the
visual system.

The most frequently employed parallel hierarchical
processing environment is the image pyramid. In a pyra-
mid, features of a region of the input image can be ex-
tracted in O[log (region_size)] processing steps. We pro-
pose a new method for extracting and analyzing contours
in digital images based on a new type of image pyramid,
the chain pyramid. In the chain pyramid the contours are
represented as linked lists. This allows flexibility in per-
forming analysis and/or processing of the contours. Pro-
cessing can be simultaneous with the extraction proce-
dure.

The basic operation in contour extraction is tracing. A
pixel in the input image becomes connected to (at most
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two) neighbors by verifying connectivity constraints in a
3 X 3 neighborhood. The concatenation of these local op-
erations leads to the delineation, or tracing, of the con-
tour. Ullman [33] proposed tracing as one of the funda-
mental visual routines employed for the description of
spatial relationships in the two-dimensional world. Con-
tour tracing, or its more general counterpart, connected
component labeling, can be performed in logarithmic time
in pyramidal environments [22].

Let a binary input image have 2" X 2" pixels with the
black pixels constituting the contours to be extracted. The
simplest pyramid structure suffices for contour extraction.
At every level of the pyramid the cells are organized in
an §-connected mesh. (For contour extraction 8-connect-
edness is preferred to the simpler 4-connected case.) A
cell, or parent, at level I of the image pyramid, is also
connected with a field of 2 X 2 cells, its children, at level
I — 1. Each of these children in turn is connected with 2
X 2 cells at level I — 2, etc. The hierarchy of connections
defines the structure of the pyramid.

Successive levels of the pyramid contain fewer pixels,
so that they can only be a reduced resolution representa-
tion of the input because the capacity of the cells” memory
is limited. The first level has 2" ™! x 2" ~! pixels, the sec-
ond level 272 x 2772 pixels, and so on. After n =
log (image_size) levels the apex of the pyramid (contain-
ing only one cell) is reached. To achieve
O[log(image_size)] processing time, the processing
should be local and recursive. A parent at level [ + 1 must
only employ information available to its children at level
! and it neighbors on the mesh at level / + 1. The local
operations performed by a parent on the information pro-
vided by its children define the nature of the reduced res-
olution representations derived from the input image.

Ullman’s approach toward contour tracing as a visual
routine led to work in which connectivity is established
by coloring of pyramid cells containing only one contour
fragment. In the algorithm proposed by Edelman [9], the
parents compute a topological characteristic, the Euler
number, of the represented image region. If the region is
found to contain only one connected component the pro-
cedure is repeated at the next level, i.e., the same color
is allocated, if possible, to a larger region. Mahoney [19]
implemented an algorithm based on fusing the 2 X 2 field
of children into two subregions. The subregions are cho-
sen depending on the local configuration of the contour.
The final result of both coloring based methods is a de-
scription of the curve by pyramid cells at different levels.
This representation is very sensitive to the shape of the
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contour, and to the position of the curve relative to the
boundaries of higher level cells in the pyramid. Both
Edelman and Mahoney discuss the problem of position
dependence for some of their results.

Kropatsch [18] represented contours at multiple reso-
lution by introducing a grammar of the intersections be-
tween a contour fragment and the four boundaries of a
pyramid cell. He employed two complementary pyra-
mids, the second one having its cells rotated by 45 de-
grees. Adjacent cells taken from either pyramid are then
merged together based on a large set of rules. The method
is cumbersome, yielding high sensitivity of the represen-
tation to the structure of the pyramids.

In our method we approach the problem differently. We
reduce as much as possible the influence of the pyramid
structure on the efficiency of the tracing procedure by rep-
resenting the curve fragments as lists, rather than through
the topology seen within a cell’s boundaries. As a result,
the contour tracing can easily be combined with other par-
allel algorithms for curve processing. We discuss two such
algorithms: smoothing of multiresolution contours, and
bridging gaps in fragmented contours.

In Section II we describe several problems confronted
by any algorithm for contour tracing in a hierarchical en-
vironment, and present the solutions employed to avoid
them. In Section III the different modules coupled with
contour tracing are presented together with experimental
data. In Section IV a preprocessing module, taking the
thresholded output of an edge detector and generating in-
put suitable for the chain pyramid, is described. A short
discussion of further directions of development is given
in Section V.

II. CoNTOUR TRACING IN A HIERARCHICAL
ENVIRONMENT

The most important property of an image pyramid is the
gradual transition from global to local processes. Large
regions in the input are represented by many cells at lower
levels of the pyramid. The same region, however, is seen
by only one cell near the apex of the pyramid. Thus, at
higher levels cells must trace larger and larger contour
fragments. The capacity of a cell, however, is limited and
at higher levels a complete description of the contour
fragment within the receptive field is usually not possible.
To avoid overloading of the cell’s processing capacity,
contour tracing in hierarchical environments must be
combined with a data compression procedure.

When a cell sees only one long contour fragment, data
compression is immediate by extracting the properties of
interest from the part within the cell’s boundaries. Those
properties should be computable recursively from the in-
formation available to the children.

More serious cases of overload are shown in Fig. 1.
The square grid drawn with the thinnest lines illustrates
the structure of the pyramid base. The receptive fields of
cells from different pyramid levels (i.e., the region on the
base of the pyramid integrated by the cell) are shown by

T
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Fig. 1. Examples of contours overloading a cell’s capacity at higher pyr-
amid levels. Thicker lines represent boundaries of higher level receptive
fields. The pixels belonging to the contour are hashed. (a) Multiple frag-
ments in the receptive field. (b) The worst case.

lines of different thickness. A thicker line is the boundary
for a cell at a higher level. The two thickest lines, inter-
secting at the center, represent the common boundaries of
the four cells one level below the apex. We will call these
lines the midlines of the pyramid. To facilitate the rec-
ognition of the receptive field boundaries, the pixels be-
longing to the contour are only hashed and not made
black.

In Fig. 1(a) the cells at the first pyramid level (2 x 2
receptive fields) see one contour fragment. The cells at
the second level (4 X 4 receptive fields at the base) may
see two separate contours and cannot assess whether the
fragments belong to the same curve or not. In the coloring
based algorithms this type of overload is avoided by stop-
ping the coloring and creating a root once multiple frag-
ments are detected. As a result, the contour is represented
by roots at different levels of the pyramid and further pro-
cessing of the curve may become cumbersome since in-
formation is distributed across the whole structure.

In the chain pyramid, the contour tracing is driven by
the contour itself and not by its spatial relationship with
the underlying pyramid structure. Two contour fragments
within the same receptive field are treated as separate en-
tities and their (compressed) descriptions are carried for-
ward in the pyramid. Higher levels of the pyramid then
connect the two fragments if necessary. The limit on the
number of fragments processed by a pyramid cell is set
only by the processing capacity of the cell. If the number
is sufficiently large, the total configuration becomes a tex-
ture. Textures can be represented by statistical character-
istics which achieve a much higher compression ratio.

The type of overload illustrated by the contour in Fig.
1(b) is more severe. Let a contour be of length N = 2",
i.e., the size of the image side. The contour is located at
the center of the image and crosses the principal bound-
aries of the pyramid N — 1 times. If local contour tracing
is kept within the boundaries of the pyramid cells, no data
compression is possible for this contour up to the apex of
the pyramid. The apex then sees N separate curve frag-
ments and must perform O[image_size] operations to
connect them. Thus, without additional precautions, for
the contour in Fig. 1(b) the image pyramid has the cells
at the higher levels overloaded, and cannot accomplish
the processing in O[log (image_size)] time, violating the
fundamental property of such structures.
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Because of the distributed processing architecture of the
image pyramid, proposed methods of avoiding overload
in connected component applications [8] cannot be ap-
plied. We now present a simple parallel probabilistic al-
gorithm based on local ordering of random variables,
which assures logarithmic processing time even for the
worst case shown in Fig. 1(b).

A. Probabilistic Allocation Algorithm

All the black pixels defining the contour in Fig. 1(b)
are equivalent. They are siblingless, i.e., there is only
one child per parent belonging to the contour. The follow-
ing important connectivity property of siblingless child-
cells always holds:

In a string of siblingless child-cells, every other cell
can be removed without breaking connectivity in the
reduced resolution representation at the parents’
pyramid level.

To prove the connectivity property it suffices to remark
that for a siblingless child the parents of its two neighbors
in the string are adjacent on the next level. Thus, if the
siblingless child is removed, the string at the next level
remains contiguous. In Fig. 2 more examples of sibling-
less child-cells can be found at level 0, and the above
property can be verified. The overload of higher pyramid
cells for the contour in Fig. 1(b) is avoided if the infor-
mation about every second contour pixel is allocated in
parallel to their neighbors along the string. No propaga-
tion, however, with a cell simultaneously receiving infor-
mation from one of its neighbors and allocating informa-
tion to the other, should occur.

Assume now that we have labeled the string of sibling-
less pixels (cells) in Fig. 1(b) with a binary sequence of
the form

.-+ 010101010101 - - - (1)

All the cells which received a 1 label can then become the
receivers of information from the cells having O labels.
The connectivity property is satisfied because only every
other cell is removed from the string, and the contour is
represented at the next, lower resolution contiguously.
Repeated application of the allocation procedure at sub-
sequent levels will eliminate overloading of the process-
ing capacity of higher pyramid level’s cells.

Unfortunately such a binary sequence cannot be derived
from the absolute addresses of the pyramid cells because
the structure of the pyramid is independent of the shape
of the contour. Nevertheless, a sequence similar to (1) can
be generated in parallel in at most three iterations. The
method is based on local ordering of independent random
variables. Because of the involvement of random pro-
cesses, we call it the probabilistic allocation algorithm.
Only a short description of the algorithm is given here;
for more detail see Meer [21].

The algorithm assumes that local connectivity has al-
ready been established among the pixels belonging to the
contour. (How this is done will be described in the next
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Fig. 2. Example of embedding the doubly linked lists carrying represen-
tations of a contour on different chain pyramid levels. The arrows rep-
resent the pointers of the list.

section.) The contour can now be regarded as a one-di-
mensional string with each cell having access to its two
neighbors. (The existence of end-points with only one
neighbor is not relevant for the moment.) Let a cell j have
access to three variables: p;, g;, and x;. The variables p;
and g; are one bit binary numbers. The label of the cell is
defined by the value of p;. The variable x; is an outcome
of the random variable x; which has a continuous uniform
probability density between 0 and 1. Random variables
allocated to different cells are independent and identically
distributed (i.i.d.).

Initially all labels p; = 0, and each cell draws an out-
come of its random variable. The label is changed from 0
to 1 whenever the outcome x; is the largest in the neigh-
borhood of the cell:

pp=1 il <x>x.,

p; =0 (2)

Note that the probabilistic rule (2) excludes generation of
two adjacent 1’s. The probability that a cell has its label
changed to 1 is 1/3. This probability is too low to gen-
erate a sequence similar to (1), and iterative application
of the rule is necessary.

Let the number of the current iteration be k. The second
variable g;(k) describes the concatenated state of the lo-
cal configuration of cells j — 1, j, j + 1. The variable is
set to 1 whenever all three cells have O labels:

otherwise.

gi(k)y =1 ifp,_(k — 1) =pi(k - 1)
=pia(k—1)=0
g;(k) =0  otherwise. (3)

At the beginning of the kth iteration new outcomes x; (k)
are drawn and the value of ¢;(k) is determined. The up-
dating rule (2) is then applied only to the cells with g, (k)
= 1. It can be shown [21] that after k = 2 iterations the
length of the longest run of consecutive 0’s is 3, with a
residual probability around 107>, These runs can be elim-
inated by deterministically changing 0’s to 1’s if their two
neighbors are both 0’s.

The sequence of labels allocated to the string of contour
pixels thus has only two local configurations: 101 and
1001. For the 101 configuration, the content of the cell
labeled O is split between the two receiving neighbors.
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TABLE 1
NUMBER OF SEPARATE CONTOUR FRAGMENTS TO BE PROCESSED BY THE
APEX

Without Probabilistic Allocation

Length of the contour 32 64 128 256
With Probabilistic Allocation

Average 2.55 2.69 2.52 2.46

Standard deviation 0.589  0.628 0.608 0.537

Maximum 4 4 4 4

For the 1001 configuration the cell with O label but larger
outcome x; becomes a receiving cell and has its label
changed to 1. The content of the other cell with label 0 is
then split between its two receiving neighbors. Note that
in both cases connectivity in the next level’s representa-
tion is preserved because only every other child belonging
to the contour is eliminated. The number of siblingless
cells can only decrease at higher levels of the pyramid.
The probabilistic allocation algorithm is repeated at every
level after local connectivity is established and most of
the siblingless cells which survive the algorithm at the
first level are eliminated at subsequent levels.

To measure the effectiveness of the probabilistic allo-
cation algorithm, the worst case contour [Fig. 1(b)] was
processed in the chain pyramid for contour lengths of 32,
64, 128, and 256 pixels. The number of separate contour
fragments arriving to the apex of the pyramid was taken
as quantitative measure. Recall that without probabilistic
allocation, this number is equal to the length of the curve.
For each case 100 trials were run. The experimental re-
sults are shown in Table I.

From Fig. 1(b), it can be seen that a perfect allocation
would always yield two contour fragments to be pro-
cessed by the apex. The length of the contour should not
be a relevant parameter. The experimental results confirm
this. The average number of contour fragments is always
close to 2.5 with a standard deviation of 0.6. The largest
number of contour fragments never exceeds four, corre-
sponding to one fragment in each of the four quadrants.

Note that the probabilistic allocation algorithm can be
applied successfully to compensate for the other artifacts
created by the rigid pyramid structure (like erroneous blob
detection), independently of the local property employed
in the definition of siblinglessness.

III. CONTOUR PROCESSING ALGORITHMS

In this section we describe several algorithms employed
for processing of contours in the chain pyramid. An im-
portant algorithm, probabilistic allocation, was described
above. The algorithm preceding the allocation procedure,
local connectivity determination, is discussed below. Data
compression algorithms must always be employed to build
the pyramid, but these algorithms depend on the specific
application. We present a smoothing algorithm for mul-
tiscale contours. A different application, gap bridging of
fragmented contours, is then discussed to illustrate the
modularity of processing in the chain pyramid environ-

ment. The gap bridging algorithm is also useful for the
treatment of branch points, i.e., pixels having more than
two neighbors.

A. Local Connectivity Algorithm

The hierarchical environment built to extract and rep-
resent contours is called a chain pyramid because the fun-
damental procedure, the local connectivity algorithm,
makes use of the chain-codable property of the contours.

At the base of the pyramid the black pixels defining the
contour have at most two neighbors of the same color. A
pixel establishes connection with its neighbor(s) by defin-
ing two pointers. The pointers are based on the relative
position of the two pixels and do not make use of the
pixels’ absolute addresses in the mesh at level 0. For end-
points the second pointer points back to the pixel from
which it originates. The contour pixels generate the pairs
of pointers in parallel and the string becomes locally con-
nected. The resulting data structure is known as a doubly
linked list [16, p. 140]. In a doubly linked list a node is
aware of its two neighbors, but cannot discriminate their
positions in the list relative to a global scanning direction.
The doubly linked list derived from the contour is distrib-
uted across the cells of level 0, the base of the pyramid.
Every cell with a black pixel carries one node of the list
and the two pointers. The doubly linked list constitutes
the input to the chain pyramid.

In Fig. 2 the pixel string of a contour at the base (level
0) of the pyramid is shown. The same convention as in
Fig. 1 is used to illustrate the structure of the pyramid.
The parents at the first level (2 X 2 receptive fields) ver-
ify whether they see only one child belonging to the con-
tour. These siblingless children are labeled 0, while every
other pixel receives a 1 label. The probabilistic allocation
algorithm then eliminates most of the siblingless children
by replacing strings of 00000 with
=+ - 01010 - - - strings.

After the allocation procedure is accomplished, the par-
ents at level 1 sequentially scan their receptive fields for
contour fragments. Whenever a black pixel is detected it
must belong to the distributed doubly linked list created
at level 0. The contour fragment is then traced to the
boundaries of the field, and the parent creates a pointer to
the neighbor at level 1 whose child was reached by the
tracing. The tracing operation makes use of the local con-
nections recorded in the doubly linked list, and involves
only a few steps along the list. As a result, a new doubly
linked list, distributed across the cells of level 1, is cre-
ated. The nodes of the list carry the representation of the
contour at the reduced resolution of level 1. A data
compression algorithm reduces the amount of information
retained by every cell (list node) for processing at subse-
quent pyramid levels. In Fig. 2 a possible embedding of
the doubly linked list of the contour at pyramid level 1 is
shown. Note the efficiency of the probabilistic allocation
algorithm in eliminating siblingless children.

The building of the chain pyramid is a recursive pro-
cess. To obtain level 2 the steps described above are ap-
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plied to level 1. A cell at level 1, however, may carry
several curve fragments, each being represented by a part
of the doubly linked list. The parents verify the number
of relevant children, i.e., children carrying representa-
tions of at least one curve fragment. If siblingless children
are detected, the probabilistic allocation algorithm re-
duces their number, making use of the connectivity re-
corded in the doubly linked list distributed across level 1.
The parents then scan for contour fragments carried by
each of the four children. If a yet unprocessed curve
fragment is reached, it is traced through the receptive field
by following the pointers of the doubly linked list of level
1. Whenever the tracing leaves the receptive field, a new
pointer to the corresponding neighbor is created at level
2. The parents handle multiple curve fragments within
their receptive fields as separate entities unless they can
connect them. A possible embedding of the level 2 doubly
linked list of the contour is shown in Fig. 2.

The local connectivity assessment algorithm is applied
recursively until the doubly linked list is reduced to one
root cell. Note that the root cell does not coincide with
the apex if the contour does not cross a midline of the
pyramid.

B. Data Compression and Smoothing Algorithms

The simplest data compression is achieved when global
characteristics of the contour, such as length and average
curvature, are computed. Any recursively computable
global characteristic can be employed. The doubly linked
list representations control the way children’s information
is combined along the contour. The global characteristic
is obtained in the root cell after O[log(image_size)] pro-
cessing time.

A more challenging data compression task is contour
smoothing. A contour at the base of the pyramid is a string
of black pixels, each with an integer address on the dis-
crete grid of the underlying square lattice. The quantiza-
tion introduces artifacts, and chain-codable contours have
a ragged appearance (see for example the contour at level
0 in Fig. 3). To achieve good perceptual qualities the con-
tours must be smoothed.

Multiscale curves are another important class of con-
tours which require smoothing. These curves convey in-
formation at several levels of resolution. At level 0 in Fig.
4, a multiscale curve is shown. The curve is perceived at
low resolution as a band with two 90-degree turns, while
at high resolution the wiggling pattern becomes evident.
To extract the low resolution trend of the band, the curves
must be smoothed.

The smoothing algorithm has two distinct parts. The
first part is the mandatory data compression; the parents
retain only the essential information about their children.
The amount of smoothing achieved by data compression,
however, does not suffice, and in the second part of the
algorithm additional smoothing is performed along the
contour, on the mesh at the parent’s level.

A pixel at level O (the base) has access to its address on
the mesh. Recall that for building the chain pyramid the
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Fig. 3. Smoothing of a chain-codable contour. Left column: Only data
compression is employed to build the next pyramid level. Middle col-
umn: Both data compression and smoothing along the contour are em-
ployed. Right column: All the three algorithms, data compression,
smoothing along the contour, and probabilistic allocation are employed.
Once the contour reaches its root cell it is no longer drawn.

absolute addresses are not necessary. Each parent at level
1 computes the line centroid of the contour fragment
within the boundaries of its receptive field. The centroid
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Fig. 4. Smoothing of a multiscale curve. Same as Fig. 3.
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where R, is the ensemble of | R, | contour (black) pixels
within the 2 X 2 receptive field of the parent; indexes

x(il’jl) = y(in, j1) =
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with subscript 0 and 1 refer to level 0 and 1, respectively.
The centroid’s coordinates are no longer integer numbers
corresponding to sites of the lattice at level 0, and the
centroid does not necessarily lie on the contour. How-
ever, it is always inside the convex hull of the contour
fragment [25, p. 100]. Thus smoothing is achieved if the
contour is replaced by the polygonal line obtained by con-
necting the centroids. The polygonal line can be drawn
directly from the doubly linked list of level 1, where the
nodes carry the centroid coordinates and the structure of
the contour is reproduced by the pointers. No new cur-
vature extrema can be created by this procedure.

For higher levels the formulas (4) must be generalized.
Each cell at level [ stores the centroid coordinates x,, (i,
Ji) for each one of the kc contour fragments within its 2
x 2! receptive field. The length (at the base) of each con-
tour fragment, ry (i}, j;), computed as the number of pix-
els in its string, is also available. The parents at level
I + 1 compute the new line centroid coordinates
Xip(iy 415 jy+1) Tepresenting the kp contour fragments in
the new 2/ "1 x 2/ receptive field:

2 iy i) Xe i i)

Rip,1+1

2 (i Ji)
Rip.1+1

xkp(i1+l’jl+1) =

2 me(iny ji)yee(iss i)

(_ . ) Rip,1+1

Yiplliv 1, Ji+1) = S ..
nec (1,

Riros kc( 1 J1)

(5)

where R, ;. is the ensemble of contour fragments in the
receptive field of the parent, which can be connected when
tracing the kpth contour part. The updated contour frag-
ment lengths are also computed:

(6)

N (i1, Jie) = szl 1 mee (s, i)
P!+

All the information is stored at the node of the doubly
linked list carried by the parent. Connectivity in the re-
duced resolution representation of level  + 1 is accu-
rately reproduced by the pointers of the parents’ list. The
smoothed contour corresponding to level ! + 1 of the
chain pyramid is then obtained by drawing line segments
between the centroids stored at consecutive list nodes.

At level 0 in Figs. 3 and 4, two different chain-codable
contours defined in 128 X 128 images are shown. In the
left column of Figs. 3 and 4 the smoothed contours ob-
tained from the different chain pyramid levels are given.
To illustrate only the effect of data compression, the prob-
abilistic allocation algorithm was not used in building the
chain pyramid. As can be seen, the contours at higher
levels remain ragged because of the siblingless children
situated close to the midline of the pyramid. Note espe-
cially the contours obtained for levels 4, 5, and 6 in Fig.
4,

The amount of smoothing is improved if after data
compression the cells at level / + 1 exchange information
on the mesh at that level. For each contour fragment stored
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in a cell the two neighbors along that fragment are ac-
cessed through the pointers of the doubly linked list. The
ensemble of three cells is denoted by @y, ;.;. New line
centroid coordinates, (X, (i1+1, Ji+1)s Yip (415 J1+1))s
are then computed based on the information available to
the cell and its two neighbors:

E nkp(il+]7jl+l)xkp(il+l7jl+l)

Okp,1+1
X, (i f1v1) =
dp\l+ 15 Ji+1 X X
2 ”kp(’1+1,11+1)
Okp,1+1
QE;H”kp(ilﬂ,jt+1)}’kp(i1+1,jl+1)
Yo (i1 15 Ji+1) = — 5 - -
nkp(ll+]a]l+l)
Okp.1+1

(7)

For the computation of the next level’s centroid coordi-
nates (5) the new values are employed. Note that the
lengths of the curve fragments were not updated along the
mesh. The effect of the additional smoothing, without the
probabilistic allocation algorithm being applied for pyra-
mid building, is shown in the middle column of Figs. 3
and 4. The amount of smoothing increases, but artifacts
due to siblingless children are still present. The right col-
umn in Figs. 3 and 4 shows the smoothed contours ob-
tained in the chain pyramid when the probabilistic allo-
cation algorithm is also present in the pyramid building
process. The results are much improved, and for the mul-
tiscale curve the trend (Fig. 4, level 4) is correctly ex-
tracted.

As an artifact of the smoothing we should mention the
shift of the endpoints toward the center of the contour at
higher chain pyramid levels. This artifact is always pres-
ent when a convolution window must be entirely con-
tained inside the data sequence. The root cell of the con-
tour is reached whenever both endpoints are in the same
receptive field. In Figs. 3 and 4, once the contour is rep-
resented by its root cell, no low resolution represeritation
is drawn. The more efficient the smoothing, the lower the
root cell is located in the pyramid.

For efficient smoothing of a planar curve, the curve
must be described in terms of its arc length from one of
the endpoints. An averaging window is then moved in one
dimension (that of the arc length) along the curve. This is
the case in several scale-space applications in which
smoothing is achieved by repeated convolutions with
Gaussian windows of increasing spread [2], [24], [27].
The convolution is implemented as a sequential scan along
the contour, and the results are kept at all the locations.

The corrections introduced by the probabilistic alloca-
tion algorithm yield the best possible representation of the
one-dimensional structure of a contour in a parallel two-
dimensional processing environment. Thus, the chain
pyramid can be employed to build scale-space represen-
tations of contours in Of[log(image_size)] instead of
OJimage_size] time, by performing the convolutions in
parallel. Gaussian shaped windows can be obtained with
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Burt’s [3] fast filtering method. To have full resolution
scale-space representations, the capacity of the pyramid
cell’s memory must be increased. This increase does not
affect the speed of the processing, if local subhierarchies
are defined [20].

C. Gap Bridging Algorithm

We now extend the chain pyramid to allow processing
of contours with branch points, that is, with pixels having
more than two black neighbors. An example of such a
contour is shown in Fig. 7(a). The branch points appear
at the intersections of contour fragments. Eliminating the
pixels with more than two neighbors creates gaps, and
yields a segmentation of the image.

The removal of the branch points takes place at the base,
level 0, of the pyramid. In many cases the segmentation
into branches is not of interest, and in the lower resolution
representations the correct continuity of the contour frag-
ments should be restored. Recall that the representation
of each contour fragment is a doubly linked list distrib-
uted across the pyramid cells. The continuity is restored
by creating new pointers between the two lists corre-
sponding to the two separate contour fragments in the im-
age. This is done by the gap bridging algorithm. The
number of removed branch points should be minimal, and
the chain-codable contour fragments should be kept as
close as possible, to have the gap bridging efficient.

In Fig. 5(a) an example of a complex branch point is
shown. The branch point removal procedure is part of the
local connectivity algorithm at level 0. Recall that the
algorithm begins by finding black neighbor pixels, and a
count of the number of these pixels is an integral part of
the procedure. All the pixels with more than two neigh-
bors are then removed in parallel. (In Section IV a slight
refinement, required for contours extracted from edge
data, will be described.) The removal of such pixels from
Fig. 5(a) yields the configuration in Fig. 5(b). The con-
tour is broken into eight separate fragments, denoted by
different hashings. The endpoint of each contour frag-
ment, however, can extend the fragment to its removed
neighbor without violating the chain-codability condition.
The extensions are achieved in parallel by creating the
corresponding pointers in the doubly linked lists. The en-
semble of extended contour fragments, shown in Fig. 5(c),
has the minimum number of pixels removed from the
original image. The result of the branch point removal
procedure applied to the contour in Fig. 7(a) is given in
Fig. 7(b). This image is the input to the gap bridging al-
gorithm of the chain pyramid.

The coarse quantization of the contour fragments in the
input image prohibits gap bridging at the highest resolu-
tion. The contour fragments must be smoothed first before
local continuity across a gap can be assessed. Multireso-
lution interpolation techniques are available in the litera-
ture [4], [15]. In the chain pyramid, we employ a different
method for gap bridging which better fits the available
contour representations. The modularity of processing in
the chain pyramid allows the gap bridging algorithm to be
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Fig. 5. Processing of the branch points at the base of the chain pyramid.
(a) Example of a branching contour. (b) Removal of all the pixels with
more than two neighbors. The different contour fragments are shown by
different hashing textures. (c) Extension of the contour fragments.

intercalated between the data compression and smoothing
procedures described in the previous section. As we have
shown, smoothing of the contour is achieved by recur-
sively computing the line centroid coordinates for contour
fragments of increasing lengths. The gap bridging algo-
rithm makes use, on a contour fragment, of the three cen-
troids nearest to the gap.

The parameters of the algorithm are defined in Fig. 6.
Let Cyy, Cyz, and Cy; be the three centroids nearest to a
gap on a contour fragment. Similarly, C,;, Cs,, and Cy
are the three nearest centroids on the other fragment. The
polygonal lines of the contour fragments are considered
as oriented away from the gap (see the arrows in Fig. 6).
This scanning direction is always available because we
are at the end of the doubly linked list representing the
contour fragment. Four angles, with positive values cor-
responding to counterclockwise rotation, can be defined
by the oriented directions

0, = G, Cy Gy b, = C1 G Cp
ap = CCpCp3 ay = G50, Cx (8)
where the order of the centroids defines the sign of the

angle.

Assume that data compression has already been per-
formed at the parents’ level and the coordinates of the
centroids were computed by (5). A pair of contour frag-
ments is considered for gap bridging if the following con-
ditions involving the angles in (8) are simultaneously sat-
isfied:

av=lo+ 6] <7 (9)
8= |len| = Joi][ < (10)
A =|lol - o] <3 (1)
8o =16:] = leal| < § (12)
As = ||| = || < g. (13)

A parent may see several contour fragments within its re-
ceptive field, and conditions (9)-( 13) must eliminate most
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Fig. 6. Definition of the parameters employed in the gap bridging algo-
rithm. The thin lines are drawn to show the definition of the angles. The
arrows correspond to the scanning direction along the contour fragments.

of the possible combinations. The collinearity condition
(9) limits the offset between two contour fragments. Two
similarly oriented but not collinear contour fragments will
not satisfy (9). The constant-curvature conditions (10)-
(13) assure that close to the gap the two contour fragments
will have similar shapes. The probabilistic allocation al-
gorithm always keeps the number of contour fragments
within a receptive field at a minimum and thus the number
of combinations to be considered by the gap bridging al-
gorithm does not increase exponentially with the level of
the pyramid. Pruning of the unprobable pairs further de-
creases the amount of computation.

If more than one pair of contour fragments satisfy the
collinearity and constant-curvature conditions, the pair
whose gap is bridged is chosen by the rule

mm[d-mm(ADOQﬂA2+A3+A4+AQH
G

T
4 + 2]

< (14)

where G is the ensemble of contour fragment pairs re-
tained, d is the Euclidean distance between Ci; and Gy,
and [ is the level in the pyramid. Rule (14) decides be-
tween a linearity measure and the average curvature
around the gap. Weighting by the centroid distance d is
necessary for biasing the bridging toward the closest con-
tour fragment pair. The chosen pair must also satisfy a
stricter threshold as the processing advances toward higher
pyramid levels, because for the smoother contour frag-
ments the same rigid threshold could yield undesired con-
nections.

The gap bridging algorithm is performed on the mesh
at the parents’ level. Every cell carries the coordinates of
its line centroids, computed for data compression (5).
Conditions (9)-(13) are then verified for the contour frag-
ment pairs located in adjacent cells or within the same
cell. The different possible local configurations make both
cases necessary. Two contour fragments located in adja-
cent cells at level / may not qualify for gap bridging, while
at level / + 1 when seen by the same cell they can be
bridged. The two contour fragments selected are con-
nected through generating pointers to fuse their doubly
linked lists. Gap bridging appears in the drawing of a low
resolution representation as connecting with a line seg-
ment the two centroids closest to the gap.
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Fig. 7. Gap bridging in the chain pyramid. (a) The input image. (b) The
image after removal of the branch points. (c) Representations of the con-
tour at different levels of the chain pyramid. The circle is no longer drawn
after level 5 when it has reached its root cell.
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The endpoints of the contour fragments have an impor-
tant but implicit role in the gap bridging algorithm. They
are ‘‘pinned down,”’ i.e., no longer allowed to shift to-
ward the centers of the contours in the lower resolution
representations as they did for smoothing (see Figs. 3 and
4). In the probabilistic allocation algorithm combined with
gap bridging, the endpoints are automatically labeled 1,
and thus will not be eliminated. Their parents always
compute the centroids for the contour fragments within
the receptive fields. This precaution is necessary to avoid
the endpoints of two contour fragments moving away and
widening the gap at higher levels of the chain pyramid.
The perceptual quality of the interpolation is improved by
the additional smoothing on the mesh after connecting the
contour fragments. The smoothing is identical to the one
described in the previous section. The computational for-
mulas are given by (7).

In Fig. 7(c) the results of the gap bridging algorithm
applied to the contour in Fig. 7(b) are shown at different
levels of the chain pyramid. In the level 3 representation
all the gaps in the input image have been connected. At
higher levels, the circle, represented now by a single cir-
cular doubly linked list, shrinks because of repeated ap-
plications of the smoothing algorithm. At level 6 the root
cell of the circle is reached and the contour is no longer
drawn. The linear contour fragments, however, remain
““visible,”’ showing their different, more elongated na-
ture. The phenomenon of instantaneous discrimination of
a shape against a different background is known in the
psychophysical literature as a pop-out phenomenon [28],
[31]. The chain pyramid thus offers a simple method of
modeling pop-out phenomena involving contours.

IV. PREPROCESSING MODULE

The algorithms described in the previous sections re-
quire a “‘clean’’ input, i.e., most of the pixels belonging
to the contour must have only two neighbors of the same
color. Contours derived from real scene images, how-
ever, tend to be several pixels wide and to contain com-
plex branch structures. To allow application of the chain
pyramid to real images a preprocessing module must gen-
erate a suitable input from the raw data.

While sophisticated contour extraction methods incor-
porating tracking loops based on gray level information
are available [S], for our purpose the simplest approach
suffices. First, an edge detector is applied to the image
and the response magnitude is thresholded. The resulting
binary image is then thinned by a parallel algorithm and
the artifacts of thinning are eliminated by 4-connected
chaining. The thinned binary image is smoothed by a lo-
cal operation. At the next step, the branch points are re-
moved as described in Section III-C and the input image
of the chain pyramid is obtained. All the procedures are
performed in parallel on the mesh containing the input
image, i.e., level O of the chain pyramid.

There are no special requirements on the edge detector
to be employed for obtaining the raw edge image of the
input. Because only the magnitude of the edge detector
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output is necessary, fast (two-mask) differential operators
are recommended. For our experiments we used. the
3 X 3 Sobel operator. The edge image is thresholded to
obtain the binary image necessary for thinning. We em-
ployed manual thresholding, i.e., the optimal threshold
value was chosen by inspecting the resulting binary im-
ages. The edge image should be slightly underthresh-
olded, to allow more degrees of freedom for the thinning
algorithm. The value of the threshold is not crucial; in
our experiments it could vary over a range of at least +8
gray level values without significant change in the output
of the preprocessing module (the input of the chain pyr-
amid). Local thresholding methods, as well as adaptive
procedures, are known (see [29] for a review) and can be
used if the specific application requires an on-line imple-
mentation.

Thinning of the binary image is achieved by a modified
version of the parallel thinning algorithm proposed by
Chin er al. [6]. The thinning is based on 3 X 3 neighbor-
hoods. The center pixel recognizes that one of the dele-
tion or restoration templates is present in the neighbor-
hood, and accordingly deletes itself or remains
unmodified. The deletion templates are shown in Fig.
8(a). The contour pixels are indicated by 1’s. Note that
because of the ‘‘don’t care’’ pixels, denoted by X’s, the
eight templates represent many possible configurations.
The center pixel changes its value from 1 to 0 whenever
a deletion template is recognized.

Most of the features in the binary images derived from
edge data are elongated along one direction. The specific
nature of these images is taken into account in the resto-
ration templates [Fig. 8(b)] which differ from the ones
proposed by Chin et al. When a restoration template is
recognized in the 3 X 3 neighborhood the center pixel
remains 1. The thinning procedure evolves synchronously
and in parallel. A maximum of three iterations suffices to
reach the final thinned configuration.

The underlying square lattice of the input image intro-
duces artifacts in any thinning operation. More specifi-
cally, contours oriented along 45 degrees remain two pix-
els wide. To become chain-codable these contours must
be further processed. The ambiguity is eliminated if in-
stead of 8-connectivity (all the pixels in the 3 X 3 neigh-
borhood are candidates for linking), 4-connectivity (only
the neighbors along the vertical and horizontal are taken
into account) is employed. Fig. 9 shows the result of the
procedure. Thus in the branch point removal procedure,
whenever more than two neighbors are counted under 8-
connectivity, the cells tries to remove the uncertainty by
applying 4-connectivity. If it succeeds, pointers are cre-
ated and the doubly linked representation loaded into the
cell. If it fails, the branch point procedure is continued as
described in Section ITI-C.

By applying the gap bridging algorithm (Section III-C)
the chain pyramid fuses the short thinned edge fragments
into more meaningful features. The staircase-like con-
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Fig. 8. Templates employed in the parallel thinning algorithm. (a) Dele-
tion templates. (b) Restoration templates. The pixels belonging to the
contour are denoted by 1’s. The symbol X means that the pixel value is
of no importance.

8-connected 4-connected

Fig. 9. Connectivity in ambiguous contours. If 8-connectivity is employed
(left) all the pixels have four neighbors. Under 4-connectivity (right) the
number of valid neighbors decreases to two. The arrows represent the
pointers which can be created under the given connectivity rule.

Level 0

N
:

\\\

Level 1

iy

Level 2

N

NN\

Level 3
Fig. 10. The importance of smoothing on the mesh of level 0. Left column:
Results of the gap bridging algorithm without smoothing. Right column:
Results with smoothing.
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Fig. 11. Gray level images employed in the experiments. (a) Wires. (b)
Parts. (c) House. All the images were magnified to 512 X 512 for dis-

play.

tours created by oblique edges (Fig. 9), however, are not
suitable inputs into the gap bridging algorithm. In the left
column of Fig. 10, the results obtained from the first three
levels of the chain pyramid are shown, for a detail of the
parts image [Fig. 11(b)]. The edge fragments (level 0)
are located along parallel oblique directions and most of
them were chained under 4-connectivity. These staircase
contours do not group correctly and the bridging does not
reproduce the parallelism of the guiding directions.

The results are drastically improved if the gap bridging
procedure starts by smoothing along the contour on the
mesh of level 0. The effect of smoothing can be assessed
by comparing the two representations of level O in Fig.
10. The smoothing procedure is the one described in Sec-
tion III-B and involves the two neighbors along the con-
tour. In most of the cases the gaps are bridged correctly
on the subsequent chain pyramid levels and the long par-
allel features are recovered.

We have applied the chain pyramid to three gray level
images shown in Fig. 11. The wires [Fig. 11(a)] and parts
[Fig. 11(b)] images are of size 256 X 256, and the house
image [Fig. 11(c)] is 128 X 128. The results are shown
in Figs. 12-14. Because of excessive smoothing and
bridging, at higher levels of the chain pyramid (above
level 3) the representations tend to become too coarse.
This artifact can, however, be useful if only the principal
directions of the image are sought. At the highest levels
of the chain pyramid most of the contour fragments will
group along these directions.

The long parallel edge in the wires image (Fig. 12) are
kept separated in spite of their small separations. While a
few nondesired bridgings exist, especially at the crossings
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Fig. 12. Results of the gap bridging algorithm for the wires image.

of the wires, these can be eliminated by incorporating a
priori information about the objects into the processing.
Recall that only bottom-up computations are performed
by the chain pyramid in the algorithms described here.



374 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12, NO. 4, APRIL 1990

NS
A
NS

N

P ——
==
_

/\\
AN

=7

Level 2 Level &

Fig. 13. Results of the gap bridging algorithm for the parts image.
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Fig. 14. Results of the gap bridging algorithm for the house image.

The shape of the objects in the parts image (Fig. 13)
can be recovered from the level 2 or level 3 chain pyramid
representation. At these levels most of the small curve
fragments have been fused and the smoothing has not yet
taken its toll. The doubly linked lists carrying the features
can be input into pattern recognition and/or reasoning
modules. The house image (Fig. 14) is the most complex
example. The main features are extracted at level 2 and
the principal directions of scene appear at levels 4 and 5.

V. SUMMARY AND FURTHER DIRECTIONS OF RESEARCH

To conclude, the following sequence of operations is
applied to a gray level image when it is processed in the
chain pyramid:

* Edge detection and magnitude thresholding. A bi-
nary image is obtained.

¢ Parallel thinning. Generation of the level 0 doubly
linked list representation.

Includes:
—elimination of connection ambiguities;
—branch point removal.

® Smoothing on the mesh of level 0.

¢ Application of the gap bridging algorithm. Involves
at every level:

—establishing local connectivity;

—probabilistic allocation;

—data compression;

—choosing the pair of contour fragments to be bridged
(if any);

—smoothing the new representation.

Processing in the chain pyramid is modular. The gap
bridging algorithm discussed in detail above is a good ex-
ample of this modularity. New applications can be imple-
mented without any change in the already existing mod-
ules. An example of such an application could be the
segmentation of contours. The partitioning of the con-
tours into perceptually significant pieces is of importance
for computer vision [11]. Several parallel algorithms for
contour partitioning are available (see [30] for a compar-
ative study) and they can easily be implemented on the
chain pyramid.

Usually the goal in extracting contours from real im-
ages is to generate a suitable input for a high-level vision
module which can interpret the resulting line drawing. The
interpretation is always task oriented and the available a
priori information can already be used in the algorithms
extracting the contours. The processes are no longer bot-
tom-up only; an important top-down component is also
present. Systems have been described by Fua and Hanson
[10] for aerial image delineation, by Reynolds and Bev-
eridge [26] for natural scenes, and by Darwish and Jain
[7] for printed circuit boards. Many of the rules employed
by these systems are based on local contour configurations
and thus can be implemented in the parallel hierarchical
environment of the chain pyramid, yielding significant
speed-ups.
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The chain pyramid employs the original definition of
the chain code [12]. Recently the subject has received re-
newed attention in the literature and the proposed im-
provements [13], [17], [23] can be implemented in a hi-
erarchical environment similar to the one described in this

paper.

We have presented a set of algorithms, implemented in
the hierarchical environment of the chain pyramid, for fast
parallel processing of contours. Artifacts caused by the
rigid structure of the image pyramid were eliminated by
a probabilistic allocation algorithm. Different operations
on the chain pyramid can be combined modularly, and
further extensions are possible.
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