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dent information, probabilistic models are required to
A new approach toward image segmentation is proposed. A guide the fusion process [21].

set of slightly different segmentations is derived from the same The difficulty of segmentation is an aspect of the local/
input and the final result is based on the consensus among them. global duality problem. A region is declared homogeneous
The perturbations are introduced by exploiting the probabilistic by analyzing small local neighborhoods. The larger these
component of a region adjacency graph (RAG) pyramid-based neighborhoods, the more reliable are the extracted spatial
segmentation. From the set of initial segmentations the cooccur-

statistics given that the data in the neighborhood is indeedrence probability field is obtained in which global information
homogeneous. On the other hand, using a larger neighbor-about the delineated regions becomes locally available. The final
hood increases the chances of analyzing nonhomogeneoussegmentation is based on this field and is obtained with the same
data under the assumption of homogeneity.hierarchical, RAG pyramid technique. No user set parameters

or context-dependent thresholds are required.  1997 Academic Press To avoid the problem of local/global duality often edge
information (local) and homogeneity information (global)
are combined during image segmentation. Haddon and

1. INTRODUCTION Boyce [16] refined a cooccurrence matrix-based segmenta-
tion by incorporating boundary information into a relax-

In image segmentation, given a homogeneity criterion, ation procedure. Wu and Leahy [41] used operations on
the image must be partitioned into regions within which a weighted region adjacency graph to delineate the bound-
the criterion is satisfied. The border between two regions aries of homogeneous regions. Chu and Aggarwal [12]
corresponds to a discontinuity, i.e., to an edge. However, combined several segmentations of different modalities,
not all edges are meaningful. Local variations due to noise

intensity, range, thermal, etc., by exploiting both region
often can yield significant discontinuities. A tradeoff exists

and edge information. LeMoigne and Tilton [26] used anbetween oversegmentation, partition into too many re-
edgemap to find the optimal stopping condition in a hierar-gions, and undersegmentation, in which case larger regions
chical segmentation algorithm. The edgemap, however,are obtained at the expense of possible erroneous fusions.
was defined by the user and contained only the featuresFor reviews of different image segmentation techniques
of interest. Geiger and Yuille [15] used mean field theorysee [17], Section 10, and [32].
to unify several image segmentation techniques in whichA segmentation based solely on a simple homogeneity
discontinuities are explicitly taken into account: nonlinearcriterion, like constant gray levels, cannot provide the de-
diffusion and minimum description length. Knapman andcomposition of an image into regions which correspond
Dickson [20] have found that edge information is moreto parts of an object in the physical world. To obtain a
important for segmentation than region statistics, at leastmeaningful segmentation the higher level descriptions of
in a Bayesian framework. The influence of the employedthe objects and often also of the relations among them
edge detection technique was investigated in [22].must be taken into account. Image segmentations using

In most segmentation methods the edge (discontinuity)simple homogeneity criteria can only provide the partition
information is based on local analysis and its errors affectof the image into ‘‘puzzle pieces’’ from which the objects
the fusion of adjacent homogeneous regions. We proposemust be assembled. A complete segmentation system is
a different technique for image segmentation. Instead ofcomplex and makes use of many heuristics [4, 30]. To
statistics characterizing the spatial structure of the localreduce oversegmentation, in the absence of context depen-
neighborhood, for every pair of adjacent pixels their en-
semble statistics under the segmentation task is used for1 Current address: Open Solution Center, Samsung Data System,

219-1 Migun-Dong, Seodaemun-Gu, Seoul, Korea. determining local homogeneity.
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FIG. 1. The information flow in image segmentation through the consensus paradigm.

In Figure 1 the information flow of the proposed para- matically associates a confidence measure to each deline-
ated region.digm is shown. Several initial segmentations are derived

from the same input image by exploiting the probabilistic Hierarchical methods were often employed for image
segmentation (see [17], Sections 10.5 and 10.6, for a re-component of the hierarchical region adjancency graph

(RAG) pyramid-based technique described in [27]. (The view). Traditional hierarchical methods, the split-and-
merge techniques, are based on a rigidly structured hierar-RAG pyramid is discussed in the beginning of Section

2.) From the ensemble of initial segmentations, for every chy, most often square neighborhoods. This yields strong
artifacts in segmentation: the region borders have raggedadjacent pixel pair a cooccurrence probability, i.e., the

probability of belonging to the same delineated region, is appearance; long, thin, waving objects are difficult to delin-
eate. To improve the quality of segmentation, the structurederived. The set of cooccurrence probability is different

from the probabilities derived from cooccurrence matrices of the hierarchy is often dynamically restructured [1, 37].
Pavlidis and Liow [34] used edge information to refine a[8, 16]. The former is computed after the initial segmenta-

tions, while the latter are obtained from the gray-level rigid, quadtree-based segmentation. Ng et al. [31] em-
ployed the coarse segmentation (higher levels of the imagedifferences of the input image. Since the cooccurrence

probabilities are derived from the initial image segmenta- pyramid) to guide boundary refinement by local operator
at the lower levels.tions they capture global information at the local (pixel

pair) level. The final segmentation of the input image is In order to eliminate the influence of rigid hierarchies,
the underlying structure should be based on the regionobtained by processing the cooccurrence probability field

with the same RAG pyramid technique. Only the pixel adjacency graph of the image. Most of the proposed tech-
niques employing region adjacency graphs, however, arepairs with high cooccurrence probability are grouped

together, i.e., the final segmentation is based on the not hierarchical and at each contraction of the RAG only
one fusion is allowed through exhaustive search over allconsensus about local homogeneity. The technique auto-



74 CHO AND MEER

the possibilities [28, 40]. User-specified parameters are also the edges of that level’s RAG, can now be obtained by
using the paths (of length at most three) between the survi-often required [40, 41]. Nacken [29] proposed a pyramid

relinking process guided by RAG for hierarchical image vors of the current level’s RAG.
The RAG-based representations can only be useful forsegmentation.

Our computational tool, the RAG pyramid automati- segmentation if the supports of the vertices correspond at
any level of the hierarchy to homogeneous patches in thecally adapts its structure to the image while still maintaining

the O[log(image–size)] processing time property of the input image. To satisfy this condition, the RAG must be
decomposed into similarity subgraphs before graph con-hierarchical techniques. The artifacts of image pyramids

[5] are eliminated. Construction of the RAG pyramid has traction.
The similarity subgraphs are derived from the RAG bya probabilistic component based on which several slightly

different outputs can be obtained from the same input (see local decisions. Let g(v) be the value associated with vertex
v of an RAG and g(vi ), i 5 1, . . . , nv , the values associatedFig. 1).

In Section 2, the RAG pyramid is reviewed and the with its neighbors. In the sequel, we will use gray-level
constancy as homogeneity criterion, i.e., the image is to bemethod of generating an initial segmentation of the input

image is described. In Section 3, several initial segmenta- segmented according to the constant facet model. In this
case g(v) is an approximation of the average gray level oftions are combined to obtain the cooccurrence probability

field and the method of extracting the final delineation is the support. The technique, however, remains the same
for more complex homogeneity criteria. A local threshold,presented together with experimental results. In Section

4 a faster, but less accurate method for generating the LT(v), is defined for vertex v from the ordered sequence
of differencescooccurrence probability field is proposed. In Section 5

an example of top-down processing using the delineated
homogeneous regions as input is shown, and the implica-
tions of the employed paradigm are discussed. di (v) 5 ug(vi ) 2 g(v)u i 5 1, . . . , nv . (1)

2. IMAGE SEGMENTATION WITH RAG PYRAMID
The most significant jump in the sequence yields LT(v).

In this section the technique of segmentation with the The jumps are estimated from the left and right averages
RAG pyramid is reviewed. For more details see [27]. The at every location in the ordered sequence of differences.
RAG pyramid is built by recursive graph contractions. Thus the local threshold is established by a cumulative
The RAG of the input image is given by the 8-connected sum type, jump detection algorithm [3]. Since using only
graph of the underlying mesh, i.e., every pixel is taken as local decisions can yield undersegmentation, a global
a homogeneous region. In the reduced resolution represen- threshold GT, defining the maximum allowable tolerance
tations every vertex corresponds to a compact region in for the homogeneity measure, must also be provided. (The
the input image, its support. To generate the next level of issue of global threshold selection is discussed in Section
the hierarchy only a subset of the vertices is retained. The 2.1.)
spatial relations among the retained vertices, survivors, The connectivity threshold CT(v) based on which the
and the nonsurvivors must satisfy two properties in order vertex v selects the neighbors in the same homogeneity
for the graph contraction to be optimal: class is then

• No two survivor vertices should be neighbors.
• Any nonsurvivor vertex should have a survivor

CT(v) 5 min[LT(v), GT ]. (2)neighbor.

These two conditions are equivalent to the vertices re-
tained for the RAG of the next level being a maximal The edges in the RAG connecting two neighbors whose

di (v) . CT(v) are temporarily removed. Each of the re-independent set [11] of the RAG at the current level.
The vertices are selected with a parallel, probabilistic sulting connected subgraph is a similarity subgraph which

corresponds to a homogeneous region in the input. Thesymmetric breaking algorithm [23]. Every vertex in the
graph is allocated a random number drawn from the similarity subgraphs are contracted independently by the

probabilistic procedure described above. The next level’s[0, 1] uniform distribution. A vertex becomes a survivor if
its outcome is a local maximum. Its neighbors are removed RAG is then constructed taking into account the pre-

viously removed edges. The recursive contraction of thefrom subsequent iterations. After less than five iterations
the algorithm converges and the maximal independent set RAG continues till no connected similarity subgraph can

be derived, i.e., all the vertices in the RAG are roots ofof the graph is extracted. The adjacency relations for the
reduced resolution representation of the next level, i.e., homogeneous regions in the input image. The RAG pyra-
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FIG. 2. An example of building the next level of the RAG pyramid. (a) The RAG of level l. (b) Similarity subgraphs, with the survivor vertices
filled in. (c) Allocation of nonsurvivors to the most similar survivor. (d) The RAG of level l 1 1.

mid is constructed in O[log(image–size)] steps and can be 2.1. Automatic Selection of the Global Threshold
implemented on parallel hardware [43].

The global threshold was a user set parameter in [27],In Fig. 2 an example of the contraction of RAG is shown.
and its value had a significant influence on the output. InFigure 2a shows the RAG at level l. In the RAG each
the absence of any a priori information the range of possi-vertex v represents a currently delineated homogeneous
ble global threshold values is large. However, a reasonableregion (solid line boundaries), while the edges (dotted
good estimate can be obtained from the input. Let for thelines) connect spatially adjacent regions. Let the decompo-
moment GT 5 256. Since this value exceeds the largestsition of RAG into similarity subgraphs be as shown in
possible gray level difference (1), the connectivity thresh-Fig. 2b with the arrows. Note that the similarity subgraphs
old is solely given by the local threshold (2). The first levelare directional subgraphs. Assume that the random num-
of the RAG pyramid is then generated from the inputbers associated with each vertex are as shown in Fig. 2b.
image. In the support of a surviving vertex v the largestThen the vertices retained for the next level of hierarchy
gray level difference is(survivors) are those marked as black. The nonsurvivors

are allocated to the most similar surviving neighbor in the
similarity subgraph as shown in Fig. 2c. The next level’s «m (v) 5 max

i, j
ug(vi ) 2 g(vj )u # 2 p LT(v), (3)

RAG is completed by connecting two survivors with an
edge if there exists in the current RAG a path of maximum

where vi , vj are any two vertices (pixels) belonging tolength three between them (Fig. 2d). Theoretical issues of
the RAG hierarchies were investigated in [38, 39]. this support.
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FIG. 3. Segmentation example. (a) Input, aerial image. (b) Image segmentation with the RAG pyramid.

The value of «m (v) for all the vertices of the first level’s The RAG pyramid segmentation of the aerial image is
RAG are sorted, and the global threshold is defined as the shown in Fig. 3b. Since only the bottom-up information
point of significant increase in the list. This is defined (for flow is used in building the hierarchy, the output of the
«m (v) ? 0) as the smaller value between the one corre- RAG pyramid is an oversegmented version of the input.
sponding to the ‘‘corner’’ of the graph and the one corre- The number of regions tessellating the input can be re-
sponding to the 80th percentile. Note that for a noisy image, duced by an order of magnitude through postprocessing
the value of global threshold is automatically increased to (to be discussed in Section 3.3).
compensate for the noise induced local variations. The
graph of sorted «m(v) for the aerial image (Fig. 3a) is shown
in Fig. 4, and the extracted global threshold was 22. The 3. CONSENSUS SEGMENTATION
shape of the graph is typical for several classes of images.

A simple homogeneity criterion, like constant gray lev-The 80th percentile condition is used only to avoid expen-
els, cannot account for a complex image structure. It issive (and often unreliable) searches for the corner of the

graph. therefore more secure to oversegment the image and pro-

FIG. 4. Aerial image. The sorted maximum local differences for the supports of level 1 of the RAG pyramid.
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FIG. 5. The influence of the probabilistic component on the structure of RAG pyramid. (a) The RAG of level l, outcomes of random variables,
similarity subgraphs, survivors (filled in). (b) The RAG of level l 1 1. Compare with Fig. 2d.

vide a measure of confidence for each delineated region. same region Nv,vi
times. The empirical cooccurrence proba-

bility of this pixel pair is thenThe confidences can be assessed through the consensus
technique (Fig. 1). The construction of the RAG pyramid
has a probabilistic component, selection of the vertices for
the next level’s region adjacency graph. The structure of p(v, vi ) 5

Nv,vi

N
i 5 0, . . . , 7. (4)

the hierarchy thus may differ locally based on the outcome
of the random variables. Changes in the set of nonsurvivors
allocated to a survivor changes the value g(v) associated The set of all cooccurrence probabilities defines the cooc-

currence probability field of the input image analyzed un-with the survivor. This in turn results in slightly different
similarity subgraphs at subsequent levels of the hierarchy. der the given homogeneity criterion. Pixels on the two

sides of a strong edge will have low cooccurrence probabili-The cumulative effect of the changes can be significant at
blurred transitions between regions where the structure of ties since their gray-level difference is large enough to

always exceed the connectivity threshold. However, lowthe similarity subgraph is less robust. At a steep discontinu-
ity, on the other hand, the same similarity subgraph is probabilities are also obtained for pixel pairs in regions

whose delineation changes significantly when the structurederived in spite of small variations in the values associated
with the vertices. of the RAG pyramid varies (e.g., blurred edges). In Fig.

6b, the cooccurrence probability field associated with theGiven the input image, therefore, many slightly different
region delineations can be obtained by repeating the RAG gray-level image in Fig. 6a is shown. The gray level value

of a pixel is given inside the corresponding node. Notepyramid segmentation process. An example of the varia-
tion in the structure of hierarchy caused by the probabilistic that the cooccurrence probabilities being based on the

outputs of RAG pyramids (segmented images) incorporatecomponent is shown in Fig. 5. Different random numbers
were assigned to the vertices of the RAG in Fig. 2a, and information about pixels not shown in Fig. 6a.

In the cooccurrence probability field global informationa different set of survivors (black nodes) was obtained.
Notice that the similarity subgraphs in Fig. 5a are the same becomes locally accessible. The segmented region to which

a pixel belongs (and which can be very large) is a globalas in Fig. 2b. The difference in the RAG of level l 1 1 has
an influence on the output (segmented image) only if these feature extracted from the input image. The cooccurrence

probabilities associated with this pixel are based on theregions are not fused into one at higher levels.
The individual segmentations obtained with the RAG initial segmentations. Thus, in spite of being computed

locally, these probabilities carry information about the re-pyramids will be called initial segmentations. The result
shown in Fig. 3b is such a segmentation. Let N slightly lation between the pixel and other pixels which were

grouped into the same region. This information is global.different initial segmentations be derived from the input
image. The differences are mostly in the small regions For example, when the employed homogeneity criterion

is not adequate for the analysis of the pixel’s neighborhood,and along the blurred edges. These segmented images are
registered pixelwise, i.e., on the 8-connected mesh of the the delineated boundary varies strongly with the structure

of the RAG pyramid and low cooccurrence probabilitiesinput. Thus N values are associated with every pixel. As-
sume that the pixel v and its neighbor vi belong to the result.
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FIG. 6. An example of cooccurrence probability field obtained from 20 RAG pyramids. (a) Part of a gray-level image. (b) Cooccurrence probabil-
ities.

Visualization of the probability field involving an eight- consensus image is a low-dimensional projection of the
cooccurrence probability field and thus it discards the di-dimensional vector for every pixel is difficult. A coarse

measure is obtained by defining the scalar quantity rectionality of the latter. We have found that N 5 20
suffices for a cooccurrence probability field to provide a
reliable final segmentation.

c(v) 5
255

8
? O7

i5 0
p(v, vi ), (5)

3.1. Weighted Region Adjacency Graph

with values between 0 and 255. The gray-level image of c(v) The technique developed for building the RAG pyramid
is the consensus image in which a lighter value indicates a (and providing the initial segmentations) can be used to
better change for a pixel to belong to a homogeneous extract the high confidence homogeneous regions from
region. That is, there exists a consensus in the set of initial the cooccurrence probability field. Each edge of the base
segmentations about the assignment of the pixel. In Fig. level’s RAG graph (the 8-connected mesh) has now a cooc-
7 two consensus images obtained with different number currence probability associated with it. The new graph is
of initial segmentations of the aerial image are shown. called the weighted region adjacency graph. To perform
Strong edges (dark pixels) are immediately extracted (Fig. the graph contractions an additional procedure for comput-
7a). The assessment of the homogeneity of regions is re- ing the weights at the subsequent levels of the hierarchy

is required.fined as more initial segmentations are considered. The

FIG. 7. Consensus images for the aerial image. Number of initial segmentations N combined together: (a) N 5 5. (b) N 5 20.
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FIG. 8. An example of updating the weighted region adjacency graph. See text.

Let the vertex v in the weighted RAG of level l be age gray level is shown inside the nodes (Fig. 8a). In a
selected as a survivor. The vertex is connected by mv,vi

weighted RAG-based hierarchy, the undirected similarity
path lengths of two or three to another survivor vi , a neigh- subgraphs are obtained simply by setting a context-indepen-
bor in the weighted RAG of level l 1 1. For every path dent threshold 0 , Tco # 1. In Fig. 8a the threshold Tco 5
we define qj (v, vi ) as the smallest weight along that path. 0.8 was used to obtain the similarity subgraph (solid lines).
Thus the path is characterized by the weakest link between Assume that vertices 2 and 5 are selected as survivors. The
the two survivors. Several methods can be employed to allocation of nonsurvivors is shown by the arrows. There
compute the weight of the edge between v and vi in the are four path lengths of at the most three between the
l 1 1 level’s weighted RAG, w(v, vi ). In a very conservative vertices 2 and 5 in the RAG of level l. These paths and
approach the minimum over all the qj (i, j), j 5 1, . . . , the smallest weight along them are shown in Fig. 8b. The
mv,vi

values is taken, while in a less demanding application weight associated with the edge between vertices 2 and 5
the maximum of these values can be used. We employed in the RAG of level l 1 1 can take different values de-
as compromise the average pending on the employed updating strategy: 0.8 for maxi-

mum, 0.625 for average, and 0.4 for minimum.

w(v, vi ) 5
1

mv,vi

O
mv,v

i

j51
qj (v, vi ). (6)

3.2. Analysis of the Cooccurrence Probability Field

The weighted region adjacency graph can serve as theIn Fig. 8 an example is shown. At level l, the weighted
RAG has six vertices corresponding to regions whose aver- input of a relaxation process ([13, 16, 17]; Section 17.4 of

FIG. 9. Consensus segmentation of the aerial image. (a) Tco 5 0.8. (b) After postprocessing with Tgf 5 18.
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FIG. 10. Selection of the gray-level fusion threshold, Tgf . (a) The gray-level differences between adjacent regions in Fig. 9a function of the
corresponding weights in the weighted RAG. The average of the global thresholds (value 22) is shown with the dotted horizontal line. (b) The
histogram of the gray-level differences considered for Tgf .

[19]) in which adjacent pixels having high cooccurrence continued with Tco decreased to 0.9. After the second
convergence, Tco is again decreased to 0.8. For a givenprobabilities are recursively joined together into homoge-

neous regions. To extract the homogeneous regions, using Tco the influence of the probabilistic component in the
graph contractions is reduced since the segmentationthe technique developed for building the RAG pyramid,

however, has several advantages: of the cooccurrence probability field is similar to the
segmentation of a labeled image which was shown to

• It converges in O[log(image–size)] by reaching the have a deterministic output [27].
root level of the hierarchy. The segmentation derived from the cooccurrence proba-

• The hierarchical structure combines nonlocal informa- bility field is a consensus segmentation. The cooccurrence
tion more efficiently than the propagation in most relax- probabilities are global measures for the reliability of local
ation methods. connections. When the value of a probability is high, there

• The same method is used for both the initial and the is consensus among the different initial segmentations that
final segmentations providing a modular system. the two adjacent supports can be merged. In Fig. 9a the

consensus segmentation of the aerial image obtained fromThe quality of segmentation is controlled by the thresh-
the cooccurrence probability field in Fig. 7b is shown.old Tco defining the similarity subgraphs in the weighted

RAG. This threshold is repeatedly decreased during the
3.3. Postprocessing Techniques

graph contractions. First Tco 5 1 and thus the regions with
the highest confidence are fused first. The segmentation Optimal postprocessing of oversegmented images

should be goal oriented, i.e., based on a priori informationprocess converges at the hierarchy level at which all the
edges in the weighted RAG graph have weights less than about the sought features. In this section, only context-

independent techniques are discussed with the understand-Tco . That is, the confidence in the homogeneity of the
delineated regions (the supports of the vertices) is at ing that these techniques should be integrated into top-

down, knowledge-driven procedures.least Tco . The building of the RAG pyramid is then
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FIG. 11. Two segmentations of the aerial image (Fig. 3a). (a, b) Consensus images based on N 5 20 initial segmentations. (c, d) Segmented
images after postprocessing. (e, f ) Boundaries of the delineated regions.

After the cooccurrence probability field was segmented, mented image may have adjacent regions whose gray-level
difference is very small. In Fig. 10a the gray-level differ-the confidence in the delineated regions was at least 0.8

(all adjacent pixels have a cooccurrence probability larger ences between all adjacent region pairs in Fig. 9a are plot-
ted function of the corresponding weights in thethan 0.8). Since the consensus segmentation is obtained

by analyzing only the cooccurrence probabilities, the seg- weighted RAG.
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lying cooccurrence probability fields (built from 20 initial
segmentations) can be observed from the consensus images
(Figs. 11a and 11b). The differences in the consensus seg-
mentations followed by postprocessing (Figs. 11c and 11d)
are not very significant as the boundaries of the delineated
regions (Figs. 11e and 11f) also illustrate. This differences
are mostly for the small regions and in the textured areas
where the homogeneity criterion is inadequate. There are
114 and 122 regions in the two segmentations.

Forcing small regions to fuse into larger areas incorpo-
rates nonhomogeneities into regions initially delineated as
homogeneous. These nonhomogeneities, however, can be
recovered by robust analysis [24]. In every delineated re-
gion detecting the outliers relative to the mode of the gray-FIG. 12. Outliers (white pixels) in regions larger than 25 pixels in
level distribution immediately highlights the incorporatedthe segmented image in Fig. 11c.
nonhomogeneities. In Fig. 12 the outliers in regions larger
than 25 pixels are shown for the segmentation in Fig. 11c.

For fusion an appropriate gray-level fusion threshold, As expected most outliers are located near the discontinu-
Tgf , must be chosen automatically. Only those gray-level ities in the image.
differences of two adjacent regions are taken into account The region adjacency graph of the final segmentation
in the computation of Tgf which are less than the average provides the spatial relationship between delineated re-
of the global thresholds used in the initial segmentations gions and can be used for interactive analysis of the image.
and have the corresponding weight in the weighted RAG The hierarchical structure makes possible fast access to
larger than or equal to 0.5. The histogram of those satis- the characteristics of a delineated region chosen by a cursor
fying the above two conditions is in Fig. 10b. From this location on the screen. See [10] for details of the implemen-
histogram, the most probable gray-level difference value, tation of such system.
i.e., the mode of the histogram, is chosen as Tgf . In the The defined segmentation procedure is completely unsu-
example Tgf 5 18 and the segmented aerial image after pervised. All the parameters are context-independent
postprocessing is shown in Fig. 9b. There are no visible and/or are automatically derived from the input: the con-
differences between the two segmentations, while the 1124 nectivity threshold CT(v), the smallest acceptable cooccur-
regions in Fig. 9a were reduced to 909 in Fig. 9b.

rence probability threshold Tco and the thresholds for post-Due to noise and the employed simple homogeneity
processing Tgf and TA .criterion the remaining delineated regions can have small

To illustrate the unsupervised nature of the computa-sizes. The segmentation in Fig. 9b, for example, has 818
tions, in Fig. 13 two segmentations of the 200 3 150 roadsregions containing 9 or fewer pixels with a total area of
image are shown. The original image (Fig. 13a) was seg-only 1788 pixels. The average size of a small region thus
mented into 180 regions after postprocessing with Tgf 5is close to 2 pixels showing the sensitivity of the RAG
19 and TA 5 9. The average of the global thresholds waspyramid-based segmentation technique. There are 91 re-
GT 5 23. The image was then corrupted with additivegions larger than 9 pixels, and their total area of 14596
Gaussian white noise with s 5 20 (Fig. 13b). The averagepixels is about 89% of the 128 3 128 image.
global threshold was increased by the system to GT 5 32,Should the features of interest have a few pixels area,
and the segmentation contained 161 regions after postpro-they can now be extracted by a top-down process em-
cessing with Tgf 5 27 and TA 5 9. The noise occludes someploying context specific information. In the absence of such
of the weaker edges and less details are delineated. Noteinformation several techniques can be used to fuse the
the delineations of several long features only a few pixelssmall regions together and/or into their larger neighbors.
wide. Both segmentations were obtained from cooccur-The simplest one is to recursively fuse the supports with
rence probability fields built from 20 initial segmentationsarea less than TA (nine pixels in our example) into their
and Tco 5 0.8.most similar neighbor, i.e., having the least gray-level

difference. At the end of postprocessing all small regions
are eliminated. When the image in Fig. 9b is postprocessed 4. SPEEDUP OF THE COOCCURRENCE
with TA 5 9 the segmentation in Fig. 11c is obtained. FIELD GENERATION

3.4. Experimental Results The cooccurrence probability field was generated from
the set of initial segmentations. The initial segmentationsIn Figure 11 two segmentations of the aerial image are

shown after postprocessing. The differences in the under- can be obtained in parallel; however, most often such im-
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plementation is not available. On a Sparc 20 workstation, pixel for generating the cooccurrence probabilities. The
tradeoff of accuracy for speed does not degrade signifi-an average complexity 256 3 256 image takes about 20

min to be processed. In this section we discuss a faster cantly the performance as will be shown with experimen-
tal results.method using only the local image structure around each

FIG. 13. Another segmentation example. (a) Original image. (b) Noisy image corrupted with additive Gaussian noise, s 5 20. (c, d) Consensus
segmentation and postprocessing. (e, f ) Region boundaries.
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FIG. 14. The allocation of pixels in the aerial according to the size of the associated window. The white pixels are those selected at that resolution.
(a) 7 3 7. (b) 5 3 5. (c) 3 3 3. (d) Adjacent neighbors only.

To determine the cooccurrence probability of a pixel To select the proper window size for each pixel, we
pair, a (2p 1 1) 3 (2p 1 1) window is centered on every employed the technique proposed in [25] for image
pixel. The optimum size of the window is set adaptively smoothing. For every pixel the local gray-level variance in
following the technique introduced in [25], and for each a (2p 1 1) 3 (2p 1 1), p 5 pmin , . . . , pmax window centered
window a connectivity threshold is determined. A given on the pixel is computed. For each window size, these local
pixel pair is contained in several windows. Note that be- variances are accumulated and the mode of the global
cause of the adaptive window size the number of windows distribution, G2

p , is found. The value of G2
p is an approxi-

is not always the same. The cooccurrence probability is mative estimate of the noise power measured with
then approximated by dividing the number of times the (2p 1 1) 3 (2p 1 1) windows. Note that the noise includes
gray-level difference of the pixel pair was less than the any deviation from the piecewise constant image struc-
local connectivity threshold to the number of times the ture model.
pixel pair was examined. A window is assumed to contain homogeneous data if

its local variance is less than the corresponding global
4.1. Window Size Selection threshold G2

p . To select the largest window containing ho-
mogeneous data, the criterion is recursively examined fromThe local component of the connectivity threshold is
the pmax 5 3 to pmin 5 1. This technique was also useddetermined based on the gray-level differences in the win-
in [33] to determine the optimal window size for edgedow. For more reliable thresholds it is desirable to use
detection. Whenever none of the three windows was cho-larger windows for pixels in homogeneous regions. On the
sen (the pixel is close to an edge), only the differencesother hand, when a pixel is located close to an edge, smaller

windows are needed to least corrupt the computations. between the pixel and its eight neighbors are considered
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FIG. 15. Segmentation with locally estimated cooccurrence probabilities. (a) Segmented image. (b) Boundary image.

in the connectivity threshold computation. Classification decision about the pixel pair is reassessed many times. The
cooccurrence probability is defined as the ratio betweenof pixels in the aerial image according to the size of the

associated window is shown in Fig. 14. the number of times the pixel pair was connected together,
and the number of times it was examined. Note that the

4.2. Connectivity Threshold cooccurrence probabilities are now estimated from a small
neighborhood. However, when this cooccurrence probabil-After the optimal window size is determined for the
ity field is analyzed with the hierarchical technique dis-(i, j)th pixel, the local component of the connectivity
cussed in Section 3.1 the output of the segmentation is notthreshold LT(i, j) can be defined as in Section 2. This time,
significantly different (Fig. 15).however, the ordered sequence of gray-level differences

The artifacts of employing rigid windows in the estima-is analyzed not for the neighbors on the region adjacency
tion of the probabilities are eliminated by using the RAGgraph but for the entire window.
pyramid for the segmentation. For postprocessing Tgf 5To avoid segmentation artifacts two global thresholds,
GT l, and regions having area less than nine pixels are fusedGT l and GT u, are computed. The upper bound, GTu, is
into their most similar neighbor, as discussed in Sectionused to prevent undersegmentation, while the lower
3.3. There are 99 regions in the segmented image (Fig. 15a).bound, GT l, is used to control oversegmentation. These

global thresholds are derived from the global distribution
4.3. Further Experimental Results

of the gray-level differences of adjacent pixels from the
entire image. The mode of the distribution, M, and the The two methods of obtaining the cooccurrence proba-

bility field were also compared for the boat image (Fig.robust scale estimate ŝ (size of the mode search window)
[24] are used to define the global thresholds as GT l 5 16). In Fig. 17, the cooccurrence probability field for the

results on the left was generated from 20 initial segmenta-M 1 ŝ and GT u 5 2 ? GT l. These empirical thresholds
seem to account for the strong skewness of the global
distribution and were appropriate for a wide range of im-
ages [10]. To decide whether two adjacent pixels in the
window centered on (i, j) belong to the same region, the
connectivity threshold CT(i, j) is defined as

• if LT(i, j) # GT l then CT(i, j) 5 GT l ;
• if GT l , LT(i, j) # GT u then CT(i, j) 5 LT(i, j);
• if LT(i, j) $ GT u then CT(i, j) 5 GT u.

Two adjacent pixels in the window are assumed to belong
to the same region if their gray-level difference is less than
CT(i, j).

Since windows are centered on every pixel, the connec-
tivity of a pixel pair is examined in several windows. These
windows can have different connectivity thresholds due

FIG. 16. Boat image.to the local structure changes and thus the connectivity
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FIG. 17. Segmentations based on cooccurrence probability fields generated from 20 initial segmentations (left column) and with local windows
(right column). (a, b) Consensus image. (c, d) Consensus segmentation and postprocessing. (e, f ) The boundary image.

tions, while for the results on the right using the local The only significant difference between the two segmen-
tations is that the local method may fail to delineate twowindows. In the latter case GT l 5 11 and GT u 5 22. The

thresholds Tco 5 0.8, Tgf 5 11, and TA 5 9 were used for regions sharing a blurred boundary. Since the analysis is
restricted to windows of maximum size 7 3 7, relativelyboth segmentations. The number of delineated regions is

600 in the left segmentation and 463 in the right segmen- high cooccurrence probabilities can be assigned to pixel
pairs in the regions with slowly changing gray levels. Thetation.
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FIG. 18. Consensus segmentation of three well known images. (a) The pentagon image. (d) The house image. (g) The bulkhead image. (b, e, h)
The corresponding segmented images after postprocessing. (c, f, i) The corresponding boundary images.

delineation of the clouds (Fig. 17e and 17f) is an example original hierarchical procedure was used with the same
thresholds as in Section 3.4, except for those recoveredof such cases. A speedup of about five times is obtained

for the method using local windows. The exact processing from the image itself.
The pentagon image (Fig. 18a) has relative low contrasttimes depend on the complexity of the segmented image.

Quantitative assessment of the quality of an image seg- and the detection of the fine features (some of the roads
for example) appears to be somewhat random. However,mentation algorithm is a challenging open question, e.g.,

[18, 42]. To compare the proposed method with others, in the structure of the image is correctly recovered, in spite
of using a hierarchical procedure for closely spaced narrowFig. 18 the segmentation of three well-known images is

given. The segmented images are in the center and on the regions. The extracted 3768 regions were reduced to 408
after postprocessing.right the corresponding boundary images are shown. The
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computed by using the distance transform ([17], Section
5.8). The Bayesian network computed the probability of
a region as a road element using prior probabilities of 0.5
and the conditional (expert) probabilities derived from the
image itself. The regions declared as road elements with
a probability larger than or equal to 0.6 are shown in Fig. 19.

Image segmentation is a deceptively complex problem.
Simple homogeneity criteria, like constant gray level can-
not provide a reliable decomposition of a real image. The
tradeoff between over and undersegmentation was dis-
cussed in Section 1. To take optimal decisions about fusing
the delineated regions, the confidence in the homogeneity

FIG. 19. Roadmap detected from the segmented image in Fig. 13c
of the regions must be quantized. The consensus techniquewith a probability of at least 0.6.
described in this paper is an effective way to obtain these
quantitative measures. The differences in the initial seg-
mentations are more significant for image parts where the

The house image (Fig. 18d) is representative of the class employed homogeneity criterion is not adequate. These
of outdoor scenes often used in segmentation papers. The differences yield small cooccurrence probabilities and
presence of textured areas (trees, bushes, grass) challenges therefore can prevent undersegmentation.
any segmentation algorithm. Note that they are satisfacto- Besides the cooccurrence probabilities, other measures
rily recovered together with the features of the house. can also be extracted from the initial segmentations. For
Some of the low contrast features on the lawn were fused. example, from the empirical distribution of the N values
The extracted 4509 regions were reduced to 608 after post- of a pixel, the confidence in the stability of the segmenta-
processing. tion as seen by this pixel can be obtained. Such measure

The bulkhead image (Fig. 18g) was extensively used in can be used to replace locally the homogeneity criterion
[17], as the reference image for presenting different seg- and use a higher order facet model.
mentation algorithms ([17], Section 10). (There are two The consensus methodology is not restricted to image
similar images used; ours is the one in Fig. 10.34.) The segmentation. It is motivated by a resampling technique
result in Fig. 18i is about the same quality as the output introduced recently in statistics, bootstrap [14]. Bootstrap
of a sophisticated edge detector (Fig. 10.27), which then can be used for a large variety of tasks in computer vision.
was used to obtain a strong undersegmentation of the im- We have already employed it for performance evaluation
age (Fig. 10.28). The single hierarchical, split and merge, of a complete edge detection system [9] and for bias reduc-
example (Fig. 10.40) is clearly inferior, producing severe tion in conic fitting [7]. Recently, a bootstrap based tech-
artifacts. The extracted 3914 regions were reduced to 357 nique was proposed to improve the performance in ma-
after postprocessing. It must be emphasized that the goal chine learning [6]. The consensus paradigm may also have a
of the processing is to automatically obtain a correct over- biological justification. Information processing in the lower
segmentation of the image. The final segmentation must levels of the visual system is parallel with largely overlap-
always be goal oriented, i.e., a knowledge guided top- ping inputs, recalling information flow similar to the one
down procedure. in Fig. 1.
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