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Abstract. We present an algorithm to estimate the parameters of a linear model in the presence of heteroscedastic
noise, i.e., each data point having a different covariance matrix. The algorithm is motivated by the recovery of
bilinear forms, one of the fundamental problems in computer vision which appears whenever the epipolar constraint
is imposed, or a conic is fit to noisy data points. We employ the errors-in-variables (EIV) model and show why
already at moderate noise levels most available methods fail to provide a satisfactory solution. The improved
behavior of the new algorithm is due to two factors: taking into account the heteroscedastic nature of the errors
arising from the linearization of the bilinear form, and the use of generalized singular value decomposition (GSVD)
in the computations. The performance of the algorithm is compared with several methods proposed in the literature
for ellipse fitting and estimation of the fundamental matrix. It is shown that the algorithm achieves the accuracy of
nonlinear optimization techniques at much less computational cost.
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1. Introduction (quadratic) constraint is imposed over homoscedastic
data, i.e., data with each point corrupted by the same
It is a sign of maturity for the field of image under- noise process. A computationally feasible solution for
standing that more and more often the generic prob- estimating the parameter matrix of the bilinear form re-
lems, at the roots of several vision tasks, are recognizedquires linearization which in turn yields a heteroscedas-
and addressed. In this paper we discuss such a probtic regression. While the algorithm described in this
lem, the estimation of a parameter vector from data in paper was motivated by the bilinear problem it can be
which each measurement is available with a different applied to any vision task in which the data is het-
uncertainty. In this case the data is known as corrupted eroscedastic.
by heteroscedastic noise. A reliable solution for linear  Let pajo = [Xaio. Yaio» 11T andpgio = [X8io» Yaio» 1],
regression in the presence of heteroscedastic noise is =1..n, be the affine coordinates of pairs of matched,
clearly of importance for many vision algorithms. The error-free points in two images. Then, often the geo-
same problem, however, also arises whenever a bilinearmetric constraints between these points can be written
as a bilinear form

T
*Corresponding author. Paio Fpsio =0, (1)
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with the 3x3 matrix F required to satisfy additional can be also regarded as a linear form with
restrictions.

The epipolar geometry defined by two cameras is 6,=[a b,cd,€,
captured by (1), wittF being of rank two. When the s ovT (5)
calibration of the cameras is not known (as in projective Zo = [Xio, Yio, Xio¥io: Xio» Yio] -

reconstruction)F is called thefundamentalmatrix.
When the cameras are calibrated (as in motion estima-
tion), F is called theessentiaimatrix and must also have
two identical nonzero singular values (Faugeras, 1993
p. 250). Takin@gaio = Peio = Pio &nd limitingF to sym-
metric matrices, (1) becomes a quadratic form repre-
senting a conic in the image plane. Conics are often
used to approximate the shape of 3D objects projected

into 2D images, the most important case being the el- \ynere ~GI(0, Cm)’ means ‘distributed independently
lipse which appears as the projected outline of objects \yith a general, symmetric p.d.f. having zero mean and
with rotational symmetry. The Eq. (1) represents areal positive semi-definite covariance matrix’. The error
conic when the signature (the number of positive and process (6) together with the constraint (2) represent
negative eigenvalues) éfis (2,1) or (1,2). Inorderto 3 nonlinear, errors-in-variablegEIV) model with in-
have (1) represent an ellipse, additional restrictions on tercept (Van Huffel and Vandewalle, 1991, Chap. 8).
F are required (Kanatani, 1996, p. 114). We will use  The common covariance matr, =02Cr is as-
both the ellipse fitting and the fundamental matrix re- g,med to be known up to a multipse, the noise vari-
covery tasks to compare the performance of the new gnce. Most often in applications the normalized co-
estimation. methqd with that of techniques currently 5riance matrixC?, is taken to be the identity matrix
employed in the literature. However, if a priori knowledge about the noise process
Let mj, be the vector constructed from the Carte- g ayajlable (such as resolution differences between
sian coordinates of the matched, error-free (true) points the two images) it should be incorporated if. In
Paio andpgio- In generalmi, € R* wherek =2 for the Section 4.3 we will show the importance of using non-
quadratic forms antd = 4 for the bilinear forms. Then jgentity C* through an example. We further assume
we can always write the bilinear form (1) as a linear hat no erroneous matches are present in the observed
form data. Such outliers can be eliminated before the esti-
mation process by using robust matching methods as
Paio FPBio = a0 + 2(Mig) 6 = 0, (2) in Zhang et al. (1995).

In Section 2 it is shown that by approaching the esti-
where the new vectd, = z(mj,) € RP is anonlinear mation qf F through the linear form, i.e., Iinearizati_on
mapping of the elements ohj, and the parameter of the_ bilinear problem, leads to a het(_aroscedasnc re-
vector@, is derived from the true matrik. Note that ~ 9ression. The currently proposed solutions for the esti-
the intercept is treated separately. The relevance of thisMation of the fundamental matrix and conic fitting, are
will become clear when the linearization is discussed discussed in this context. In Section 3 the new method
in Section 2.2. Since (2) is determined up to a nonzero for heteroscedasticregression is introduced and applied
scaling factor we will normalize it by imposing to estimation with a bilinear constraint. The perfor-
mance of the new algorithm is compared with other
techniques for ellipse fitting in Section 4, and for esti-
mation of the fundamental matrix in Section 5. The con-

nection to geometric distance minimization and other
Thus, for example, the quadratic form of the conic fit- re|ated issues are discussed in Section 6.

ting problem

In practice, the available matched poipts andpg;
are error prone, and the matfhas to be estimated. In
the presence of measurement errors, the noisy vector
' m; derived from the matched image points is observed.
Assuming additive errors we have

m; = Mij, + Am;, Am; ~ GI(0, Cy), (6)

[166]% = 1. ®3)

d c¢/2 a2 2. The Bilinear Problem

Po|C/2 e b2|pob=0, (4) Any estimation process has two components, recov-
a/2 b/2 a ery of the model parameterpgrameter estimation



and recovery of the uncorrupted data poinutstéa cor-
rection). The latter are also known as the nuisance
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The expressions of the mean and covariance matrix
of Az are obtained from the mapping functiatm).

parameters since the associated uncertainty does notn our case the points); have a common covariance
depend on the model parameters. In linear estimation matrix C,, and the linearized error vectorsz; have

problems the two components are intertwined and all

the same mean vectqt, but data dependentovari-

the parameter estimates can be obtained simultane-ance matrice€;. Such data, with the distribution of

ously. Parameter estimation with a bilinear constraint,

each point depending on its true coordinates is called

however, is a nonlinear process and the estimation of heteroscedastic

Pai, Pai andF simultaneously is a complicated task. If

For example, assumingm; ~ NI (O, JVZI), i.e., nor-

the parameter estimation procedure provides a consis-mal i.i.d. errors, and using (5) as the mapping function,

tent estimatoF, then subsequent estimationff and
Pgi is usually satisfactory. Thus, first will focus on the
estimation of the model parameters.

2.1. Linearized Model

To estimate the parameters of the nonlinear EIV model,

the sum of squared Mahalanobis distances between the

noisy points and the true points should be minimized
in RX

~

[&, 6, mM]

n
=arg min Y (M —mi) Cr(Mi — M), (7)
%0,Uo,Mip j—1
subject to a, 4+ z(Mig) "6, = 0 and ||6,|% = 1,

(8)
whereC, is the pseudoinverse @&, which also ac-
counts for the case whely, is singular. Note that the
minimization (8) corresponds to the maximum like-
lihood solution for normal noise, under the functional
model (Fuller, 1987, p. 124-139), in which the true val-
ues of the pointsn;, are considered as unknown con-
stants. The solutions fat, , i; cannot be obtained

in closed form and an iterative procedure is needed.

Satisfactory convergence of the nonlinear optimization
procedure requires a good initial estimate and itis com-
putationally impractical without using approximations
(Fuller, 1987, p. 230; Taubin, 1991).

However, if the bilinear constraint is written under
its linear form (2) the estimation @, becomes the
solution of a linear minimization problem iRP, the
space of. This is indeed true, though with a very im-
portant caveat. In an optimal parameter fitting proce-
dure for the linearized model, the error characteristics
of the linearized model variables must be taken into
account. The mapped vectasobtained from the ob-
served vectorm; can be approximated as

Z = Zip + Az, Az ~Gl(un,Cj), i=1..n. (9

we obtain
_ 2 217
n= [O, 0,0,0,, UU] , (20)
1 0 Yio 2Xio 0
0 1 Xio 0 2Yio
Ci = 01)2 Yio  Xio Xi% + yi% + UVZ 2Xio Yio 2Xio Yio
2Xo O ioYio X3 +202 0
0 Yo  XoYo 0 43 +202
= olc;. (11)

Note the presence of the true (and thus unknown) co-
ordinates of the data point in the expressioCpf

In the estimation process an approximation for the
normalized matrixC; must be available. From the map-
ping function it can be seen that in the general case
the knowledge of the fourth order moments of the el-
ements ofAm; are required. The third order moments
are zero since we assumed a symmetrical error distri-
bution. The way to approximatg; will be discussed
in Section 3.1.2. The estimation of the noise variance,
o2 is discussed in Section 3.1.

The parametersy], 8,] of thelinear, heteroscedas-
tic EIV model can be found by minimizing the squared
Mahalanobis distances R P

n
[6,0,2] =arg min Z(Zi — 1 —Zo) "
®0,U0,Zi0 j=1

x Ci™(z — p — Zio), 12)

subject t0 ao +210, =0 and ||6,[° =1, (13)

with the linearized measurement errors defined in (9).
Note that by subtracting the mean of the errarghe
residuals used in the Mahalanobis distances have zero
mean as required by the implicit assumption of the
minimization. The price of moving from a nonlinear
minimization problem to a linear one is the loss of



130 Leedan and Meer

homoscedasticity (same distribution) of the errors. The Hartley (1997a) proposed thermalized eight-point
estimated parameters are not necessarily the same as bglgorithmin which before the estimation procedure the
solving the original, nonlinear problem (7), however, points in each image are independently transformed
they are very close in practice. Special care is neededby translation and scaling to have their centroids in
for the data correction procedure as will be discussed the origin and a scatter close to a unit circle or unit

in Section 3.2.

2.2. Literature Review

For the moment we restrict ourselves to the algorithms
proposed in the computer vision literature which es-
timate the matrix of the bilinear form making use of
the linearization described in the preceding section and
assumeCr, = 1. (Will return to the issue of the opti-
mization criteria for image understanding problems in
Section 6.) Two important misconceptions can be often
noticed.

1. Theeffectofthe nonlinear mappingrof intoz(m;)
on the errorsAz is ignored.

2. Theintercept, is treated the same way as the other
model paramete;,, i.e., the elements @,

In the widely useckight-point algorithmfor the esti-
mation of the fundamental matrix, e.g, (Faugera, 1993,
p. 274), (Hartley, 1997a) both misconceptions are
present. For a critical discussion see Luong and
Faugeras (1996), Torr and Murray (1997) and Zhang
(1998a). A similar method is also popular for conic
fitting, see Zhang (1997) for an evaluation.

The original eight-point algorithm assumes
Az~NI(0,02l), and finds the parameter estimate
0=|[a, éT]T under the constrainf(|?=1, as the
eigenvector associated with the smallest eigenvalue of
the matrix

S=1[1021"[1n,2Z], Z=1[z2,....2:]", (14)
wherel, is ann-dimensional column vector of ones.
This eigenvector spans the enforced null-space of the
matrix [1n, Z] in RP*1. However, since in (13) the;
are associated with ;, while the intercept is associ-
ated with theconstantl, not the entireRP+! should
be searched for a valid solution. The least eigenvector
algorithm fails to take this into account.

The poor performance of the least eigenvector algo-
rithm is well know even beyond bilinear problems (e.qg.

see Faugeras (1993, p. 63) in the context of camera cal-

ibration), and often computationally expensive nonlin-

box. The nature of the erroraz is not taken into
account.

In the context of our model, the significant per-
formance improvement of the normalized relative to
the original eight-point algorithm is justified not only
by the better condition number of the data matrix as
Hartley motivates the need for the transformation. Due
to centering the intercept is eliminated while the scal-
ing reduces the influence of measurement errors. In
Section 5.1 will show a quantitative example. Thus the
least eigenvector algorithm is now applied in condi-
tions closer to its validity, and the results improve. In
general, however, using the incorrect model when esti-
mating from data with significant measurement errors
yields strongly biased parameter estimates, as will be
shown in the experimental sections.

The correcttotal (orthogonal) least squarddLS)
solution to solve (12) fop = 0, andAz ~ GI(0, o21),

i.e., zero mean, homoscedastic errors, is

R 1
&=-2'0 wherez= = E z, (15)
i—1

and@ is the eigenvector associated with the smallest
eigenvalue of the moment matrix of tentereddata
Ze,

M=21Z.= %;(Zi -2z -2)". (16)

The proof is immediate following through Appendix A
for this particular case. The least eigenvector algorithm
can be applied only when the errors of gtnegmented
data vectory =[1 z']have thesame, singulacovari-

ance matrix
0O 0
o 1/

The use of the singular covariance matrix in (12) auto-
matically separates the treatment of the intercept from
the rest of the parameters.

Taubin (1991) proposed the following approxima-

_ 2
=o,

C 17)

ear techniques were recommended instead. Recentlytion for the mean squared Euclidean distan€s=1)
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in the minimization criterion (7) wherew; are weights depending on the datad the
unknown parameteré,. The errorsAz; may have
n - S, (ao 4 zf@o)z nonzero mean and different covariance matrices. The
Z(mi — Mip) (Mj — Mjp) ~ 07N ; dependence ofy; on the sought parameters implies
i=1 o 7ro (18) an iterative procedure, calleenormalization At each

step the underlying heteroscedastic regression problem
is transformed into a generalized eigenvalue problem
4 ( 0z )( 9z, )T (19) whose solution is used to define the bias correction for
am; om; ) the next step. Both a first order and a second order
approximation for the bias correction were developed.
) - ) . ) e The method was tested for conic fitting and motion
isap x p positive semi-definite matrix. Note th% analysis, see Kanatani (1993, 1994, 1996).
is the Jacobian of the nonlinear transformation from Firstorder renormalization (Kanatani 1996, Sec. 9.4)
tozevaluated am;, and every element of the sum can 5 g elegant numerical way to compute the general-
be regarded as the normalized covariance matrix of the ;o4 eigenvector required for the parameter estimate

vectorz; when neglecting the higher order moments. \yhjle simultaneously updating the matrices toward bias
Thus, N has the meaning of the average normalized emgoval. The first order renormalization is similar to
covariance matrix. , o the GTLS procedure suggested by Taubin (1991). The
The solution through this approximationisthe small- -y ain gifference is that to reduce the bias of the solution
est generalized eigenvalue of the generalized €igen-T4,pin used a second, nonlinear estimation step with
problem the Levenberg-Marquardt routine, while in the renor-
MO —ANO=0 and &= —776. (20) malization the successive iteration; aqhieve that _goaI.
The second order renormalization algorithm

The employed approximation (18) is known in the sta- (Kgnatani, 1996, Sec. 9.6) takes into account all the
tistical literature as the generalized total least squaresN0ise related phenomena, up to fourth order moments,
(GTLS) problem (Van Huffel and Vandewalle, 1989) and provides a near optimal estimator under the small
where the noisy points in a linear model are assumed noise level assumption. However, the procedure starts
to have zero mean andammmoncovariance matrix ~ With abiased initial solution and the correction matrices
o2N. Although the result is improved relative to that @€ evalu.ated at the noisy data points. The;e may cause
of the eigenvector ol (16) alone, it is still not op-  the algorithm not to converge when the noise level be-
timal. Taubin (1993) used this solution as the input COMes significant. Zhang (1997) recently introduced a
into a nonlinear Levenberg-Marquardt algorithm to new version of the second order renormalization where
solve the weighted least squares problem based on ghe effect of the fourth order moments is ignored. He

higher order approximation of the squared Euclidean has also shown that the original procedure implicitly
distance. He also remarked that this initial solution was @Ssumes that all the error vectors have the same norm,

often unsatisfactory, and the optimization algorithm @nassumptionwhichmay nothold forreal data. Similar
did not return a useful solution. Experimental results €onclusions were reached in Leedan (1997, p. 92).
for ellipse fitting using Taubin’s method, described in ~_ There are important differences between the algo-

Fitzgibbon et al. (1999), have also shown problems rithm proposed in this paper and renormalization since
with convergence. the iterative minimization is approached differently.

Kanatani (1996, Chap. 9) assumed a small noise Rénormalization starts with a biased estimation prob-

model and analyzed the statistical behavior of the er- |6m and at each step introduces a correction to reduce
rors under this assumption. He has shown that to obtain e bias. Our method iterates over an approximation

an unbiased solution to image understanding problems©f the underlying maximum likelihood (for normal
involving the bilinear constraint (up to a second order N0is€) problem. See Chojnacki et al. (1999) for a thor-

approximation), the criterion to be minimized has the ©ugh comparison of the two approaches. At each step

1
where N = —
n i=1

form renormalization solves the generalized eigenproblem
h through eigenvectors thus with a numerically sensitive
> wifeo + 27 6,)°, (21) technique, while we use a more robust method, the

i=1 generalized singular value decomposition. For low to
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moderate noise levels the performance of renormaliza- are both positive semi-definite. The proof is presented

tion and HEIV is similar, the differences appear when in Appendix A.

the initial bias and/or the amount of noise become sig-  The minimization criterion (12) under the constraint

nificant, as will be shown in the experimental sections. (13) can be written as a function éfby replacing the
true vectorg;, with the estimated onés which yields

3. Solution for Heteroscedastic Regression 5 " [z — 2762
= ——
To obtain a satisfactory solution for the linearized i—1 6 Co
model (2), the error characteristics of the model vari- no AT - A
0 z-2z-2'6

ablesz; must be taken into account. The corresponding

minimization criterion was defined in (12) and it is the = éTCi*é
approximation (under the mapping framto z) of the I
minimization problem (7). In Section 3.1 an iterative =60 M(0)0. (25)

algorithm solving this minimization problem is pre-

sented. The method of obtaining the estimates for the Solving (23) is the same as minimizing (25) with re-
data of theoriginal problem, i.e., the data correction ~spect tod, since the left hand side of (23) is the gra-
procedure, is described in Section 3.2. dient of (25) up to a scale factor. A similar derivation
was obtained by Fuller (1987, pp. 217-218) for the re-
gression model, and the solutiénwas shown to be a
consistent estimator for general error distributions with

o ) finite moments up to the fourth order (Fuller, 1987,
The model (2) is linear with respect to the parameters tpaorem 3.1.3). Since any continuous function of a

[@o, Bo] and the estimatorg], 6] can be found by solv-  ,ngistent estimator is itself a consistent estimator

ing the minimization problem (12). For the moment it (Mendel, 1995, p. 96)& and 2; are consistent esti-
is assumed that the normalized covariance mat@ges o< as well.

are known. How to approximate these matrices is dis-  tha noise variance estimate®? can be obtained

cussed in Section 3.1.2. from (25) by assuming that the estimation errors are
The parameter estimates, and the corrected datauniformly distributed across the— p dimensions of

points of thelinear modelare the null space of the (full rank) data matéX (Fuller,

3.1. Estimation of the Parameters

R 5T H1CHH 1987, p. 243)
a=—-2Z-w'l, z=z—p- [(Z'TZ)—]'
* ~T A~ A
6 Co .2 0 M@)o 26
(22) o= Tp (26)
Sh =
=1 o' cro There is no closed form solution to (23) and an it-
with Z= 1 —, erative procedure must be used, which however, is
Y —— much simpler than the one needed to solve the original
06 Cro problem (7).
andé is the solution to the equation 3.1.1. The lterative Procedure. We use an iterative
MA (NA procedure similar to that suggested by Fuller (1987,
M(©)6 - C(6)6 =0 (23) p. 218) for the regression model. Starting with a fixed
M @) = 2”: Z -2z —-2" M (§) andC (@) evaluated at an initidd , at each iter-
— o' c*o ation the following generalized eigenproblem is solved
- I
n ~rik (-gh (i-ngh
A z-2'6 . M 6 —)\C =0, (27)
CO =Y [Ti} Cl. (29
i=1| 6 Cro A(i=1) AG-1)

whereMU-D=M@" ) and Ci-D=C@" ).
The weightedcentered moment matrix of the data The left side of (27) is a symmetric positive semi-
M (6), and theweightederror covariance matri(0) definite pencil (Golub and Van Loan, 1990, p. 471)
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and the smallest generalized eigenvector of the matrix andC* can be found by minimizing
pair MU= CU-D] provides a decrease in the value
of the m|n|m|zat|on criterion (25).

The advantage of this approach is that at each iter-
ation we deal with a symmetric, positive semi-definite
eigenproblem that can be solved using techniques with Where|| - [|¢ is the Frobenius norm. The solution of

superior numerical behawor It can be shown that (30)is
NORP O

n
[fi. 1 =argmind 2 1C; — ACIE. (30
G =1

convergencd =6 |mpI|esA 1, and thus no B nogCr tr{C*C
data dependent threshold is required (Leedan, 1997, Cr= 217@; . Bi= % (31)
p. 63). Convergence is not guaranteed since (25) is Yia B tr{C+%)

not necessarily a convex function ¢h Fuller (1987,
p. 218) has shown that the convergence of the iterative
procedure is similar to that of the Newton-Raphson
method. In practice, even for significant noise levels,
after only a few iterations a close to optimal solu-
tion is obtained as will be shown in the experimental
sections.

Since by definition the matricad (-2, Ci-D are
positive semi-definite they can be written as

To obtainé(o), start with all g = 1, computeC* and
readjustg; and C*. Further refinements do not yield
improvements in the final result of the estimation. It
should be emphasized that the accuracy of the initial
solutionis not crucial for satisfactory performance, and
most often the same result is obtained by employing a
random initialization. The above described procedure
is needed when the noise variance (26) is to be deter-
mined prior to the iterations.

The generalized eigenproblem (23) after some ma-

MU-D = zJ-D'z(0-D  cl-D = (=D (=D nipulations is reduced to
(28) T A0 =, A0
where from (22) and (24) Zo(B) Z(B)O  —21C0 =0, (32)
where
. [Zl_z(J’fb]T (20 — 2<j71>]T - T aT
g . g [m=201  z-281T] .
\/A(l D7 - D’ \/Au DT A(J D c(B) = NI 7 (33)
(29) Lig
Z; = . i
it éa*lﬂc;éum 2B) = n 1‘
5(i-1 — i =15
n 1
izt é(jfl)Tc*é“ b Thus, the initial solutiond® is obtained from the

GSVD of the matrix pair Z¢(3), L], whereL is the
. Cholesky decomposition @*. Note that there are no

and L U=P is the Cholesky decomposition (Golub and iterations involved. The initial value of the intercept is
Van Loan, 1990, p. 146) @@-D,

Thus the generalized eigenproblem (27) has a struc- a® =—[2(8) — )"0 © (34)
ture which allows the numerically more robust gen-
eralized singular vector (GSVD) decomposition to be In the presence of outliers, high breakdown point
used to obtain the solutigh " in the jthiteration. See  estimators such as the LMedS technique (Meer
Appendix B for details. Note that the smallestgeneral- et al., 1991) should be used to obtain the initial so-

|zed singular value of the matrix paiz{ ™, L0-Y] lution and reject the outliers from further processing.

is o = 1 and thus convergence mearis’ = 1. However, the computation of a model candidate with
The |terat|ve procedure requires an appropriate ini- the elemental subset should employ the above proce-

tial solution . Assume that theknown normal- dure and not use the solution of the linear system of

ized covariance [natricdéi* can be approximated as equations, since the latter produces a biased estimate.
C; = g;C* whereC* is anunknowncovariance matrix ~ We return now to the issue of approximating the co-
andg; areunknownpositive factors. The values @f variance matrice€;.
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3.1.2. The Approximate Distribution ofAz. In
Section 2.1 we have already shown that the nonlin-
ear mapping between the observed data(6) and
the linearized model variable makes the error rela-
tive to the true vectog, (9), to have nonzero mean
p and a covariance matri€; dependent orc,, and
mio. The example (11) for conic fitting was also given.
Similar expressions will be obtained in Section 5 for
the epipolar geometry problem for symmetrical, zero-
mean distributions ofAm;. While the assumption of
normal noiseAm; is not necessary for the approxima-

A general affine transformation of the datg, is

defined as
Mio = STMjo + &, (36)

wherea is a translation vectos is a honzero scaling
factor andT is a nonsingular transformation matrix in
R, Let the estimate foF obtained from the original
datam); beF~, and the one obtained from the transformed
datam; beF.

It can be easily shown that the minimization cri-

tions developed in this section, it should be noted that terion (7) is not affected (up to the scaling factor)

it was used to obtain the analytical expression€pf

by the affine transformation. The transformation also

in the experiments. The general case is discussed inPréserves the rank &, and in the case of quadratic

Leedan (1997, p. 67).

It is not possible to obtaip andC; exactly since
Mio andcrv2 have to be estimated from the data. How-
ever, the solution of the minimization problem (12)
remains close to optimal if the approximations pof
andC; are consistent (Fuller, 1987, Theorem 3.1.1).
Two issues have to be addressed when approximating
andC;:

— How to reduce the influence of the fourth order mo-
ments ofAm; on C.
— How to estimaten;, ando?.

As will be shown in the sequel w.l.g. it can be assumed
thatCm =02l. In this case, to reduce the effect of the
fourth order moments it is required that

m%j)io>>av2 j=1..k i=1..n, (35)

where mji, is the jth element in the vectom,.
A proper transformation of the data pointg can
satisfy these requirements without affecting the solu-
tion, while preserving the additional restrictions on the
matrix F in (1).

A transformation prior to processing has often been
used in computer vision, however, for different rea-

forms the value class (e.g., positive definite, indef-
inite, etc.) and the sign of the determinant as well
(Mirsky, 1990, p. 396). Moreover, it can be shown that
the rank and the value class of the leading 2 subma-
trix of F are preserved, thusffrepresents an ellipse so
doesF.

The transformed data points; have the normal-
ized covariance matrig€?, = TC?, T7, and thereford@
should be chosen to yiel@}, =1, i.e., to whiten the
errors in the image points. In order to find the trans-
lation vectora, a trade-off is to be considered. After
the isotropic scaling, the data is inside of a unit box
in R, and the variance of the noisedg = s?s2. To
satisfy (35), i.e., none of the transformed coordinates
are very close to zero, the vectoshould move the unit
box away from the origin irR¥. However, the condi-
tion number of the data matrix, constructed with the
transformed vectors(m; ), increases with the magni-
tude of the translation from the origin. To satisfy the
trade-off we sea to move the left bottom corner of the
unit box at the point [1, 1].

Since we use the GSVD technique in the compu-
tations the sensitivity to the condition number of the
data matrix s significantly reduced. Slight performance
improvement due to the translation away from the ori-
gin was observed in both applications (ellipse fitting,
fundamental matrix estimation) for very noisy data

sons. Usually the centroid of the data is translated to (Leedan, 1997, p. 117, 157). To simplify the notations,

the origin of the image coordinates. Although center-

inthe sequel we omitthe tilde superscript butimply that

ing the image does not affect the statistical properties all the processing is performed with the transformed
of the image points, it can move some of the points too data if not specified otherwise.

close to the origin. These points have a significantly de-

The second issue regarding the computatioCof

creased signal-to-noise-ratio and can degrade the over-and u is their dependence on the true pointg and
all performance of the estimation procedure. Often the the noise variance2. When random initialization is
image coordinates are also scaled down to reduce theused, the coordinates of the noisy points atfd=0

condition number of the data matrix (Torr, 1995;
Hartley, 1997a).

should be substituted into the expressionsCpfand
w, which are then updated after the first iteration.
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It should be noted that under practical noise levels, mum magnitudé is the desired solution. Experimental
neglecting the fourth order moments @ does not results have shown that this procedure yields good ap-
seem to decrease performance. If the initial solution proximation even for significant noise levels. For the
6 " is obtained by solving the eigenproblem (32), the few nonregular points, where no reiaiks obtainedsh;
initial estimatesmi(") and&_f can be computed. Note  can be computed using a standard nonlinear optimiza-
that the covariance matri@* is the weighted sum of  tion routine withrh" as the initial solution. This case,
theCr (31) and thus usip(% the above substitutions has however, was never encountered in our experiments. In
a lesser effect on the thée . The noise variance esti-  Taubin (1993) a similar approach was used to approxi-
mates 2 is then computed from (26), alriuf") is obtain- mate the absolute value &fand solve the equation for
ed from the firsk elements 0£® (22). Usingh{”® and  the minimum|s|.

62 the covariance matri€; is updated. When this ini-
tialization is employed (as was in all our experiments)
recomputinge andC; at each iteration step does not
have a significant influence on the final result and the
same values were used throughout the algorithm.

3.3. Algorithm for Estimation with
Bilinear Constraints

We summarize now the processing steps described in
the previous sections. The concatenated measurements
m; are assumed to have a common covariance matrix
— ZC*
=0,Cn-

3.2. Data Correction

At convergence, the parameter estimation procedure
provides the estimates?[é] defining aplanein RP. Data Transformation

However, we must satisfy the constraints in the original

problem (7), i.e., the point®;, must lie on thesurface DT.1. Apply an affine transformation to the datg.

in R¥ defined by &, 4]. After the transformation the dat®; is, in each im-
Substituting the parameter estimates into (22), the age, inside a unit box with the left bottom corner

new estimatehi(t) obtained from the firdt elements (as at[1, 1] and has the normalized covariarfc‘.g =1I.

we did for the initial solution) is not satisfactory since The following steps refer to the transformed data and

rhi“) is not a consistent estimator for,, and it will not omit the tilde superscript for convenience.

necessarily be on the surface. The estimatré] are i o
consistent under very mild conditions (See Section 3.1) Linearization of the Problem
and the final estimate for the data poiht should be
obtained through the data correction procedure. Using
a standard nonlinear optimization routine to solve the
minimization problem (8) forh; with the constraint

LP.1. Define the nonlinear mapping wfinto z(m).
LP.2. Compute the analytical expression of the covari-
ance matrice€;.

@+ z(h;) T =0 is computationally expensive. Initial EstimategOptional]
A simpler approach exploits the fact that an initial
estimateh” is already available. Since the ersam; IE.1. ComputeC®, f; andC*.

has identity normalized covariance matrix (recall the |£ 5 Find6®
affine transformation of the data), the estimated error [Zo(B), L].
vectorAm; = m; — m; has to be collinear with the nor-
mal to the surface iR¥ evaluated at the unknowrfy; .

An approximation to the normal can be evaluated at
m", and the obtained expression far is substituted ~ Parameter Estimation

into the constraint

by applying GSVD to the matrix pair

IE.3. Computes2 andrh.

IE.4. Computeu andC;.

PE.1. Start iterations. S¢t= 1.

.
M =m —§ 9z 0, a+z(h)Td=o0. PE.2. Findé(.” by applying GSVD to the matrix pair
M | o [Zéjzl), L4-Y] computed using the current solution

(37) 67",

PE.3. Repeat Step PE.2 for= 2, 3. .. until |o§ — 1]
For the bilinear problem the resulting quadratic equa- s less than tolerance.
tion in § has either one, two or no real roots. The mini- PE.4. Returrd =60 Y and compute.
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Restriction Enforcement

RE.1. Apply additional restrictions on the parameters
[a, 9] if required by the geometric constraints of the
original problem.

Data Correction

DC.1. Find2;, i =1..n, and obtaimh" from its first
k elements.

DC.2. Computéh; by solving the quadratic equation in
the distancé. If no solution is available for a partic-
ular point, apply a standard nonlinear optimization
routine.

Back Transformation

BT.1. Transform back the parametets §, 5] and
the corrected data pointh; to the original image
coordinate systems.

The order in which the last three procedures, restric-
tion enforcement, data correction and back transforma-
tion are applied should be further investigated. Hartley
(1997a) has found in the context of the eight-point al-
gorithm that restriction enforcement preceding back
transformation gave the best performance for the em-
ployed image. However, if data correction is also taken
into consideration a more complex picture emerges in
which the effect of back transformation can reduce the
impact of data correction.

Some important issues should be noted. By process-
ing the intercepd separately from the parameter vector
6 the covariance matricés; andC(0) are nonsingu-
lar if Cy, is nonsingular. Also, the parameter estima-
tion problem is reduced by one dimension. Itis evident
from (22) that due to the nonlinearity of the mapping
process, the centroid vector of the data mafrigs nota
point on the estimated hyperplarig P] in RP. Thus,

a simple centering of the data will not provide a good
estimate for the intercept.

For high noise levels very rarely the algorithm may
not converge and the value of the minimization criterion
starts to increase. In such cases a standard optimizatio
technique should be applied to reach the nearest local
minimum. Experimental results have shown that this
occurs when a degenerate solution is obtained which
cannot account for all the data points. The problem of

degeneracy is not addressed in this paper, however, was

already analyzed in the context of the epipolar geom-
etry (Torr, 1995; Luong and Faugeras, 1996). Another
possible computational “trick” is to recompute the vec-
tors Zi(” and update the covariance matri€cgswhen-

n

ever the difference betweeﬁ(”

large.

When solving a computer vision problem, the es-
timated parameter matrik and hence d, 8] must
satisfy additional restrictions reflecting the underly-
ing geometrical properties. The algorithm can be easily
modified to incorporate linear restriction functions. See
Leedan (1997, Sec. 3.4.4) for the discussion of several
approaches. However, most restrictions are nonlinear
and solving the minimization problem in (12) with ad-
ditional nonlinear restrictions is not straightforward.
We have adopted the strategy of obtaining an unre-
strictedF and then readjust the parameters to obey the
restrictions. In the remaining sections we discuss two
applications, ellipse fitting and estimation of the funda-
mental matrix, in both of which additional restrictions
have to be imposed.

The algorithm as described above is not limited to
solving problems with bilinear constraints since it is
a general approach to heteroscedastic EIV regression.
Only the linearization and the restriction enforcement
steps are problem specific. The algorithm was imple-
mented in MATLAB and the code is available (for a
more general case) at
www.caip.rutgers.edu/riul /research/code.html

A(j—1
andg" becomes

4. Ellipse Fitting

The problem of fitting an ellipse to noisy data points is
considered first. The problem was extensively analyzed
in the computer vision literature, however, most of the
proposed techniques provide biased solutions. Recent
reviews can be found in Cabrera and Meer (1996),
Zhang (1997) and Fitzgibbon et al. (1999). In Cabrera
and Meer (1996) a bias removal technique of different
nature was also proposed.

4.1. Background and Employed Methods

To have the quadratic form (4) represent an ellipse, the
parameter matri¥, hence the parameters, [9], must
satisfy an additional, nonlinear restriction of having a
negative value for the discriminant — 4de. The re-
striction can be written as

00 0 00
00 0 00

6'Dd=1, where D=|0 0 -1 0 0| (38)
00 0 02
00 0 20
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Note thatD is an indefinite matrix with signature (1,2), All the methods were implemented in MATLAB. Ex-
i.e., one positive and two negative eigenvalues:2, periments were performed with both synthetic and real
—2. In Section 3.1.2 it was discussed that the affine data.

transformation does not affect the imposed restric-

tions and the transformed parameters still representany o Experiments with Synthetic Data

ellipse.

_ The simplest strategy is of obtaining an unrestricted o synthetic data was based on a canonical ellipse
6 from the linearized model and whenever the result i,
is not an ellipse the restriction (38) is enforced on the
solution yielding the nevd. Since this case appears 10
only very infrequently, we have used the direct least F—lo 4 o | (39)
squares ellipse fitting method proposed in Fitzgibbon

et al. (1999). This method being of the TLS class it 00

is biased, as its developers also recognized it. We did . . o )
center the data first, i.e., separated the intercept. The ellipse is centered at the origin and the major and

The performance of three different estimation tech- the minor radii are 100 and 50, respectively. To increase

niques were compared for the task of ellipse fitting. ("€ bias present in the TLS method, the noisy points
were always taken from a segment spanning only one

guarter of the ellipse. The segmentis represented by 40
TLS — The total least squares solution obtained from points and its location on the ellipse was randomly cho-
the generalized eigenvector 8{14) andD (38), as it sen. The coordinates of the points were corrupted with
was implemented in Fitzgibbon et al. (1999). The noisy zero-mean normal nois€, = ¢21, and tests were per-
data is scaled down to a unit box and centered at the formed for different values af, . The number of points
origin. Thus this method can be also seen as an imple-was chosen to be relative small in order to reproduce
mentation of Hartley’s (1997a) proposal to improve on real situations. In images, after outlier rejection, the
the performance of the eight-point algorithm. size of the remaining sample is often significantly re-
duced and the performance of the estimation process
deteriorates due to the small sample effect.

The location of the data points on the ellipse is also
an important factor affecting performance. When the
EIV — The method proposed in Section 3.1. The noisy points belong to a high curvature section (Fig. 1(a))
data is scaled down to a unit box with the lower left the estimation process is much more stable than when
corner at [1, 1]. The ellipse restriction was imposed the points are located on alow curvature part (Fig. 1(b)).

10000

KAN — The solution obtained by Kanatani’'s second
order renormalization (Kanatani, 1994). The noisy data
is scaled down to a unit box and centered at the origin.

after transforming back the unrestricted estimalor For each experimental condition (the valuepfind
The expressions g andC; were given in (10) and  the employed estimation technique) 200 trials were run.
(12). Since these trials cover all possible locations on the

Figure L The two extreme cases for the data. (a) Best: 40 noisy points on the high curvature section. (b) Worst: 40 points on the low curvature
section. The dotted line represents the true ellipse. The three different estimation techniques label the corresponding ellipses.
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ellipse, the results can be regarded as the “expected”bias correcting methods, KAN and EIV, produced
performance for data covering one fourth of the ellipse. similar results, both superior to the TLS method.
The results can also be seen as a lower bound on theFigure 2 shows the scatter plots of the major and minor
performance. In practice the data comes from longer radii of the estimated ellipses for larger noise values,
segments (albeit not necessarily more points) which ¢, =0.5, 1, 1.5, and 2 with rounding of the corrupted

can only improve performance for similar operating

conditions.

The results for, < 0.05 were essentially the same

for all three methods. For.05<0, <0.1 the two

value to the closest integer (data on discrete grid).
The axes have log-log scale to show all the results.
The points in the negative quadrant in Fig. 2 for KAN
method indicate the cases when the solution converged
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Figure 2 Ellipse fitting, synthetic data. The scatter (log-log) plots of the major and minor radii, €p.5. (b)o, = 1. (¢)o, =1.5. (d)o, =2

with rounding. The true values are shown with the crossed lines.
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to a hyperbola. The EIV produced much less hyper- mization tool (theconstr function in the Optimization
bolas (as will be shown) and they were converted into Toolbox of MATLAB) was used to computé; after
ellipses using the method mentioned at the beginning the parameters were estimated. However, when for the
of this section. Note the strong bias of the TLS and the EIV method the estimate®; are computed with the
large spread of KAN for significant noise levels. data correction procedure described in Section 3.2 sim-
To obtain another quality measure for the results, ilar results were obtained at all noise levels. Figure 3
the estimated data points; were computed at each  shows the histograms of the average squared distances
trial. In order to facilitate comparison across the three betweent; and the noisy points;. The histograms
different estimation methods a standard nonlinear opti- for the distances betweeh; and the true pointsn;,
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Figure 3  Ellipse fitting, synthetic data. The histograms of the average squared distances between the noisy points and the estimated ones.
(@)o, =0.5. (b)o, =1. (¢)o, =1.5. (d) o, = 2 with rounding.
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Table 1 Ellipse fitting,0,, = 1. Median and (standard deviation) for 200 trials.

Method Major Minor Angle Center Distance  Conv. Steps Hyp.
True 100 50 0 [0,0]

TLS 54(10) 21(6) 1.5(24) 43,0] ([47,23]) 1.65(0.8) 200 1 0
KAN 191(2800) 50(391) 0.1(37) -8,—1.5] ([1600,2900]) 0.91(0.4) 39 7.3 47
EIV 104(420) 52(58) 0.4(13) 1,-1] ([396,175]) 0.86(0.2) 197 4.1 a2
aSee text.

were also generated (not shown) and were very similar  The KAN algorithm did not converge in most of the
to Fig. 3 indicating the adequacy of the minimization caseswhea, > 1. Thisvalue, infact, exceeds the noise
criterion (12). levels Kanatani used in his examples (Kanatani, 1994).

The EIV method is the most stable, yielding the nar- However, the KAN method still produced reasonable
rowest spread and the smallest average squared disfesults after we have modified it to abort whenever
tances. The improvement relative to KAN method is the value of the minimization criterion started to in-
due to more accurate modeling of the error and the bet- crease. In 47 trials the result was a hyperbola and
ter numerical behavior of the GSVD employed in the the statistics in Table 1 thus corresponds to the 153
iterations. At high noise levels, a few trials yielded de- trials yielding ellipses. The histogram of the average
generate cases in which the data points were distributedsquared distances (Fig. 3(b), KAN) remained prac-
across the two branches of a hyperbola. When such atically the same when the hyperbola cases were ex-
hyperbola is converted into an ellipse very large aver- cluded. This is not unexpected since the hyperbolas
age squared distance is obtained. See the right side ofare valid, unrestricted solutions of the minimization
Fig. 2(d), EIV. problem.

The median of the estimated ellipse parameters (the The EIV estimation method produced a smaller num-
major and minor radii, the center and the orientation of ber of hyperbolas and practically always converged. All
the ellipse), as well asthe median of the average squaredthe hyperbolas were converted into ellipses and are in-
distances for each estimation method are shown in cludedin Table 1. Although converting a hyperbolainto
Table 1 for the case, = 1. The spread across the trials  an ellipse yields in general a deterioration in the quality
is measured by the standard deviations shown in paren-of the fit (since the hyperbola is the optimal fit for the
theses. For KAN, only the cases yielding ellipses were given data points) there were no significant differences
considered. in the average squared distances.

Several parameters measuring the behavior of the The estimated fit minimizes the Euclidean distances
iterative procedures are also shown in Table 1. The (Cy, =1) to the observed data. However, since the data
‘convergence’ column indicates the number of trials in  comes from a small segment of the ellipse the fit may
which the algorithm converged, and the ‘steps’ column appear very different from the true ellipse, illustrating
has the average number of iterations till convergence. the ill-posed nature of such estimation problems. In
The processing time in MATLAB of an iteration for  Fig. 4(a) an example with a one quarter segment of an
KAN and EIV are roughly the same. The ‘hyperbola’ ellipse is shown(o,, =0.5). The ellipse estimated by
column shows the number of trials where the result was the EIV method is shown in Fig. 4(b) with the dashed-
a hyperbola. dotted line. The averaged squared distance of the esti-

The TLS method always provides strongly biased mated ellipse is 0.2212, which is close to the median
results. The estimated ellipses have parameters withof the histogram in Fig. 3(a), EIV. The ellipse segment
small standard deviations but they provide the worst was usedto generate 100 noisy = 0.5) data sets, and
fit. Since the range of the data was the same (on afor each the EIV method was applied. The two ellipses
quarter segment of the ellipse) the TLS estimator pro- shown in Fig. 4(b) with solid lines have the same aver-
duces similarly sized ellipses. Their size agrees with age squared distances 0.2203 and 0.2204, respectively.
the prediction of the bias towards smaller eccentrici- The results show the inadequacy of small segments
ties (Kanatani, 1994). The quality of the TLS results when a valid fit is sought for the entire data space.
suggests that they are not adequate to be used as initial For a more detailed discussion of the experimental
solutions. data see Leedan, (1997, Sec. 4.1.5).
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(a)

Figure 4 The ill-posed nature of fitting to small ellipse segments. (a) An example of a noisy quarter ellipse. (b) The true (dotted) the original
EIV estimate (dash-dotted) and two extreme ellipses (solid).

(a) (b)

Figure 5 Ellipse fitting, real data. (a) The coffee mug image. The employed edge pixels are marked with black. (b) The input to the estimation
algorithm. (c) Four estimated ellipses. From left to right: TLS, KAN, EIV and EIV-Cm.

4.3. Experiments with Real Data Cr,=I1to
As a real data example, the image of the coffee mug . 1 0
(Fig. 5(a)) was used. A small segment from the edge Ch= [0 0.25]' (40)

image was selected in order to estimate the inner ellip-

tical rim of the mug. The 83 pixels of the employed data s change had a significant effect on the result. The

are shown in Fig. 5(b), and the results for each of the ¢,y estimate (labeled EIV-Cm) is the rightmost ellipse

estimation methods are overlaid in Fig. 5(c). The TLS i Fig. 5(c). Note that the employed covariance matrix

method produced the smallest ellipse, KAN the next, ¢ s only a coarse approximation of the error process.

and the EIV method the third ellipse from the left. The datain Fig. 5is typical for an edge image, whichin-
The image of the coffee mug was part of & larger icates the importance of using nonidentity covariance

scene and was magnified after being “cut out”. This atrices for the pixels.

introduced a significant aliasing clearly visible in the

gray levelimage (Fig. 5(a)). The aliasing, together with

the digital geometry of the edge image, introduced cor- 5. Estimation of the Fundamental Matrix

relation between the two image coordinates of a data

point. To take the correlation into account the covari- The problem of estimating the epipolar geometry

ance matrix of the image points was modified from of two uncalibrated cameras, i.e., the fundamental
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matrix, is a central problem in 3D reconstruction decomposition

(Faugeras, 1995). Various estimation methods were

proposed, and excellent reviews can be found in Luong H = Uy [GHl }VE (42)
and Faugeras (1996), Torr and Murray (1997) and OH,

Zhang (1998a). The homography is parametrized by the rotation angles

of the orthogonal matricddy, V4 and the ratio of the

5.1. Background and Employed Methods two singular valueé;%.

- ) The mapping from the epipolar constraint to the lin-
To have the bilinear form (1) represent the epipo- earized model (2) is defined by
lar constraint between the matched poimig,=
[XAiOv Yaio, 1]T and PBio = [XBiOv YBio» 1]T, in two im-
ages captured without any knowledge about the inter- T
nal or external parameters of the two cameras, the ma- XaioYBio, X8ioYAio, YioYsio] (43)
trix F must have rank two. Often the rank restriction
is enforced by applying the matrix approximation the- and
orem (Van Huffel and Vandewalle, 1991, p. 31). By
this theorem, replacing with zero the smallest singular o=[fs1, fao, fi3, fo3, fi1, for, fio, fao] T,
value of the matrix estimated from the data (which in o= f (44)
general has the full rank 3) yields the optimal solution ° 3
for a large class of matrix norms. It is important to be
aware that the approximation theorem is based on the If normal errors are assumed for the image coordinates,
assumption that the elements of the estimated matrix i-€., Am; ~NI(0, o21), the meary. =0 and the nor-
are uncorrelated and have the same variance. This is notnalized covariance matrig; of the error vectonnz
true in our case since the elements are derived ftom IS

Zio = [Xaio» Yaio» XBio» YBios XaioXBio,

M1 0 0 0 XBio YBio 0 0 7]
0 1 0 0 0 0 XBio YBio
0 0 1 0 Xaio 0 Yaio 0
0 0 0 1 0 Xaio 0 Yaio 45
Xgio O Xao O X2, +X3,+02 XBio YBio Xaio YAio 0
Yeio O 0 Xapo XBioYBio XZio + Yo T 07 0 XaioYAio
0 Xgio Yaio O XaioYaio 0 X3io + Yaio + 02 XBioYBio
L O Vo O  VYaio 0 XaioYAio XBioYBio Yaio + Yaio + 02 ]

The expression of; =¢2C} is also a good approxi-
mation for noise with symmetric p.d.f. (Leedan, 1997,
p. 67).

The performance of five different estimation tech-
nigues were compared.

andé. It is possible to define a more general rank re-
duction procedure which takes into account the covari-
ance matrix of the parameter estimates (Leedan, 1997,
p. 132).

The fundamental matrix can be parametrized in sev-
eral different ways (Luong and Faugeras, 1996). To
compare the quality of different estimates we have used
the two epipole€a andeg, defined as the null-spaces
of the restricted, rank two matrix

HAR —The normalized eight-point algorithm of
Hartley (1997a). In both images the noisy data is
isotropically scaled down to a unit box and centered at
the origin. The solution is the eigenvectoiR(fL4). The
Fea=0, Fleg=0, (41) importance of scaling was investigated in a small pilot
experiment. For an image the covariances (45) were
and the homography transformation definedyhe averaged for 50 noisy points before and after normal-
leading 2x 2 submatrix of. From the singular value ization. The singular values of the average covariance



matrix for the original data were
10°[2.508 1355 1159 Q006 O O O Q]
while after normalization they became
[1.32 118 117 103 1 1 1 1]

Thus normalization not only improved the condition
number (the effective rankin the first case is only 3), but
also yields matrices whose average is close to identity.

The resultsupports the conjecture in Section 2.2 thatthe

main effect of normalization is to make the linearized
data more suitable for TLS estimation.

MOR —The virtual parallax solution suggested by
Boufama and Mohr (1995) uses projective planar co-
ordinates. The only transformation performed on the
data is the parallax transformation which is based on
four image points which should be located far from
each other. The errors have now a very complicated

structure. Zhang (1998a) discusses some of the theo-

retical issues related to the optimality of the estimation.
A similar method, using 3D projective coordinates was
proposed by Ponce and Genc (1996).

KAN —The solution obtained by Kanatani's second-
order renormalization. The noisy data is isotropically
scaled down to a unit box and centered at the origin.

NON —The nonlinear solution using an optimization
routine (thefminu routine in MATLAB Optimization
Toolbox) that minimizes the sum of squared distances
between the noisy points and the epipolar lines in each
image (Luong and Faugeras, 1996). The initial solution
is the TLS solution. No transformation is performed on
the data.

EIV —The method proposed in Section 3.1. The noisy
data is scaled down to a unit box in each image with
the same scaling factor. The bottom left corner of the
unit box is then positioned at [1,1].

The techniques were implemented in MATLAB. The
rank-two restriction is enforced for all the methods ex-
cept MOR, after back transforming to the original co-
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5.2. Experiments with Synthetic Data

The synthetic data was generated from 3-D points that
are randomly scattered in a cube [2502500x 2500]

with the lower left corner in the origin of the world co-
ordinate system. Both cameras had focal length of 300.
The first one was located at the origin of the coordinate
system, the second one at [50000 200] and had

a 3-D rotation [5, 5°, —30°]. The true fundamental
matrix is

0.0025 —0.0049 1
F—=| 00066 00024 —4.1059|, (46)
~2.8475 32885 —13411

and the corresponding epipoles are (in image coordi-
nates)

en = [460.79 43978]" eg =[750 150]

the singular value ratio is;s= 0.75, the rotation angles
are rof =10.14°, rot, =1028°.

The coordinates of the points in each image were
corrupted with zero-mean normal noi€x, = ofl ,and
tests were performed for different valuesof Forty
points present in both images were chosen as matched
pairs (Fig. 6). For each experimental condition (the
value ofo,, and the employed estimation technique) 200
trials were run. We have preferred this type of Monte-
Carlo experiment, instead of randomizing the matched
points configuration, in order to avoid the degenerate
cases.

The results for, < 0.05 were essentially the same
for all five methods. For 05< o, <0.5 the bias cor-
recting methods, KAN, NON and EIV, produced sim-
ilar results, all of which were better than the HAR
and MOR methods. Detailed investigation for noise
levelso, =1, 2 and 4 with rounding are described in
Leedan (1997, Sec. 4.2.5). In Fig. 7 the results for the
largest noise level are presented. Note the strong bias of
the HAR and the large spread of MOR for the epipole
estimates. This spread may be also due to the random
selection of the bases of the parallax transformation
since we did not implement the “good basis” search
procedure suggested in Ponce and Genc (1996).

The median of the parameters measuring the behav-
ior of the iterative procedures are shown in Table 2

ordinate system. We have used the general rank reduc-together with the standard deviation. The processing

tion procedure (Leedan, 1997, p. 132) for KAN and
EIV. Experiments were performed with both synthetic
and real data.

time in MATLAB of an iteration for KAN and EIV
are roughly the same. The NON method is measured
by the number of function calls to the minimization
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Figure 6. The two views of 40 points used in the experiments. Four matched points are labeled.

function where every 10 function calls are computa- were kindly provided, together with the ground truth
tionally equivalent to one EIV iteration. Itis worth em-  for the last two, by Roger Mohr. These images have
phasizing that although the NON method uses a first- very low noise level and thus all the methods produced
order approximation to the distances it still requires similar results. In Table 3 the results for theidge
large amount of computation time. image are shown.

The KAN method did not converge in most of the The KAN method did not converge. Since the value
cases, and the results are obtained after we have mod-of the minimization criterion increased immediately,
ified the KAN algorithm to exit whenever the value of the KAN method executed only one iteration thus yield-
the minimization criterion starts to increase. Although ing almost the same result as the HAR method (recall
the HAR method has a relative small standard deviation that the initial solution for the renormalization proce-
for the epipole estimates, these estimates are stronglydure is the TLS solution). In Fig. 8 the ground truth and
biased. The EIV method has the results with the small- the EIV estimates are used to draw the epipolar lines
est average squared distance except the NON methodin the two images.

The effect of transformation of the data was also in-
vestigated. We have found that it had a weak influence 6. Discussion
on the EIV results, but as expected a strong one on
the HAR results. The KAN method performed slightly The main concernraised against linearization is that the
better without transformation probably because the in- geometric nature of the original problem is not consid-
fluence of higher order moments is larger when the data ered. The quantity

is centered at the origin. . .
ri = PpiFPsi = 2o + z(M;) ' 6, (47)

5.3. Experiments with Real Data is known as thealgebraic distanceand minimizing
>, r? leads to the least eigenvector algorithm (see

We have used the “standard” images for fundamental Section 2.2). Hartley (1997a, 1997b) has shown that

matrix estimationtIFIA-house, bridge, tribunalThey by normalizing the data a performance comparable

Table 2 Epipolar geometryy, = 4 with rounding. Median and (standard deviation) for 200 trials.

Epipole 1 Epipole 2 H. Ratio Distance  Conv. Steps

True  [460.8, 439.8] [750, 150] 0.75 0
HAR  [399.5,4025]  ([65.7,43.1]) [678.0,148.9] ([77.7,13.3]) 0.76(0.03) 14.4(4.4) 200 1
MOR [503.3,466.8] ([147.2,115.7]) [782.9,146.0] ([112.5,16.7)) 0.73(0.06) 37(82) 200 1
KAN [430.8,424.3]  ([77.3,49.6]) [714.5,149.7)  ((89.8,13.7]) 0.76(0.03) 14.2(45) 30  4.07
NON  [458.6,437.1]  ([59.6,36.0) [743.2,149.8] ([77.6,10.2]) 0.75(0.03) 12.7(3.2) 200 1110
EIV  [462.7,437.4]  ([68.9,45.4]) [748.1,150.8] ([82.2,14.2]) 0.75(0.03) 13.6(4.1) 200  3.32
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Figure 7. Epipolar geometry, synthetic datg, = 4 with rounding. Scatter plots of the first (a) and second (b) epipole. (c) The histograms of
the ratio of the singular values of the homography transformation. (d) Scatter plot of the two rotation angles.
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Table 3 The fundamental matrix parameters estimated fobtiggeimage.

Homography
Epipole 1 Epipole 2 Ratio  Rotl Rot2  Distance  Steps

True [150.3,~1531.5] [81.3-1633.4] 0.89 5490 34.43

HAR [219.2,—229.1] [210.6,-233.9] 0.93 4274 47.28 0.08 1
MOR [-585.3,—-6078.7] [1162.5-7977.9] 0.77 86.99 6.35 0.21 1
KAN [219.2,-229.2] [210.6,-233.8] 0.93 4257 47.45 0.08 ail
NON [218.8,—352.8] [205.5-361.8] 0.93 4592 441 0.07 1601
EIV [122.8,—1275.1] [55.0~1385.5] 0.89 5898 30.85 0.5 12

3See text.

with more computationally expensive nonlinear meth- Zhang (1998b) gave a theoretical explanation of the

ods can be obtained. His examples, however, do not phenomenon.

include ellipse fitting, for which our experiments (Sec- Let analyze now the minimization criterion (12) of

tion 4.2) has shown a significant difference. This is the linearized model. It is easy to see using (A.7)

probably due to two factors. First, ellipse fitting has that

nonzero meam for the linearized noise process, and

neglecting it introduces more severe bias. Second, we . & [&+270 — ,ﬂé]z " [ri - ;ﬁé]z

used difficult conditions for estimation by taking data  Jz = T A - Z T AT A

only from a small ellipse segment. =1 6 Cio i=1 6 Cio
The nonlinear minimization criteria are related to

minimizing Euclidean instead of algebraic distances.

The Euclidean distance between the observed and theTo interpret the denominator, the variance;ashould

original data point s difficult to compute when the latter be approximated taking into account the mappingnof

belongs to a surface. Sampson (1982) discussing theinto the linearized variables Making extensive use of

problem of ellipse fitting proposed to normalize the Taylor series and the chain rule for vector variables we

algebraic distances by their gradients, and to minimize obtain

(49)

0 ? 2 3I'iT L or
Z [H i ”] (48) varfri] = o 8—micm(,)—mi (50)
where 2L is the gradient computed in the noisy points. 2 201 02 —C;, 0! ori (51)
Smge up. to the constgnﬁ the denominator is an ap- 0z, om; " om; 9z
o e e s it~ LG 200 6

ditional estimation methods are adequate. Note that to
obtain the solution in the space of, R¥, nonlinear
minimization methods have to be used. whereC™ is the covariance matrix of neglecting
The gradient criterion (48) was often employed the hlgher order moments. Thus our minimization cri-
for ellipse fitting (Zhang, 1997) and fundamental ma- terion is similar to the gradient criterion but also in-
trix estimation (Luong and Faugeras, 1996; Torr and cludes a correction for the nonzero mean of the mapped
Murray, 1997; Zhang, 1998a). In the latter context it errors and uses a higher order approximation of the
was compared with minimizing the distances to the covariance matrixC; in the iterations. This equiva-
epipolar lines, or between the observations and the re-lence explains the almost identical performance be-
projections of the reconstructed points. All these exper- tween EIV and NON for the fundamental matrix es-
iments generated the same result. The different nonlin- timation (Table 2). However, to solve the minimiza-
ear criteria yield very similar performance. Recently tion with the proposed method requires an order of

*(0)
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Figure 8 Thebridgeimage. The matched data points are marked with circles together with the direction of the epipolar lines. (a) Ground
truth. (b) Estimated with the EIV method.

magnitude less computations than the nonlinear opti- The technique provides a solution similar in quality
mization procedure. with nonlinear optimization at much less computa-
A close to optimal solution for heteroscedastic re- tional cost. Heteroscedasticity arises often in vision
gression is important for a much larger class of image problems and a reliable, relative simple approach to
understanding problems than the one discussed in thisdeal with it is of great importance.
paper. The method described in this paper was recently
generalized to vectorial constraints and was applied to
the problem of 3D rigid motion of a stereo head (Matei Appendix A: Estimation of the Linearized EIV
and Meer, 1999). Other applications are currently un- Model Parameters
der development.
To conclude, we have developed a new, numerically In this Appendix the estimates of the parameters
robust, quasi-optimal technique for parameter estima- [a,, 8] of the linear, heteroscedastic EIV model
tion and data correction under heteroscedastic noise.are found by solving the minimization problem (12)
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repeated here for convenience.

n
[4.6,2] = arg min Z(Zi — = Zo) "
i=1

0,600,204

x C7(z — 1 — Zo) (A1)

subject 10 ao+2L0o =0 and [6,]°> =1
(A.2)

Introducing the Lagrange multipliers, and substitut-
ing the true parameters with the estimated ones, we

define the function

n

1 Y ,
L= EZ(Zi —p=-2)'C @ —p—2)
i=1

n
+ > m(@+29). (A.3)
i=1
Differentiating with respect t@; yields
—C @ —p-2)+n0=0 (A.4)
from where

% =2z —p—nCh. (A.5)

Note that the relation (A.5) is valid for singula;

since no data correction is required in the null-space of

We define the weighted average

z
AT
I=——— (A.10)
YL, 0 Cio
and thus the intercept estimate is
G=-z2—w'o. (A.11)

Applying (A.11) to (A.7) we obtain the expression of
the corrected data points of thieear model

[(z —270]C:é
_p— A9 UMY

Zi =z . (A.12)
6 Co
Differentiating (A.3) with respect t6 yields
n
Z nizi =0, (A.13)
i=1

which using the previous results can be written as

Z(ﬂxz _w>=o

=\ 6'cro 0'cro
(A.14)

the matrix. Using the constraint (A.2) for the estimated or

values yields

G+@—pw'o

als (A.6)
6'cro

ni =

from where the closed form @f as a function o and
& is obtained

la+@-w'écd

2i =Z —p ~T ~ (A7)
6 Co
Differentiating (A.3) with respect ta yields
n
> =0, (A.8)
i=1

and by (A.6)

n n o TA
@y 1 +ZM=0. (A.9)

=6 CcoH = éTC{é

2
L2 |- |y (220 ) ¢ (o
[ '_10050:| [Z”(eqe) '}

—0. (A.15)

From (A.10) we have the equality

n

ZZi_zzo.

=o' co

(A.16)

and the expression (A.15) becomes
P 2
n (Zi—?(li—})T 0 — n ((ZL;Z)TA> c*léo
|:Z|l 0 C;’Q :| |:Z|1 0 C;’Q i
=0 (A.17)

which taking into account the definitions (24) yields
(23).
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Appendix B: The Use of Generalized Singular
Value Decomposition

value of the scaling factop can be determined from
additional constraints o, such as unit norm.
The computation of the GSVD deals only with the

The solution of the generalized eigenproblem is very
unstable with ill-conditioned or singular matrices
(Golub and Van Loan, 1990, p. 469). In Van Huffel

matricesA and B whose condition numbers are the
square root of that gk " A andB " B, the matrices defin-
ing the generalized eigenproblem. Also no matrix in-

and Vandewalle (1989) a stable numerical method was version is necessary during the computations. The tech-
introduced based on the generalized singular value de-nigue can deal with rank deficient matrices which is not
composition (GSVD), which simultaneously diagonal- the case for the generalized eigenvalue decomposition.
izes two matrices. In this Appendix we show how the Thus, solving with GSVD general eigenproblems of
GSVD technique can be exploited to solve generalized the structure (B.2) has a better numerical behavior than

eigenproblems.
LetA andB be anarbitrarm x pand a positive semi-
definite p x p matrix, respectively. The GSVD pro-

vides the decompositions (Golub and Van Loan, 1990,

p. 471) and (Van Huffel and Vandewalle, 1989)

A =UpZaXt, B=UgXEgX? (B.1)

whereUp, Ug are ann x n and ap x p orthogonal

matrices, X5, Xg are ann x p and ap x p diagonal

matrices, anc is a p x p nonsingular matrix. Then,
the general eigenproblem

ATAO —B"B6 =0 (B.2)

is reduced to

32X = AX719, where X% = (32) T Za.
(B.3)

Tr;e nonzero elements of the diagormak p matrix

ﬁatrix pair A, B], i.e.,

2
O Aj .

Note that ifA is not of full rank some of the; may be
zero. The matriB is semi-definite and some of thg;

(B.4)

can be zero too. This is not a problem, however, since

the corresponding values of will be very large and
are of no interest.

Let oq be the smallest value (including zero) among
theo;. SinceX 14 is the eigenvector of the symmetric,
positive semi-definite matrix:?, we have

X =ye, 6=yxq (B.5)
whereg, is the standard basis vector with one in the
gth position, and thug, is theqth column ofX. The

using straightforward, eigenvector based techniques.
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