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Abstract. We present an algorithm to estimate the parameters of a linear model in the presence of heteroscedastic
noise, i.e., each data point having a different covariance matrix. The algorithm is motivated by the recovery of
bilinear forms, one of the fundamental problems in computer vision which appears whenever the epipolar constraint
is imposed, or a conic is fit to noisy data points. We employ the errors-in-variables (EIV) model and show why
already at moderate noise levels most available methods fail to provide a satisfactory solution. The improved
behavior of the new algorithm is due to two factors: taking into account the heteroscedastic nature of the errors
arising from the linearization of the bilinear form, and the use of generalized singular value decomposition (GSVD)
in the computations. The performance of the algorithm is compared with several methods proposed in the literature
for ellipse fitting and estimation of the fundamental matrix. It is shown that the algorithm achieves the accuracy of
nonlinear optimization techniques at much less computational cost.
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1. Introduction

It is a sign of maturity for the field of image under-
standing that more and more often the generic prob-
lems, at the roots of several vision tasks, are recognized
and addressed. In this paper we discuss such a prob-
lem, the estimation of a parameter vector from data in
which each measurement is available with a different
uncertainty. In this case the data is known as corrupted
by heteroscedastic noise. A reliable solution for linear
regression in the presence of heteroscedastic noise is
clearly of importance for many vision algorithms. The
same problem, however, also arises whenever a bilinear
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(quadratic) constraint is imposed over homoscedastic
data, i.e., data with each point corrupted by the same
noise process. A computationally feasible solution for
estimating the parameter matrix of the bilinear form re-
quires linearization which in turn yields a heteroscedas-
tic regression. While the algorithm described in this
paper was motivated by the bilinear problem it can be
applied to any vision task in which the data is het-
eroscedastic.

Let pAio= [xAio, yAio,1]> andpBio= [xBio, yBio, 1]>,
i = 1 . .n, be the affine coordinates of pairs of matched,
error-free points in two images. Then, often the geo-
metric constraints between these points can be written
as a bilinear form

p>Aio FpBio = 0, (1)
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with the 3×3 matrix F required to satisfy additional
restrictions.

The epipolar geometry defined by two cameras is
captured by (1), withF being of rank two. When the
calibration of the cameras is not known (as in projective
reconstruction),F is called the fundamentalmatrix.
When the cameras are calibrated (as in motion estima-
tion),F is called theessentialmatrix and must also have
two identical nonzero singular values (Faugeras, 1993,
p. 250). TakingpAio= pBio= pio and limitingF to sym-
metric matrices, (1) becomes a quadratic form repre-
senting a conic in the image plane. Conics are often
used to approximate the shape of 3D objects projected
into 2D images, the most important case being the el-
lipse which appears as the projected outline of objects
with rotational symmetry. The Eq. (1) represents a real
conic when the signature (the number of positive and
negative eigenvalues) ofF is (2,1) or (1,2). In order to
have (1) represent an ellipse, additional restrictions on
F are required (Kanatani, 1996, p. 114). We will use
both the ellipse fitting and the fundamental matrix re-
covery tasks to compare the performance of the new
estimation method with that of techniques currently
employed in the literature.

Let mio be the vector constructed from the Carte-
sian coordinates of the matched, error-free (true) points
pAio andpBio. In general,mio ∈Rk wherek= 2 for the
quadratic forms andk= 4 for the bilinear forms. Then
we can always write the bilinear form (1) as a linear
form

p>Aio FpBio = αo + z(mio)
>θo = 0, (2)

where the new vectorzio= z(mio)∈Rp is anonlinear
mapping of the elements ofmio, and the parameter
vectorθo is derived from the true matrixF. Note that
the intercept is treated separately. The relevance of this
will become clear when the linearization is discussed
in Section 2.2. Since (2) is determined up to a nonzero
scaling factor we will normalize it by imposing

‖θo‖2 = 1. (3)

Thus, for example, the quadratic form of the conic fit-
ting problem

p>io

 d c/2 a/2

c/2 e b/2

a/2 b/2 αo

 pio = 0, (4)

can be also regarded as a linear form with

θo = [a, b, c, d, e]>,
(5)

zio =
[
xio, yio, xioyio, x2

io, y2
io

]>
.

In practice, the available matched pointspAi andpBi

are error prone, and the matrixF has to be estimated. In
the presence of measurement errors, the noisy vector
mi derived from the matched image points is observed.
Assuming additive errors we have

mi = mio +1mi , 1mi ∼ GI(0,Cm), (6)

where ‘∼GI(0,Cm)’ means ‘distributed independently
with a general, symmetric p.d.f. having zero mean and
positive semi-definite covariance matrix’. The error
process (6) together with the constraint (2) represent
a nonlinear, errors-in-variables(EIV) model with in-
tercept (Van Huffel and Vandewalle, 1991, Chap. 8).

The common covariance matrixCm= σ 2
ν C?

m is as-
sumed to be known up to a multipleσ 2

ν , the noise vari-
ance. Most often in applications the normalized co-
variance matrixC?

m is taken to be the identity matrixI .
However, if a priori knowledge about the noise process
is available (such as resolution differences between
the two images) it should be incorporated intoC?

m. In
Section 4.3 we will show the importance of using non-
identity C?

m through an example. We further assume
that no erroneous matches are present in the observed
data. Such outliers can be eliminated before the esti-
mation process by using robust matching methods as
in Zhang et al. (1995).

In Section 2 it is shown that by approaching the esti-
mation of F through the linear form, i.e., linearization
of the bilinear problem, leads to a heteroscedastic re-
gression. The currently proposed solutions for the esti-
mation of the fundamental matrix and conic fitting, are
discussed in this context. In Section 3 the new method
for heteroscedastic regression is introduced and applied
to estimation with a bilinear constraint. The perfor-
mance of the new algorithm is compared with other
techniques for ellipse fitting in Section 4, and for esti-
mation of the fundamental matrix in Section 5. The con-
nection to geometric distance minimization and other
related issues are discussed in Section 6.

2. The Bilinear Problem

Any estimation process has two components, recov-
ery of the model parameters (parameter estimation),
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and recovery of the uncorrupted data points (data cor-
rection). The latter are also known as the nuisance
parameters since the associated uncertainty does not
depend on the model parameters. In linear estimation
problems the two components are intertwined and all
the parameter estimates can be obtained simultane-
ously. Parameter estimation with a bilinear constraint,
however, is a nonlinear process and the estimation of
p̂Ai, p̂Bi andF̂ simultaneously is a complicated task. If
the parameter estimation procedure provides a consis-
tent estimator̂F, then subsequent estimation ofp̂Ai and
p̂Bi is usually satisfactory. Thus, first will focus on the
estimation of the model parameters.

2.1. Linearized Model

To estimate the parameters of the nonlinear EIV model,
the sum of squared Mahalanobis distances between the
noisy points and the true points should be minimized
inRk

[α̂, θ̂, m̂i ]

= arg min
αo,θo,mio

n∑
i=1

(mi −mio)
>C−m(mi −mio), (7)

subject to αo + z(mio)
>θo = 0 and‖θo‖2 = 1,

(8)

whereC−m is the pseudoinverse ofCm which also ac-
counts for the case whenCm is singular. Note that the
minimization (8) corresponds to the maximum like-
lihood solution for normal noise, under the functional
model (Fuller, 1987, p. 124–139), in which the true val-
ues of the pointsmio are considered as unknown con-
stants. The solutions for̂α, θ̂, m̂i cannot be obtained
in closed form and an iterative procedure is needed.
Satisfactory convergence of the nonlinear optimization
procedure requires a good initial estimate and it is com-
putationally impractical without using approximations
(Fuller, 1987, p. 230; Taubin, 1991).

However, if the bilinear constraint is written under
its linear form (2) the estimation ofθo becomes the
solution of a linear minimization problem inRp, the
space ofz. This is indeed true, though with a very im-
portant caveat. In an optimal parameter fitting proce-
dure for the linearized model, the error characteristics
of the linearized model variableszi must be taken into
account. The mapped vectorszi , obtained from the ob-
served vectorsmi can be approximated as

zi = zio +1zi , 1zi ∼ GI(µ,Ci ), i = 1 . .n. (9)

The expressions of the mean and covariance matrix
of 1zi are obtained from the mapping functionz(m).
In our case the pointsmi have a common covariance
matrix Cm, and the linearized error vectors1zi have
the same mean vectorµ, but data dependentcovari-
ance matricesCi . Such data, with the distribution of
each point depending on its true coordinates is called
heteroscedastic.

For example, assuming1mi ∼ NI(0, σ 2
ν I), i.e., nor-

mal i.i.d. errors, and using (5) as the mapping function,
we obtain

µ = [0, 0, 0, σ 2
ν , σ

2
ν

]>
, (10)

Ci = σ 2
ν


1 0 yio 2xio 0

0 1 xio 0 2yio

yio xio x2
io + y2

io + σ 2
ν 2xio yio 2xio yio

2xio 0 2xio yio 4x2
io + 2σ 2

ν 0

0 2yio 2xio yio 0 4y2
io + 2σ 2

ν


= σ 2

ν C?i . (11)

Note the presence of the true (and thus unknown) co-
ordinates of the data point in the expression ofC?

i .
In the estimation process an approximation for the

normalized matrixC?
i must be available. From the map-

ping function it can be seen that in the general case
the knowledge of the fourth order moments of the el-
ements of1mi are required. The third order moments
are zero since we assumed a symmetrical error distri-
bution. The way to approximateC?

i will be discussed
in Section 3.1.2. The estimation of the noise variance,
σ 2
ν is discussed in Section 3.1.
The parameters [αo,θo] of the linear, heteroscedas-

tic EIV model can be found by minimizing the squared
Mahalanobis distances inRp

[α̂, θ̂, ẑi ] = arg min
αo,θo,zio

n∑
i=1

(zi − µ− zio)
>

×C?−
i (zi − µ− zio), (12)

subject to αo + z>ioθo = 0 and ‖θo‖2 = 1, (13)

with the linearized measurement errors defined in (9).
Note that by subtracting the mean of the errorsµ, the
residuals used in the Mahalanobis distances have zero
mean as required by the implicit assumption of the
minimization. The price of moving from a nonlinear
minimization problem to a linear one is the loss of
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homoscedasticity (same distribution) of the errors. The
estimated parameters are not necessarily the same as by
solving the original, nonlinear problem (7), however,
they are very close in practice. Special care is needed
for the data correction procedure as will be discussed
in Section 3.2.

2.2. Literature Review

For the moment we restrict ourselves to the algorithms
proposed in the computer vision literature which es-
timate the matrix of the bilinear form making use of
the linearization described in the preceding section and
assumeC?

m= I . (Will return to the issue of the opti-
mization criteria for image understanding problems in
Section 6.) Two important misconceptions can be often
noticed.

1. The effect of the nonlinear mapping ofmi intoz(mi )

on the errors1zi is ignored.
2. The interceptαo is treated the same way as the other

model parametersθ jo, i.e., the elements ofθo.

In the widely usedeight-point algorithmfor the esti-
mation of the fundamental matrix, e.g, (Faugera, 1993,
p. 274), (Hartley, 1997a) both misconceptions are
present. For a critical discussion see Luong and
Faugeras (1996), Torr and Murray (1997) and Zhang
(1998a). A similar method is also popular for conic
fitting, see Zhang (1997) for an evaluation.

The original eight-point algorithm assumes
1z∼NI(0, σ 2

ν I), and finds the parameter estimate

û= [α̂, θ̂
>

]> under the constraint‖û‖2= 1, as the
eigenvector associated with the smallest eigenvalue of
the matrix

S= [1n,Z]> [1n,Z] , Z = [z1, . . . , zn]> , (14)

where1n is ann-dimensional column vector of ones.
This eigenvector spans the enforced null-space of the
matrix [1n,Z] in Rp+1. However, since in (13) theθ j

are associated withzi, j , while the intercept is associ-
ated with theconstant1, not the entireRp+1 should
be searched for a valid solution. The least eigenvector
algorithm fails to take this into account.

The poor performance of the least eigenvector algo-
rithm is well know even beyond bilinear problems (e.g.
see Faugeras (1993, p. 63) in the context of camera cal-
ibration), and often computationally expensive nonlin-
ear techniques were recommended instead. Recently,

Hartley (1997a) proposed thenormalized eight-point
algorithmin which before the estimation procedure the
points in each image are independently transformed
by translation and scaling to have their centroids in
the origin and a scatter close to a unit circle or unit
box. The nature of the errors1zi is not taken into
account.

In the context of our model, the significant per-
formance improvement of the normalized relative to
the original eight-point algorithm is justified not only
by the better condition number of the data matrix as
Hartley motivates the need for the transformation. Due
to centering the intercept is eliminated while the scal-
ing reduces the influence of measurement errors. In
Section 5.1 will show a quantitative example. Thus the
least eigenvector algorithm is now applied in condi-
tions closer to its validity, and the results improve. In
general, however, using the incorrect model when esti-
mating from data with significant measurement errors
yields strongly biased parameter estimates, as will be
shown in the experimental sections.

The correct,total (orthogonal) least squares(TLS)
solution to solve (12) forµ= 0, and1zi ∼GI(0, σ 2

ν I),
i.e., zero mean, homoscedastic errors, is

α̂ = −z̄>θ̂ where z̄= 1

n

n∑
i=1

zi , (15)

and θ̂ is the eigenvector associated with the smallest
eigenvalue of the moment matrix of thecentereddata
Zc,

M = Z>c Zc = 1

n

n∑
i=1

(zi − z̄)(zi − z̄)>. (16)

The proof is immediate following through Appendix A
for this particular case. The least eigenvector algorithm
can be applied only when the errors of theaugmented
data vectorsy= [1 z>] have thesame, singularcovari-
ance matrix

C = σ 2
ν

[
0 0

0 I

]
. (17)

The use of the singular covariance matrix in (12) auto-
matically separates the treatment of the intercept from
the rest of the parameters.

Taubin (1991) proposed the following approxima-
tion for the mean squared Euclidean distances(C?

m= I)
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in the minimization criterion (7)

n∑
i=1

(mi −mio)
>(mi −mio) ≈

∑n
i=1

(
αo + z>i θo

)2
θ>o Nθo

,

(18)

where N = 1

n

n∑
i=1

(
∂zi

∂mi

)(
∂zi

∂mi

)>
, (19)

is a p× p positive semi-definite matrix. Note that∂zi
∂mi

is the Jacobian of the nonlinear transformation fromm
to z evaluated atmi , and every element of the sum can
be regarded as the normalized covariance matrix of the
vectorzi when neglecting the higher order moments.
Thus,N has the meaning of the average normalized
covariance matrix.

The solution through this approximation is the small-
est generalized eigenvalue of the generalized eigen-
problem

M θ̂ − λNθ̂ = 0 and α̂ = −z̄>θ̂. (20)

The employed approximation (18) is known in the sta-
tistical literature as the generalized total least squares
(GTLS) problem (Van Huffel and Vandewalle, 1989),
where the noisy points in a linear model are assumed
to have zero mean and acommoncovariance matrix
σ 2
ν N. Although the result is improved relative to that

of the eigenvector ofM (16) alone, it is still not op-
timal. Taubin (1993) used this solution as the input
into a nonlinear Levenberg-Marquardt algorithm to
solve the weighted least squares problem based on a
higher order approximation of the squared Euclidean
distance. He also remarked that this initial solution was
often unsatisfactory, and the optimization algorithm
did not return a useful solution. Experimental results
for ellipse fitting using Taubin’s method, described in
Fitzgibbon et al. (1999), have also shown problems
with convergence.

Kanatani (1996, Chap. 9) assumed a small noise
model and analyzed the statistical behavior of the er-
rors under this assumption. He has shown that to obtain
an unbiased solution to image understanding problems
involving the bilinear constraint (up to a second order
approximation), the criterion to be minimized has the
form

n∑
i=1

wi
(
αo + z>i θo

)2
, (21)

wherewi are weights depending on the dataand the
unknown parametersθo. The errors1zi may have
nonzero mean and different covariance matrices. The
dependence ofwi on the sought parameters implies
an iterative procedure, calledrenormalization. At each
step the underlying heteroscedastic regression problem
is transformed into a generalized eigenvalue problem
whose solution is used to define the bias correction for
the next step. Both a first order and a second order
approximation for the bias correction were developed.
The method was tested for conic fitting and motion
analysis, see Kanatani (1993, 1994, 1996).

First order renormalization (Kanatani 1996, Sec. 9.4)
is an elegant numerical way to compute the general-
ized eigenvector required for the parameter estimate
while simultaneously updating the matrices toward bias
removal. The first order renormalization is similar to
the GTLS procedure suggested by Taubin (1991). The
main difference is that to reduce the bias of the solution
Taubin used a second, nonlinear estimation step with
the Levenberg-Marquardt routine, while in the renor-
malization the successive iterations achieve that goal.

The second order renormalization algorithm
(Kanatani, 1996, Sec. 9.6) takes into account all the
noise related phenomena, up to fourth order moments,
and provides a near optimal estimator under the small
noise level assumption. However, the procedure starts
with a biased initial solution and the correction matrices
are evaluated at the noisy data points. These may cause
the algorithm not to converge when the noise level be-
comes significant. Zhang (1997) recently introduced a
new version of the second order renormalization where
the effect of the fourth order moments is ignored. He
has also shown that the original procedure implicitly
assumes that all the error vectors have the same norm,
an assumption which may not hold for real data. Similar
conclusions were reached in Leedan (1997, p. 92).

There are important differences between the algo-
rithm proposed in this paper and renormalization since
the iterative minimization is approached differently.
Renormalization starts with a biased estimation prob-
lem and at each step introduces a correction to reduce
the bias. Our method iterates over an approximation
of the underlying maximum likelihood (for normal
noise) problem. See Chojnacki et al. (1999) for a thor-
ough comparison of the two approaches. At each step
renormalization solves the generalized eigenproblem
through eigenvectors thus with a numerically sensitive
technique, while we use a more robust method, the
generalized singular value decomposition. For low to
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moderate noise levels the performance of renormaliza-
tion and HEIV is similar, the differences appear when
the initial bias and/or the amount of noise become sig-
nificant, as will be shown in the experimental sections.

3. Solution for Heteroscedastic Regression

To obtain a satisfactory solution for the linearized
model (2), the error characteristics of the model vari-
ableszi must be taken into account. The corresponding
minimization criterion was defined in (12) and it is the
approximation (under the mapping fromm to z) of the
minimization problem (7). In Section 3.1 an iterative
algorithm solving this minimization problem is pre-
sented. The method of obtaining the estimates for the
data of theoriginal problem, i.e., the data correction
procedure, is described in Section 3.2.

3.1. Estimation of the Parameters

The model (2) is linear with respect to the parameters
[αo,θo] and the estimators [α̂, θ̂] can be found by solv-
ing the minimization problem (12). For the moment it
is assumed that the normalized covariance matricesC?

i
are known. How to approximate these matrices is dis-
cussed in Section 3.1.2.

The parameter estimates, and the corrected data
points of thelinear modelare

α̂ = −(z̃− µ)>θ̂, ẑi = zi − µ− [(zi − z̃)>θ̂]C?
i θ̂

θ̂
>

C?
i θ̂

,

(22)

with z̃ =

∑n
i=1 =

zi

θ̂
>

C?
i θ̂∑n

i=1

1

θ̂
>

C?
i θ̂

,

andθ̂ is the solution to the equation

M(θ̂)θ̂ − C(θ̂)θ̂ = 0 (23)

M(θ̂) =
n∑

i=1

(zi − z̃)(zi − z̃)>

θ̂
>

C?
i θ̂

C(θ̂) =
n∑

i=1

[
(zi − z̃)>θ̂

θ̂
>

C?
i θ̂

]2

C?
i . (24)

The weightedcentered moment matrix of the data
M(θ̂), and theweightederror covariance matrixC(θ̂)

are both positive semi-definite. The proof is presented
in Appendix A.

The minimization criterion (12) under the constraint
(13) can be written as a function of̂θ by replacing the
true vectorszio with the estimated oneŝzi which yields

Ĵ =
n∑

i=1

[(zi − z̃)>θ̂]2

θ̂
>

C?
i θ̂

=
n∑

i=1

θ̂
>
(zi − z̃)(zi − z̃)>θ̂

θ̂
>

C?
i θ̂

= θ̂>M(θ̂)θ̂. (25)

Solving (23) is the same as minimizing (25) with re-
spect toθ̂, since the left hand side of (23) is the gra-
dient of (25) up to a scale factor. A similar derivation
was obtained by Fuller (1987, pp. 217–218) for the re-
gression model, and the solution̂θ was shown to be a
consistent estimator for general error distributions with
finite moments up to the fourth order (Fuller, 1987,
Theorem 3.1.3). Since any continuous function of a
consistent estimator is itself a consistent estimator
(Mendel, 1995, p. 96),̂α and ẑi are consistent esti-
mators as well.

The noise variance estimatêσ 2
ν can be obtained

from (25) by assuming that the estimation errors are
uniformly distributed across then− p dimensions of
the null space of the (full rank) data matrixZ> (Fuller,
1987, p. 243)

σ̂ 2
ν =

θ̂
>

M(θ̂)θ̂
n− p

. (26)

There is no closed form solution to (23) and an it-
erative procedure must be used, which however, is
much simpler than the one needed to solve the original
problem (7).

3.1.1. The Iterative Procedure. We use an iterative
procedure similar to that suggested by Fuller (1987,
p. 218) for the regression model. Starting with a fixed
M(θ̂) andC(θ̂) evaluated at an initial̂θ

(o)
, at each iter-

ation the following generalized eigenproblem is solved

M ( j−1)θ̂
( j ) − λC( j−1)θ̂

( j ) = 0, (27)

where M ( j−1)=M(θ̂
( j−1)

) and C( j−1)=C(θ̂
( j−1)

).
The left side of (27) is a symmetric positive semi-
definite pencil (Golub and Van Loan, 1990, p. 471)
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and the smallest generalized eigenvector of the matrix
pair [M ( j−1),C( j−1)] provides a decrease in the value
of the minimization criterion (25).

The advantage of this approach is that at each iter-
ation we deal with a symmetric, positive semi-definite
eigenproblem that can be solved using techniques with
superior numerical behavior. It can be shown that
convergencêθ

( j )= θ̂( j−1)
implies λ= 1, and thus no

data dependent threshold is required (Leedan, 1997,
p. 63). Convergence is not guaranteed since (25) is
not necessarily a convex function in̂θ. Fuller (1987,
p. 218) has shown that the convergence of the iterative
procedure is similar to that of the Newton-Raphson
method. In practice, even for significant noise levels,
after only a few iterations a close to optimal solu-
tion is obtained as will be shown in the experimental
sections.

Since by definition the matricesM ( j−1),C( j−1) are
positive semi-definite they can be written as

M ( j−1) = Z( j−1)>
c Z( j−1)

c , C( j−1) = L ( j−1)>L ( j−1),

(28)
where from (22) and (24)

Z( j−1)
c =

[ [
z1− z̃( j−1)

]>√
θ̂
( j−1)>

C?
1θ̂

( j−1)
, . . . ,

[
zn − z̃( j−1)

]>√
θ̂
( j−1)>

C?
nθ̂

( j−1)

]

(29)

z̃( j−1) =

∑n
i=1

zi

θ̂
( j−1)>

C?
i θ̂
( j−1)

∑n
i=1

1

θ̂
( j−1)>

C?
i θ̂
( j−1)

and L ( j−1) is the Cholesky decomposition (Golub and
Van Loan, 1990, p. 146) ofC( j−1).

Thus the generalized eigenproblem (27) has a struc-
ture which allows the numerically more robust gen-
eralized singular vector (GSVD) decomposition to be
used to obtain the solution̂θ

( j )
in the j th iteration. See

Appendix B for details. Note that the smallest general-
ized singular value of the matrix pair [Z( j−1)

c , L ( j−1)]
is σ 2

q = λ and thus convergence meansσ ( j )
q = 1.

The iterative procedure requires an appropriate ini-
tial solution θ̂

(o)
. Assume that theknown normal-

ized covariance matricesC?
i can be approximated as

C?
i ≈βi C̄? whereC̄? is anunknowncovariance matrix

andβi areunknownpositive factors. The values ofβi

andC̄? can be found by minimizing

[βi , C̄?] = arg min
βi ,C̄?

n∑
i=1

‖C?
i − βi C̄?‖2F , (30)

where‖ · ‖F is the Frobenius norm. The solution of
(30) is

C̄? =
∑n

i=1 βi C?
i∑n

i=1 β
2
i

, βi = tr{C?
i C̄

?}
tr{C̄?2} . (31)

To obtainθ̂
(o)

, start with allβi = 1, computeC̄? and
readjustβi and C̄?. Further refinements do not yield
improvements in the final result of the estimation. It
should be emphasized that the accuracy of the initial
solution is not crucial for satisfactory performance, and
most often the same result is obtained by employing a
random initialization. The above described procedure
is needed when the noise variance (26) is to be deter-
mined prior to the iterations.

The generalized eigenproblem (23) after some ma-
nipulations is reduced to

Zc(β)
>Zc(β)θ̂

(o) − λC̄?θ̂
(o) = 0, (32)

where

Zc(β) =
[

[z1− z̃(β)]>√
β1

, . . . ,
[zn − z̃(β)]>√

βn

]>
(33)

z̃(β) =
∑n

i=1

zi

βi∑n
i=1

1

βi

.

Thus, the initial solutionθ̂
(o)

is obtained from the
GSVD of the matrix pair [Zc(β), L̄ ], where L̄ is the
Cholesky decomposition of̄C?. Note that there are no
iterations involved. The initial value of the intercept is

α̂(o) = −[z̃(β)− µ]>θ̂
(o)
. (34)

In the presence of outliers, high breakdown point
estimators such as the LMedS technique (Meer
et al., 1991) should be used to obtain the initial so-
lution and reject the outliers from further processing.
However, the computation of a model candidate with
the elemental subset should employ the above proce-
dure and not use the solution of the linear system of
equations, since the latter produces a biased estimate.
We return now to the issue of approximating the co-
variance matricesC?

i .
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3.1.2. The Approximate Distribution of∆zi . In
Section 2.1 we have already shown that the nonlin-
ear mapping between the observed datami (6) and
the linearized model variablezi makes the error rela-
tive to the true vectorzio (9), to have nonzero mean
µ and a covariance matrixCi dependent onCm and
mio. The example (11) for conic fitting was also given.
Similar expressions will be obtained in Section 5 for
the epipolar geometry problem for symmetrical, zero-
mean distributions of1mi . While the assumption of
normal noise1mi is not necessary for the approxima-
tions developed in this section, it should be noted that
it was used to obtain the analytical expressions ofC?

i
in the experiments. The general case is discussed in
Leedan (1997, p. 67).

It is not possible to obtainµ andC?
i exactly since

mio andσ 2
ν have to be estimated from the data. How-

ever, the solution of the minimization problem (12)
remains close to optimal if the approximations ofµ
andC?

i are consistent (Fuller, 1987, Theorem 3.1.1).
Two issues have to be addressed when approximatingµ
andCi :

– How to reduce the influence of the fourth order mo-
ments of1mi onC?

i .
– How to estimatemio andσ 2

ν .

As will be shown in the sequel w.l.g. it can be assumed
thatCm= σ 2

ν I . In this case, to reduce the effect of the
fourth order moments it is required that

m2
( j )io À σ 2

ν j = 1 . . k i = 1 . .n, (35)

where m( j )io is the j th element in the vectormio.
A proper transformation of the data pointsmi can
satisfy these requirements without affecting the solu-
tion, while preserving the additional restrictions on the
matrixF in (1).

A transformation prior to processing has often been
used in computer vision, however, for different rea-
sons. Usually the centroid of the data is translated to
the origin of the image coordinates. Although center-
ing the image does not affect the statistical properties
of the image points, it can move some of the points too
close to the origin. These points have a significantly de-
creased signal-to-noise-ratio and can degrade the over-
all performance of the estimation procedure. Often the
image coordinates are also scaled down to reduce the
condition number of the data matrixZ (Torr, 1995;
Hartley, 1997a).

A general affine transformation of the datamio is
defined as

m̃io = sTm io + a, (36)

wherea is a translation vector,s is a nonzero scaling
factor andT is a nonsingular transformation matrix in
Rk×k. Let the estimate forF obtained from the original
datami beF̂, and the one obtained from the transformed
datam̃i beF̃.

It can be easily shown that the minimization cri-
terion (7) is not affected (up to the scaling factor)
by the affine transformation. The transformation also
preserves the rank ofF, and in the case of quadratic
forms the value class (e.g., positive definite, indef-
inite, etc.) and the sign of the determinant as well
(Mirsky, 1990, p. 396). Moreover, it can be shown that
the rank and the value class of the leading 2× 2 subma-
trix of F are preserved, thus ifF̃ represents an ellipse so
doesF̂.

The transformed data points̃mi have the normal-
ized covariance matrix̃C?

m=TC?
mT>, and thereforeT

should be chosen to yield̃C?
m= I , i.e., to whiten the

errors in the image points. In order to find the trans-
lation vectora, a trade-off is to be considered. After
the isotropic scaling, the data is inside of a unit box
in Rk, and the variance of the noise isσ̃ 2

ν = s2σ 2
ν . To

satisfy (35), i.e., none of the transformed coordinates
are very close to zero, the vectorashould move the unit
box away from the origin inRk. However, the condi-
tion number of the data matrix, constructed with the
transformed vectorsz(m̃i ), increases with the magni-
tude of the translation from the origin. To satisfy the
trade-off we seta to move the left bottom corner of the
unit box at the point [1, 1].

Since we use the GSVD technique in the compu-
tations the sensitivity to the condition number of the
data matrix is significantly reduced. Slight performance
improvement due to the translation away from the ori-
gin was observed in both applications (ellipse fitting,
fundamental matrix estimation) for very noisy data
(Leedan, 1997, p. 117, 157). To simplify the notations,
in the sequel we omit the tilde superscript but imply that
all the processing is performed with the transformed
data if not specified otherwise.

The second issue regarding the computation ofCi

andµ is their dependence on the true pointsmio and
the noise varianceσ 2

ν . When random initialization is
used, the coordinates of the noisy points andσ 2

ν = 0
should be substituted into the expressions ofC?

i and
µ, which are then updated after the first iteration.
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It should be noted that under practical noise levels,
neglecting the fourth order moments inC?

i does not
seem to decrease performance. If the initial solution
θ̂
(o)

is obtained by solving the eigenproblem (32), the
initial estimatesm̂(o)

i and σ̂ 2
ν can be computed. Note

that the covariance matrix̄C? is the weighted sum of
theC?

i (31) and thus using the above substitutions has
a lesser effect on the thêθ

(o)
. The noise variance esti-

mateσ̂ 2
ν is then computed from (26), and̂m(o)

i is obtain-
ed from the firstk elements of̂z(o)i (22). Usingm̂(o)

i and
σ̂ 2
ν the covariance matrixC?

i is updated. When this ini-
tialization is employed (as was in all our experiments)
recomputingµ andC?

i at each iteration step does not
have a significant influence on the final result and the
same values were used throughout the algorithm.

3.2. Data Correction

At convergence, the parameter estimation procedure
provides the estimates [α̂, θ̂] defining aplane in Rp.
However, we must satisfy the constraints in the original
problem (7), i.e., the pointsmio must lie on thesurface
inRk defined by [̂α, θ̂].

Substituting the parameter estimates into (22), the
new estimatêm(t)

i obtained from the firstk elements (as
we did for the initial solution) is not satisfactory since
m̂(t)

i is not a consistent estimator formio and it will not
necessarily be on the surface. The estimators [α̂, θ̂] are
consistent under very mild conditions (See Section 3.1)
and the final estimate for the data pointm̂i should be
obtained through the data correction procedure. Using
a standard nonlinear optimization routine to solve the
minimization problem (8) form̂i with the constraint
α̂+ z(m̂i )

>θ̂= 0 is computationally expensive.
A simpler approach exploits the fact that an initial

estimatem̂(t)
i is already available. Since the error1mi

has identity normalized covariance matrix (recall the
affine transformation of the data), the estimated error
vector1m̂i =mi − m̂i has to be collinear with the nor-
mal to the surface inRk evaluated at the unknown̂mi .
An approximation to the normal can be evaluated at
m̂(t)

i , and the obtained expression form̂i is substituted
into the constraint

m̂i = mi − δ
(
∂zi

∂mi

∣∣∣∣
m̂(t)

i

)>
θ̂, α̂ + z(m̂i )

>θ̂ = 0.

(37)

For the bilinear problem the resulting quadratic equa-
tion in δ has either one, two or no real roots. The mini-

mum magnitudeδ is the desired solution. Experimental
results have shown that this procedure yields good ap-
proximation even for significant noise levels. For the
few nonregular points, where no realδ is obtained,m̂i

can be computed using a standard nonlinear optimiza-
tion routine withm̂(t)

i as the initial solution. This case,
however, was never encountered in our experiments. In
Taubin (1993) a similar approach was used to approxi-
mate the absolute value ofδ, and solve the equation for
the minimum|δ|.

3.3. Algorithm for Estimation with
Bilinear Constraints

We summarize now the processing steps described in
the previous sections. The concatenated measurements
mi are assumed to have a common covariance matrix
Cm= σ 2

ν C?
m.

Data Transformation

DT.1. Apply an affine transformation to the datami .
After the transformation the datãmi is, in each im-
age, inside a unit box with the left bottom corner
at [1, 1] and has the normalized covarianceC̃?

m= I .
The following steps refer to the transformed data and
omit the tilde superscript for convenience.

Linearization of the Problem

LP.1. Define the nonlinear mapping ofm into z(m).
LP.2. Compute the analytical expression of the covari-

ance matricesCi .

Initial Estimates[Optional]

IE.1. ComputeC(o)
i , βi andC̄?.

IE.2. Find θ̂
(o)

by applying GSVD to the matrix pair
[Zc(β), L̄ ].

IE.3. Computêσ 2
ν andm̂(o)

i .
IE.4. Computeµ andC?

i .

Parameter Estimation

PE.1. Start iterations. Setj = 1.
PE.2. Findθ̂

( j )
by applying GSVD to the matrix pair

[Z( j−1)
c , L ( j−1)] computed using the current solution

θ̂
( j−1)

.
PE.3. Repeat Step PE.2 forj = 2, 3 . . . until |σ ( j )

q − 1|
is less than tolerance.

PE.4. Return̂θ= θ̂( j )
and computêα.
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Restriction Enforcement

RE.1. Apply additional restrictions on the parameters
[α̂, θ̂] if required by the geometric constraints of the
original problem.

Data Correction

DC.1. Findẑi , i = 1 . .n, and obtainm̂(t)
i from its first

k elements.
DC.2. Computêmi by solving the quadratic equation in

the distanceδ. If no solution is available for a partic-
ular point, apply a standard nonlinear optimization
routine.

Back Transformation

BT.1. Transform back the parameters [α̂, θ̂, σ̂ 2
ν ] and

the corrected data pointŝmi to the original image
coordinate systems.

The order in which the last three procedures, restric-
tion enforcement, data correction and back transforma-
tion are applied should be further investigated. Hartley
(1997a) has found in the context of the eight-point al-
gorithm that restriction enforcement preceding back
transformation gave the best performance for the em-
ployed image. However, if data correction is also taken
into consideration a more complex picture emerges in
which the effect of back transformation can reduce the
impact of data correction.

Some important issues should be noted. By process-
ing the intercept̂α separately from the parameter vector
θ̂ the covariance matricesC?

i andC(θ) are nonsingu-
lar if C?

m is nonsingular. Also, the parameter estima-
tion problem is reduced by one dimension. It is evident
from (22) that due to the nonlinearity of the mapping
process, the centroid vector of the data matrixZ isnota
point on the estimated hyperplane [α̂, θ̂] in Rp. Thus,
a simple centering of the data will not provide a good
estimate for the intercept.

For high noise levels very rarely the algorithm may
not converge and the value of the minimization criterion
starts to increase. In such cases a standard optimization
technique should be applied to reach the nearest local
minimum. Experimental results have shown that this
occurs when a degenerate solution is obtained which
cannot account for all the data points. The problem of
degeneracy is not addressed in this paper, however, was
already analyzed in the context of the epipolar geom-
etry (Torr, 1995; Luong and Faugeras, 1996). Another
possible computational “trick” is to recompute the vec-
tors ẑ( j )

i and update the covariance matricesCi when-

ever the difference between̂θ
( j )

and θ̂
( j − 1)

becomes
large.

When solving a computer vision problem, the es-
timated parameter matrix̂F and hence [̂α, θ̂] must
satisfy additional restrictions reflecting the underly-
ing geometrical properties. The algorithm can be easily
modified to incorporate linear restriction functions. See
Leedan (1997, Sec. 3.4.4) for the discussion of several
approaches. However, most restrictions are nonlinear
and solving the minimization problem in (12) with ad-
ditional nonlinear restrictions is not straightforward.
We have adopted the strategy of obtaining an unre-
strictedF̂ and then readjust the parameters to obey the
restrictions. In the remaining sections we discuss two
applications, ellipse fitting and estimation of the funda-
mental matrix, in both of which additional restrictions
have to be imposed.

The algorithm as described above is not limited to
solving problems with bilinear constraints since it is
a general approach to heteroscedastic EIV regression.
Only the linearization and the restriction enforcement
steps are problem specific. The algorithm was imple-
mented in MATLAB and the code is available (for a
more general case) at
www.caip.rutgers.edu/riul/research/code.html

4. Ellipse Fitting

The problem of fitting an ellipse to noisy data points is
considered first. The problem was extensively analyzed
in the computer vision literature, however, most of the
proposed techniques provide biased solutions. Recent
reviews can be found in Cabrera and Meer (1996),
Zhang (1997) and Fitzgibbon et al. (1999). In Cabrera
and Meer (1996) a bias removal technique of different
nature was also proposed.

4.1. Background and Employed Methods

To have the quadratic form (4) represent an ellipse, the
parameter matrixF, hence the parameters [α,θ], must
satisfy an additional, nonlinear restriction of having a
negative value for the discriminantc2− 4de. The re-
striction can be written as

θ̂
>

Dθ̂ = 1, where D=


0 0 0 0 0

0 0 0 0 0

0 0 −1 0 0

0 0 0 0 2

0 0 0 2 0

. (38)
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Note thatD is an indefinite matrix with signature (1,2),
i.e., one positive and two negative eigenvalues: 2,−1,
−2. In Section 3.1.2 it was discussed that the affine
transformation does not affect the imposed restric-
tions and the transformed parameters still represent an
ellipse.

The simplest strategy is of obtaining an unrestricted
θ̂ from the linearized model and whenever the result
is not an ellipse the restriction (38) is enforced on the
solution yielding the neŵ̂θ. Since this case appears
only very infrequently, we have used the direct least
squares ellipse fitting method proposed in Fitzgibbon
et al. (1999). This method being of the TLS class it
is biased, as its developers also recognized it. We did
center the data first, i.e., separated the intercept.

The performance of three different estimation tech-
niques were compared for the task of ellipse fitting.

TLS – The total least squares solution obtained from
the generalized eigenvector ofS (14) andD (38), as it
was implemented in Fitzgibbon et al. (1999). The noisy
data is scaled down to a unit box and centered at the
origin. Thus this method can be also seen as an imple-
mentation of Hartley’s (1997a) proposal to improve on
the performance of the eight-point algorithm.

KAN – The solution obtained by Kanatani’s second
order renormalization (Kanatani, 1994). The noisy data
is scaled down to a unit box and centered at the origin.

EIV – The method proposed in Section 3.1. The noisy
data is scaled down to a unit box with the lower left
corner at [1, 1]. The ellipse restriction was imposed
after transforming back the unrestricted estimatorθ̂.
The expressions ofµ andCi were given in (10) and
(11).

Figure 1. The two extreme cases for the data. (a) Best: 40 noisy points on the high curvature section. (b) Worst: 40 points on the low curvature
section. The dotted line represents the true ellipse. The three different estimation techniques label the corresponding ellipses.

All the methods were implemented in MATLAB. Ex-
periments were performed with both synthetic and real
data.

4.2. Experiments with Synthetic Data

The synthetic data was based on a canonical ellipse
with

F =

1 0 0

0 4 0

0 0 10000

 . (39)

The ellipse is centered at the origin and the major and
the minor radii are 100 and 50, respectively. To increase
the bias present in the TLS method, the noisy points
were always taken from a segment spanning only one
quarter of the ellipse. The segment is represented by 40
points and its location on the ellipse was randomly cho-
sen. The coordinates of the points were corrupted with
zero-mean normal noise,Cm= σ 2

ν I , and tests were per-
formed for different values ofσν . The number of points
was chosen to be relative small in order to reproduce
real situations. In images, after outlier rejection, the
size of the remaining sample is often significantly re-
duced and the performance of the estimation process
deteriorates due to the small sample effect.

The location of the data points on the ellipse is also
an important factor affecting performance. When the
points belong to a high curvature section (Fig. 1(a))
the estimation process is much more stable than when
the points are located on a low curvature part (Fig. 1(b)).

For each experimental condition (the value ofσν and
the employed estimation technique) 200 trials were run.
Since these trials cover all possible locations on the
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ellipse, the results can be regarded as the “expected”
performance for data covering one fourth of the ellipse.
The results can also be seen as a lower bound on the
performance. In practice the data comes from longer
segments (albeit not necessarily more points) which
can only improve performance for similar operating
conditions.

The results forσν ≤ 0.05 were essentially the same
for all three methods. For 0.05≤ σν ≤ 0.1 the two

Figure 2. Ellipse fitting, synthetic data. The scatter (log-log) plots of the major and minor radii. (a)σν = 0.5. (b)σν = 1. (c)σν = 1.5. (d)σν = 2
with rounding. The true values are shown with the crossed lines.

bias correcting methods, KAN and EIV, produced
similar results, both superior to the TLS method.
Figure 2 shows the scatter plots of the major and minor
radii of the estimated ellipses for larger noise values,
σν = 0.5, 1, 1.5, and 2 with rounding of the corrupted
value to the closest integer (data on discrete grid).
The axes have log-log scale to show all the results.
The points in the negative quadrant in Fig. 2 for KAN
method indicate the cases when the solution converged
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to a hyperbola. The EIV produced much less hyper-
bolas (as will be shown) and they were converted into
ellipses using the method mentioned at the beginning
of this section. Note the strong bias of the TLS and the
large spread of KAN for significant noise levels.

To obtain another quality measure for the results,
the estimated data pointŝmi were computed at each
trial. In order to facilitate comparison across the three
different estimation methods a standard nonlinear opti-

Figure 3. Ellipse fitting, synthetic data. The histograms of the average squared distances between the noisy points and the estimated ones.
(a)σν = 0.5. (b)σν = 1. (c)σν = 1.5. (d)σν = 2 with rounding.

mization tool (theconstr function in the Optimization
Toolbox of MATLAB) was used to computêmi after
the parameters were estimated. However, when for the
EIV method the estimateŝmi are computed with the
data correction procedure described in Section 3.2 sim-
ilar results were obtained at all noise levels. Figure 3
shows the histograms of the average squared distances
betweenm̂i and the noisy pointsmi . The histograms
for the distances between̂mi and the true pointsmio
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Table 1. Ellipse fitting,σν = 1. Median and (standard deviation) for 200 trials.

Method Major Minor Angle Center Distance Conv. Steps Hyp.

True 100 50 0 [0,0]

TLS 54(10) 21(6) 1.5(24) [−3,0] ([47,23]) 1.65(0.8) 200 1 0

KAN 191(2800) 50(391) 0.1(37) [−8,−1.5] ([1600,2900]) 0.91(0.4) 39 7.3 47

EIV 104(420) 52(58) 0.4(13) [−1,−1] ([396,175]) 0.86(0.2) 197 4.1 2a

aSee text.

were also generated (not shown) and were very similar
to Fig. 3 indicating the adequacy of the minimization
criterion (12).

The EIV method is the most stable, yielding the nar-
rowest spread and the smallest average squared dis-
tances. The improvement relative to KAN method is
due to more accurate modeling of the error and the bet-
ter numerical behavior of the GSVD employed in the
iterations. At high noise levels, a few trials yielded de-
generate cases in which the data points were distributed
across the two branches of a hyperbola. When such a
hyperbola is converted into an ellipse very large aver-
age squared distance is obtained. See the right side of
Fig. 2(d), EIV.

The median of the estimated ellipse parameters (the
major and minor radii, the center and the orientation of
the ellipse), as well as the median of the average squared
distances for each estimation method are shown in
Table 1 for the caseσν = 1. The spread across the trials
is measured by the standard deviations shown in paren-
theses. For KAN, only the cases yielding ellipses were
considered.

Several parameters measuring the behavior of the
iterative procedures are also shown in Table 1. The
‘convergence’ column indicates the number of trials in
which the algorithm converged, and the ‘steps’ column
has the average number of iterations till convergence.
The processing time in MATLAB of an iteration for
KAN and EIV are roughly the same. The ‘hyperbola’
column shows the number of trials where the result was
a hyperbola.

The TLS method always provides strongly biased
results. The estimated ellipses have parameters with
small standard deviations but they provide the worst
fit. Since the range of the data was the same (on a
quarter segment of the ellipse) the TLS estimator pro-
duces similarly sized ellipses. Their size agrees with
the prediction of the bias towards smaller eccentrici-
ties (Kanatani, 1994). The quality of the TLS results
suggests that they are not adequate to be used as initial
solutions.

The KAN algorithm did not converge in most of the
cases whenσν ≥ 1. This value, in fact, exceeds the noise
levels Kanatani used in his examples (Kanatani, 1994).
However, the KAN method still produced reasonable
results after we have modified it to abort whenever
the value of the minimization criterion started to in-
crease. In 47 trials the result was a hyperbola and
the statistics in Table 1 thus corresponds to the 153
trials yielding ellipses. The histogram of the average
squared distances (Fig. 3(b), KAN) remained prac-
tically the same when the hyperbola cases were ex-
cluded. This is not unexpected since the hyperbolas
are valid, unrestricted solutions of the minimization
problem.

The EIV estimation method produced a smaller num-
ber of hyperbolas and practically always converged. All
the hyperbolas were converted into ellipses and are in-
cluded in Table 1. Although converting a hyperbola into
an ellipse yields in general a deterioration in the quality
of the fit (since the hyperbola is the optimal fit for the
given data points) there were no significant differences
in the average squared distances.

The estimated fit minimizes the Euclidean distances
(C?

m= I) to the observed data. However, since the data
comes from a small segment of the ellipse the fit may
appear very different from the true ellipse, illustrating
the ill-posed nature of such estimation problems. In
Fig. 4(a) an example with a one quarter segment of an
ellipse is shown(σν = 0.5). The ellipse estimated by
the EIV method is shown in Fig. 4(b) with the dashed-
dotted line. The averaged squared distance of the esti-
mated ellipse is 0.2212, which is close to the median
of the histogram in Fig. 3(a), EIV. The ellipse segment
was used to generate 100 noisy(σν = 0.5)data sets, and
for each the EIV method was applied. The two ellipses
shown in Fig. 4(b) with solid lines have the same aver-
age squared distances 0.2203 and 0.2204, respectively.
The results show the inadequacy of small segments
when a valid fit is sought for the entire data space.

For a more detailed discussion of the experimental
data see Leedan, (1997, Sec. 4.1.5).
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Figure 4. The ill-posed nature of fitting to small ellipse segments. (a) An example of a noisy quarter ellipse. (b) The true (dotted) the original
EIV estimate (dash-dotted) and two extreme ellipses (solid).

Figure 5. Ellipse fitting, real data. (a) The coffee mug image. The employed edge pixels are marked with black. (b) The input to the estimation
algorithm. (c) Four estimated ellipses. From left to right: TLS, KAN, EIV and EIV-Cm.

4.3. Experiments with Real Data

As a real data example, the image of the coffee mug
(Fig. 5(a)) was used. A small segment from the edge
image was selected in order to estimate the inner ellip-
tical rim of the mug. The 83 pixels of the employed data
are shown in Fig. 5(b), and the results for each of the
estimation methods are overlaid in Fig. 5(c). The TLS
method produced the smallest ellipse, KAN the next,
and the EIV method the third ellipse from the left.

The image of the coffee mug was part of a larger
scene and was magnified after being “cut out”. This
introduced a significant aliasing clearly visible in the
gray level image (Fig. 5(a)). The aliasing, together with
the digital geometry of the edge image, introduced cor-
relation between the two image coordinates of a data
point. To take the correlation into account the covari-
ance matrix of the image points was modified from

C?
m= I to

C?
m =

[
1 0

0 0.25

]
. (40)

This change had a significant effect on the result. The
new estimate (labeled EIV-Cm) is the rightmost ellipse
in Fig. 5(c). Note that the employed covariance matrix
C?

m is only a coarse approximation of the error process.
The data in Fig. 5 is typical for an edge image, which in-
dicates the importance of using nonidentity covariance
matrices for the pixels.

5. Estimation of the Fundamental Matrix

The problem of estimating the epipolar geometry
of two uncalibrated cameras, i.e., the fundamental



142 Leedan and Meer

matrix, is a central problem in 3D reconstruction
(Faugeras, 1995). Various estimation methods were
proposed, and excellent reviews can be found in Luong
and Faugeras (1996), Torr and Murray (1997) and
Zhang (1998a).

5.1. Background and Employed Methods

To have the bilinear form (1) represent the epipo-
lar constraint between the matched pointspAio=
[xAio, yAio, 1]> and pBio= [xBio, yBio, 1]>, in two im-
ages captured without any knowledge about the inter-
nal or external parameters of the two cameras, the ma-
trix F must have rank two. Often the rank restriction
is enforced by applying the matrix approximation the-
orem (Van Huffel and Vandewalle, 1991, p. 31). By
this theorem, replacing with zero the smallest singular
value of the matrix estimated from the data (which in
general has the full rank 3) yields the optimal solution
for a large class of matrix norms. It is important to be
aware that the approximation theorem is based on the
assumption that the elements of the estimated matrix
are uncorrelated and have the same variance. This is not
true in our case since the elements are derived fromα̂



1 0 0 0 xBio yBio 0 0

0 1 0 0 0 0 xBio yBio

0 0 1 0 xAio 0 yAio 0

0 0 0 1 0 xAio 0 yAio

xBio 0 xAio 0 x2
Aio+ x2

Bio+ σ 2
ν xBioyBio xAioyAio 0

yBio 0 0 xAio xBioyBio x2
Aio+ y2

Bio+ σ 2
ν 0 xAioyAio

0 xBio yAio 0 xAioyAio 0 x2
Bio+ y2

Aio+ σ 2
ν xBioyBio

0 yBio 0 yAio 0 xAioyAio xBioyBio y2
Aio+ y2

Bio+ σ 2
ν


(45)

andθ̂. It is possible to define a more general rank re-
duction procedure which takes into account the covari-
ance matrix of the parameter estimates (Leedan, 1997,
p. 132).

The fundamental matrix can be parametrized in sev-
eral different ways (Luong and Faugeras, 1996). To
compare the quality of different estimates we have used
the two epipoleseA andeB, defined as the null-spaces
of the restricted, rank two matrix

FeA = 0, F>eB = 0, (41)

and the homography transformation defined byH, the
leading 2× 2 submatrix ofF. From the singular value

decomposition

H = UH

[
σH1

σH2

]
V>H . (42)

The homography is parametrized by the rotation angles
of the orthogonal matricesUH , VH and the ratio of the
two singular values

σH2
σH1

.
The mapping from the epipolar constraint to the lin-

earized model (2) is defined by

zio = [xAio, yAio, xBio, yBio, xAioxBio,

xAioyBio, xBioyAio, yAioyBio]> (43)

and

θo = [ f31, f32, f13, f23, f11, f21, f12, f22]
>,

αo = f33. (44)

If normal errors are assumed for the image coordinates,
i.e.,1mi ∼NI(0, σ 2

ν I), the meanµ= 0 and the nor-
malized covariance matrixC∗i of the error vector1zi

is:

The expression ofCi = σ 2
ν C∗i is also a good approxi-

mation for noise with symmetric p.d.f. (Leedan, 1997,
p. 67).

The performance of five different estimation tech-
niques were compared.

HAR – The normalized eight-point algorithm of
Hartley (1997a). In both images the noisy data is
isotropically scaled down to a unit box and centered at
the origin. The solution is the eigenvector ofS(14). The
importance of scaling was investigated in a small pilot
experiment. For an image the covariances (45) were
averaged for 50 noisy points before and after normal-
ization. The singular values of the average covariance
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matrix for the original data were

105[2.508 1.355 1.159 0.006 0 0 0 0]

while after normalization they became

[1.32 1.18 1.17 1.03 1 1 1 1].

Thus normalization not only improved the condition
number (the effective rank in the first case is only 3), but
also yields matrices whose average is close to identity.
The result supports the conjecture in Section 2.2 that the
main effect of normalization is to make the linearized
data more suitable for TLS estimation.

MOR – The virtual parallax solution suggested by
Boufama and Mohr (1995) uses projective planar co-
ordinates. The only transformation performed on the
data is the parallax transformation which is based on
four image points which should be located far from
each other. The errors have now a very complicated
structure. Zhang (1998a) discusses some of the theo-
retical issues related to the optimality of the estimation.
A similar method, using 3D projective coordinates was
proposed by Ponce and Genc (1996).

KAN – The solution obtained by Kanatani’s second-
order renormalization. The noisy data is isotropically
scaled down to a unit box and centered at the origin.

NON – The nonlinear solution using an optimization
routine (thefminu routine in MATLAB Optimization
Toolbox) that minimizes the sum of squared distances
between the noisy points and the epipolar lines in each
image (Luong and Faugeras, 1996). The initial solution
is the TLS solution. No transformation is performed on
the data.

EIV – The method proposed in Section 3.1. The noisy
data is scaled down to a unit box in each image with
the same scaling factor. The bottom left corner of the
unit box is then positioned at [1,1].

The techniques were implemented in MATLAB. The
rank-two restriction is enforced for all the methods ex-
cept MOR, after back transforming to the original co-
ordinate system. We have used the general rank reduc-
tion procedure (Leedan, 1997, p. 132) for KAN and
EIV. Experiments were performed with both synthetic
and real data.

5.2. Experiments with Synthetic Data

The synthetic data was generated from 3-D points that
are randomly scattered in a cube [2500× 2500× 2500]
with the lower left corner in the origin of the world co-
ordinate system. Both cameras had focal length of 300.
The first one was located at the origin of the coordinate
system, the second one at [500, 100, 200] and had
a 3-D rotation [5◦, 5◦, −30◦]. The true fundamental
matrix is

F =

 0.0025 −0.0049 1

0.0066 0.0024 −4.1059

−2.8475 3.2885 −134.11

 , (46)

and the corresponding epipoles are (in image coordi-
nates)

eA = [460.79 439.78]> eB = [750 150]>

the singular value ratio is sH= 0.75, the rotation angles
are rot1= 10.14◦, rot2= 102.8◦.

The coordinates of the points in each image were
corrupted with zero-mean normal noise,Cm= σ 2

ν I , and
tests were performed for different values ofσν . Forty
points present in both images were chosen as matched
pairs (Fig. 6). For each experimental condition (the
value ofσν and the employed estimation technique) 200
trials were run. We have preferred this type of Monte-
Carlo experiment, instead of randomizing the matched
points configuration, in order to avoid the degenerate
cases.

The results forσν ≤ 0.05 were essentially the same
for all five methods. For 0.05≤ σν ≤ 0.5 the bias cor-
recting methods, KAN, NON and EIV, produced sim-
ilar results, all of which were better than the HAR
and MOR methods. Detailed investigation for noise
levelsσν = 1, 2 and 4 with rounding are described in
Leedan (1997, Sec. 4.2.5). In Fig. 7 the results for the
largest noise level are presented. Note the strong bias of
the HAR and the large spread of MOR for the epipole
estimates. This spread may be also due to the random
selection of the bases of the parallax transformation
since we did not implement the “good basis” search
procedure suggested in Ponce and Genc (1996).

The median of the parameters measuring the behav-
ior of the iterative procedures are shown in Table 2
together with the standard deviation. The processing
time in MATLAB of an iteration for KAN and EIV
are roughly the same. The NON method is measured
by the number of function calls to the minimization
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Figure 6. The two views of 40 points used in the experiments. Four matched points are labeled.

function where every 10 function calls are computa-
tionally equivalent to one EIV iteration. It is worth em-
phasizing that although the NON method uses a first-
order approximation to the distances it still requires
large amount of computation time.

The KAN method did not converge in most of the
cases, and the results are obtained after we have mod-
ified the KAN algorithm to exit whenever the value of
the minimization criterion starts to increase. Although
the HAR method has a relative small standard deviation
for the epipole estimates, these estimates are strongly
biased. The EIV method has the results with the small-
est average squared distance except the NON method.

The effect of transformation of the data was also in-
vestigated. We have found that it had a weak influence
on the EIV results, but as expected a strong one on
the HAR results. The KAN method performed slightly
better without transformation probably because the in-
fluence of higher order moments is larger when the data
is centered at the origin.

5.3. Experiments with Real Data

We have used the “standard” images for fundamental
matrix estimation:LIFIA-house, bridge, tribunal. They

Table 2. Epipolar geometry,σν = 4 with rounding. Median and (standard deviation) for 200 trials.

Epipole 1 Epipole 2 H. Ratio Distance Conv. Steps

True [460.8, 439.8] [750, 150] 0.75 0

HAR [399.5, 402.5] ([65.7, 43.1]) [678.0, 148.9] ([77.7, 13.3]) 0.76 (0.03) 14.4 (4.4) 200 1

MOR [503.3, 466.8] ([147.2, 115.7]) [782.9, 146.0] ([112.5, 16.7]) 0.73 (0.06) 37 (82) 200 1

KAN [430.8, 424.3] ([77.3, 49.6]) [714.5, 149.7] ([89.8, 13.7]) 0.76 (0.03) 14.2 (4.5) 30 4.07

NON [458.6, 437.1] ([59.6, 36.0]) [743.2, 149.8] ([77.6, 10.2]) 0.75 (0.03) 12.7 (3.2) 200 1110

EIV [462.7, 437.4] ([68.9, 45.4]) [748.1, 150.8] ([82.2, 14.2]) 0.75 (0.03) 13.6 (4.1) 200 3.32

were kindly provided, together with the ground truth
for the last two, by Roger Mohr. These images have
very low noise level and thus all the methods produced
similar results. In Table 3 the results for thebridge
image are shown.

The KAN method did not converge. Since the value
of the minimization criterion increased immediately,
the KAN method executed only one iteration thus yield-
ing almost the same result as the HAR method (recall
that the initial solution for the renormalization proce-
dure is the TLS solution). In Fig. 8 the ground truth and
the EIV estimates are used to draw the epipolar lines
in the two images.

6. Discussion

The main concern raised against linearization is that the
geometric nature of the original problem is not consid-
ered. The quantity

ri = p>AiFpBi = αo + z(mi )
>θo (47)

is known as thealgebraic distance, and minimizing∑n
i=1 r 2

i leads to the least eigenvector algorithm (see
Section 2.2). Hartley (1997a, 1997b) has shown that
by normalizing the data a performance comparable
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Figure 7. Epipolar geometry, synthetic data,σν = 4 with rounding. Scatter plots of the first (a) and second (b) epipole. (c) The histograms of
the ratio of the singular values of the homography transformation. (d) Scatter plot of the two rotation angles.
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Table 3. The fundamental matrix parameters estimated for thebridge image.

Homography

Epipole 1 Epipole 2 Ratio Rot1 Rot2 Distance Steps

True [150.3,−1531.5] [81.3,−1633.4] 0.89 54.90 34.43

HAR [219.2,−229.1] [210.6,−233.9] 0.93 42.74 47.28 0.08 1

MOR [−585.3,−6078.7] [−1162.5,−7977.9] 0.77 86.99 6.35 0.21 1

KAN [219.2,−229.2] [210.6,−233.8] 0.93 42.57 47.45 0.08 1a

NON [218.8,−352.8] [205.5,−361.8] 0.93 45.92 44.1 0.07 1601

EIV [122.8,−1275.1] [55.0,−1385.5] 0.89 58.98 30.85 0.5 12

aSee text.

with more computationally expensive nonlinear meth-
ods can be obtained. His examples, however, do not
include ellipse fitting, for which our experiments (Sec-
tion 4.2) has shown a significant difference. This is
probably due to two factors. First, ellipse fitting has
nonzero meanµ for the linearized noise process, and
neglecting it introduces more severe bias. Second, we
used difficult conditions for estimation by taking data
only from a small ellipse segment.

The nonlinear minimization criteria are related to
minimizing Euclidean instead of algebraic distances.
The Euclidean distance between the observed and the
original data point is difficult to compute when the latter
belongs to a surface. Sampson (1982) discussing the
problem of ellipse fitting proposed to normalize the
algebraic distances by their gradients, and to minimize

n∑
i=1

[
ri∥∥ ∂ri
∂mi

∥∥
]2

, (48)

where ∂ri
∂mi

is the gradient computed in the noisy points.
Since up to the constantσ 2

ν the denominator is an ap-
proximation of the variance ofri for C?

m= I , each term
of the expression has now the same variance and tra-
ditional estimation methods are adequate. Note that to
obtain the solution in the space ofm, Rk, nonlinear
minimization methods have to be used.

The gradient criterion (48) was often employed
for ellipse fitting (Zhang, 1997) and fundamental ma-
trix estimation (Luong and Faugeras, 1996; Torr and
Murray, 1997; Zhang, 1998a). In the latter context it
was compared with minimizing the distances to the
epipolar lines, or between the observations and the re-
projections of the reconstructed points. All these exper-
iments generated the same result. The different nonlin-
ear criteria yield very similar performance. Recently

Zhang (1998b) gave a theoretical explanation of the
phenomenon.

Let analyze now the minimization criterion (12) of
the linearized model. It is easy to see using (A.7)
that

Ĵz =
n∑

i=1

[
α̂ + z>i θ̂ − µ>θ̂

]2
θ̂
>

C?
i θ̂

=
n∑

i=1

[
ri − µ>θ̂

]2
θ̂
>

C?
i θ̂

.

(49)

To interpret the denominator, the variance ofri should
be approximated taking into account the mapping ofm
into the linearized variablesz. Making extensive use of
Taylor series and the chain rule for vector variables we
obtain

var[ri ] = σ 2
ν

∂r>i
∂mi

C?
m
∂ri

∂mi
(50)

= σ 2
ν

∂r>i
∂zi

∂zi

∂mi
C?

m
∂z>i
∂mi

∂ri

∂zi
(51)

= σ 2
ν

∂r>i
∂zi

C?(o)
i

∂ri

∂zi
= σ 2

ν θ̂
>

C?(o)
i θ̂ (52)

whereC?(o)
i is the covariance matrix ofzi neglecting

the higher order moments. Thus our minimization cri-
terion is similar to the gradient criterion but also in-
cludes a correction for the nonzero mean of the mapped
errors and uses a higher order approximation of the
covariance matrixC?

i in the iterations. This equiva-
lence explains the almost identical performance be-
tween EIV and NON for the fundamental matrix es-
timation (Table 2). However, to solve the minimiza-
tion with the proposed method requires an order of
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Figure 8. Thebridge image. The matched data points are marked with circles together with the direction of the epipolar lines. (a) Ground
truth. (b) Estimated with the EIV method.

magnitude less computations than the nonlinear opti-
mization procedure.

A close to optimal solution for heteroscedastic re-
gression is important for a much larger class of image
understanding problems than the one discussed in this
paper. The method described in this paper was recently
generalized to vectorial constraints and was applied to
the problem of 3D rigid motion of a stereo head (Matei
and Meer, 1999). Other applications are currently un-
der development.

To conclude, we have developed a new, numerically
robust, quasi-optimal technique for parameter estima-
tion and data correction under heteroscedastic noise.

The technique provides a solution similar in quality
with nonlinear optimization at much less computa-
tional cost. Heteroscedasticity arises often in vision
problems and a reliable, relative simple approach to
deal with it is of great importance.

Appendix A: Estimation of the Linearized EIV
Model Parameters

In this Appendix the estimates of the parameters
[αo,θo] of the linear, heteroscedastic EIV model
are found by solving the minimization problem (12)
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repeated here for convenience.

[α̂, θ̂, ẑi ] = arg min
αo,θo,zio

n∑
i=1

(zi − µ− zio)
>

×C?−
i (zi − µ− zio) (A.1)

subject to αo + z>ioθo = 0 and ‖θo‖2 = 1.
(A.2)

Introducing the Lagrange multipliersηi , and substitut-
ing the true parameters with the estimated ones, we
define the function

L = 1

2

n∑
i=1

(zi − µ− ẑi )
>C?−

i (zi − µ− ẑi )

+
n∑

i=1

ηi
(
α̂ + ẑ>i θ̂

)
. (A.3)

Differentiating with respect tôzi yields

−C?−
i (zi − µ− ẑi )+ ηi θ̂ = 0 (A.4)

from where

ẑi = zi − µ− ηi C?
i θ̂. (A.5)

Note that the relation (A.5) is valid for singularC?
i

since no data correction is required in the null-space of
the matrix. Using the constraint (A.2) for the estimated
values yields

ηi = α̂ + (zi − µ)>θ̂
θ̂
>

C?
i θ̂

(A.6)

from where the closed form ofẑi as a function of̂θ and
α̂ is obtained

ẑi = zi − µ− [α̂ + (zi − µ)>θ̂]C?
i θ̂

θ̂
>

C?
i θ̂

. (A.7)

Differentiating (A.3) with respect tôα yields

n∑
i=1

ηi = 0, (A.8)

and by (A.6)

α̂

n∑
i=1

1

θ̂
>

C?
i θ̂
+

n∑
i=1

(zi − µ)>θ̂
θ̂
>

C?
i θ̂

= 0. (A.9)

We define the weighted average

z̃=

∑n
i=1

zi

θ̂
>

C?
i θ̂∑n

i=1 θ̂
>

C?
i θ̂
, (A.10)

and thus the intercept estimate is

α̂ = −(z̃− µ)>θ̂. (A.11)

Applying (A.11) to (A.7) we obtain the expression of
the corrected data points of thelinear model

ẑi = zi − µ− [(zi − z̃)>θ̂]C?
i θ̂

θ̂
>

C?
i θ̂

. (A.12)

Differentiating (A.3) with respect tôθ yields

n∑
i=1

ηi ẑi = 0, (A.13)

which using the previous results can be written as

n∑
i=1

(
(zi − z̃)>θ̂

θ̂
>

C?
i θ̂

)(
zi − [(zi − z̃)>θ̂]C?

i θ̂

θ̂
>

C?
i θ̂

)
= 0

(A.14)
or[∑n

i=1
zi (zi−z̃)>

θ̂
>

C?
i θ̂

]
θ̂ −

[∑n
i=1

(
(zi−z̃)>θ̂

θ̂
>

C?
i θ̂

)2

C?
i

]
θ̂

= 0. (A.15)

From (A.10) we have the equality

n∑
i=1

zi − z̃

θ̂
>

C?
i θ̂
= 0. (A.16)

and the expression (A.15) becomes[∑n
i=1

(zi−z̃)(zi−z̃)>

θ̂
>

C?
i θ̂

]
θ̂ −

[∑n
i=1

(
(zi−z̃)>θ̂

θ̂
>

C?
i θ̂

)2

C?
i

]
θ̂

= 0 (A.17)

which taking into account the definitions (24) yields
(23).



Heteroscedastic Regression 149

Appendix B: The Use of Generalized Singular
Value Decomposition

The solution of the generalized eigenproblem is very
unstable with ill-conditioned or singular matrices
(Golub and Van Loan, 1990, p. 469). In Van Huffel
and Vandewalle (1989) a stable numerical method was
introduced based on the generalized singular value de-
composition (GSVD), which simultaneously diagonal-
izes two matrices. In this Appendix we show how the
GSVD technique can be exploited to solve generalized
eigenproblems.

LetA andB be an arbitraryn× pand a positive semi-
definite p× p matrix, respectively. The GSVD pro-
vides the decompositions (Golub and Van Loan, 1990,
p. 471) and (Van Huffel and Vandewalle, 1989)

A = UAΣAX−1, B = UBΣBX−1, (B.1)

whereUA,UB are ann× n and a p× p orthogonal
matrices,ΣA,ΣB are ann× p and ap× p diagonal
matrices, andX is a p× p nonsingular matrix. Then,
the general eigenproblem

A>Aθ̂ − λB>Bθ̂ = 0 (B.2)

is reduced to

Σ2X−1θ̂ = λX−1θ̂, where Σ2 = (Σ2
B

)−Σ>AΣA.

(B.3)

The nonzero elements of the diagonalp× p matrix
Σ2 are the squared generalized singular values of the
matrix pair [A,B], i.e.,

σ 2
i =

(
σAi

σBi

)2

i = 1 . . p. (B.4)

Note that ifA is not of full rank some of theσi may be
zero. The matrixB is semi-definite and some of theσBi

can be zero too. This is not a problem, however, since
the corresponding values ofσi will be very large and
are of no interest.

Let σq be the smallest value (including zero) among
theσi . SinceX−1θ̂ is the eigenvector of the symmetric,
positive semi-definite matrixΣ2, we have

X−1θ̂ = γeq θ̂ = γ xq, (B.5)

whereeq is the standard basis vector with one in the
qth position, and thusxq is theqth column ofX. The

value of the scaling factorγ can be determined from
additional constraints on̂θ, such as unit norm.

The computation of the GSVD deals only with the
matricesA and B whose condition numbers are the
square root of that ofA>A andB>B, the matrices defin-
ing the generalized eigenproblem. Also no matrix in-
version is necessary during the computations. The tech-
nique can deal with rank deficient matrices which is not
the case for the generalized eigenvalue decomposition.
Thus, solving with GSVD general eigenproblems of
the structure (B.2) has a better numerical behavior than
using straightforward, eigenvector based techniques.
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