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Computation of the derivatives of an image defined on a lattice 
structure is of paramount importance in computer vision. The 
solution implies least square fitting of a continuous function to a 
neighborhood centered on the site where the value of the deriva- 
tive is sought. We present a systematic approach to the problem 
involving orthonormal bases spanning the vector space defhred 
over the neighborhood. Derivatives of any order can be obtained 
by convolving the image with a priori known filters. We show that 
if orthonormal polynomial bases are employed the filters have 
closed form solutions. The same filter is obtained when the fitted 
polynomial functions have one consecutive degree. Moment pre- 
serving properties, sparse structure for some of the filters, and 
relationship to the Marr-Hildreth and Canny edge detectors are 
also proven. Expressions for the Iilters corresponding to fitting 
polynomials up to degree six and differentiation orders up to five, 
for the cases of unweighted data and data weighted by the discrete 
approximation of a Gaussian, are given in the appendices. Q 192 
Academic Press, Inc. 

1. INTRODUCTION 

In computer vision an image g is defined as the ensem- 
ble of values g(n, m) allocated to the sites of a sampling 
lattice. The following problem frequently appears in ap- 
plications: 

Given the noisy image g, estimate at the site (n, m), 
by computations restricted to a local neighborhood, 
the value of the (p + q)th partial derivative (p along 
the x axis, q along the y axis) of the original (uncor- 
rupted) image. 

’ The support of the National Science Foundation and the U.S. Air 
Force of Scientific Research under NSF Grant DCR-86-03723, and of 
the Office of Naval Research under Grant NOOO14-88-K-0348, is grate- 
fully acknowledged. 

The problem is of paramount importance in edge detec- 
tion with differential operators, where first- and second- 
order derivatives are employed. Higher-order derivatives 
are required in certain applications of 3D vision [ 1,261. In 
this paper we present a method through which deriva- 
tives of any order can be obtained by convolving the 
image g with a priori known kernels. Our goal is to 
present a systematic approach to differentiation of dis- 
crete data preceded by least square smoothing. 

The direct method, employing finite differences to 
compute an approximation of the derivative, is not a sat- 
isfactory solution. The difference operator amplifies the 
noise present in the image and the result is unreliable. 
Differentiation must be preceded by a smoothing opera- 
tion which reduces the amount of noise at the expense of 
the achievable resolution for the values of the deriva- 
tives. In edge detection, given the edge profile of interest, 
the two operations can be combined optimally either in 
the image domain or in the frequency domain (see [2, pp. 
S-SO], for a complete review). 

In this paper we take a traditional approach in which 
the trade-off between detection and localization [7] does 
not have a central role. Nevertheless, some of Canny’s 
results will be obtained as a particular case of the new 
method. We focus on computational issues and present a 
fast solution to the proposed problem involving only con- 
volutions with known kernels. In later sections we return 
in detail to the topics to be introduced in this section. 

We define in the neighborhood around (n, m) a continu- 
ous function f(x, y), called by Haralick [IO] the underly- 
ing function of the image. This function carries our as- 
sumptions about the local image structure. Let f(n, m) be 
the sample at site (n, m) of the function f(x, y). The step 
size of the sampling lattice along both directions is taken 
equal to one. To achieve noise reduction, the number of 
parameters of f(x, y) must be less than the number of 
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samples in the neighborhood. These parameters can be 
found by minimizing the mean square error relative to the 
data, the values of g in the neighborhood. The function 
f(x, y) is then employed for the local analysis of g. 

The amount of computation is significantly reduced if 
f(x, y) is defined in terms of orthogonal basis functions 
spanning the vector space corresponding to the neighbor- 
hood. The optimal orthogonal basis is obtained from 
Karhunen-Loeve expansion of the data [14, 161. A spe- 
cial class of basis functions, the orthogonal polynomials, 
are also of interest. 

Orthogonal polynomial bases have often been em- 
ployed in computer vision. Hueckel [15] used nine two- 
dimensional polynomials up to the fourth degree to detect 
edges and lines. They correspond to Chebyshev polyno- 
mials in polar coordinates. Hartley [l I] employed the 
first six two-dimensional Hermite polynomials to solve 
the same task. Paton [25] employed the first six two- 
dimensional Legendre polynomials to describe the local 
structure of the image. These authors regarded the neigh- 
borhood as a continuous interval with the values g(n, m) 
extended (zero-order interpolation) between the sam- 
pling lattice sites. 

In the discrete approach, while f(x, y) is still defined as 
a continuous function, the computations are restricted to 
the lattice points of the neighborhood. Haralick [lo] em- 
ployed this method to estimate directional derivatives in 
noisy images. His polynomials, up to third degree, are 
discrete Chebyshev polynomials, also known as Gram 
polynomials [ 13, p. 2901. Hashimoto and Sklansky [ 121 
derived discrete approximations of Gaussian derivative 
estimation filters using Krawtchouk polynomials. 

In this paper we too adopt the discrete approach. In 
Section 2 the mathematics of orthogonal bases over dis- 
crete intervals is presented. The general expression for 
smoothed differentiation filters is obtained in Section 3, 
and the filters built with orthogonal polynomial bases are 
discussed in Section 4. Experimental results are shown in 
Section 5 and the paper is concluded with a discussion 
section. 

2. ORTHOGONAL BASES OVER DISCRETE INTERVALS 

We now give a short review of orthogonal bases de- 
fined on discrete intervals. Without loss of generality we 
can employ the one-dimensional approach and define the 
interval as being of length 2N + 1 centered on n, i.e., 
k = n - N, . . . , II, . . . , n + N. Let I/Q(X), 1 = 0, 
1 ’ * , m be a set of functions and w(x) 2 0 a weight 
function, all defined on the interval -N 5 x % +N. The 
functions can take only finite values and are continuous 
in the interval. The 1, discrete scalar product of two func- 
tions with respect to the weight function on the discrete 

setofpointsn - N,. . . ,n,. . . ,n + Nisdefinedas 

n+N 

(41, $j) = ,=T, WV - nN(k - n)$j(k - 4. (1) 

Note that the only function values employed are the ones 
at the lattice sites and that the scalar product implicitly 
depends on n, the center of the interval under consider- 
ation. The set of functions {&} is orthogonal if for any 1 
and j 

C&Y $j) = *f&j = 
@, l= j 

(2) 
0, otherwise, 

where 9: = ($I, $11 = l$~d* is the 12 norm of the function 
$1. The set of functions +[(x) = {$~(x)l~~}, where 1 = 0, 
1 7. * * 7 to, is called an orthonormal basis. 

Let the samples g(k), k = n - N, . . . , n, . . . , 
n + N, be the available discrete data. We want to obtain 
in mean squares sense the best continuous approximation 
of the data on the interval by employing a continuous 
function f(x) having L + 1 real parameters fr, 1 = 0, 
1 . . , L < 2N + 1. That is, we assume that between 
the available samples g(k) the data can be represented by 
f(x) built from the linear combination of the first L + 1 
basis functions 

f(x) A 2 .fMx - 4, n-NlxIn+N, (3) 

where the expansion coefficients fi are to be determined. 
This limited set of basis functions forms the orthonormal 
base of an (L + I)-dimensional linear vector space. The 
coefficients fi are then determined by minimizing the 12 
error norm between the sequences f(x), x = k, and g(k) 

EZ = If- g12 

= ,IgN w(k - 4 [$ fih(k - 4 - g M]‘. (4) 

Minimum error is achieved if 

a& 
-=o, l=O,l,. . . ,L. 
afr 

Writing (5) explicitly and taking into account (1) we ob- 
tain 
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The set of equations (6) is known as the normal equa- 
tions, and has a central role in mean square estimation. 
Since the functions 41 belong to an orthonormal basis (2) 
the solution to the normal equations is immediate: 

5 = (8, +I), 1 = 0, 1, * * * 9 L. (7) 

Note that fi implicitly depends on n, i.e., on the interval 
on which the computations are performed. Analysis of (7) 
shows that the expansion coefficients of the continuous 
approximation f(x) are identical with the projections of 
the discrete data g(n) onto the basis functions and they 
do not depend on the dimension of the orthonormal basis. 
Any other set of coefficients yields a higher error. The 
coefficients fi are computed independently of each other, 
and as a corollary we have that the parameters minimiz- 
ing the mean square error for dimension L1 are also the 
first L1 parameters if the minimization is performed for 
dimension Lz > L,. This important property is another 
reason for the popularity of orthogonal expansions for 
least squares problems, since whenever a better approxi- 
mation is required the already available parameters do 
not have to be thrown away. 

3. SMOOTHED DIFFERENTIATION FILTERS 

The underlying function f(x) carries all the assumed 
information about the image g in the neighborhood under 
consideration. This neighborhood is centered on n, and 
thus the lattice sites of interest are k = n - N, . . . , 
n,. . . , n + N. We approximate the pth derivative of 
the discrete noisy image g at the site n by 

.FP)(n) = [T]x=n (8) 

that is, by the value of the continuous underlying func- 
tion’s pth derivative at the lattice site under consider- 
ation. The expression for f(p)(x) can be obtained from (3) 
and (7) using the linearity of the differentiation operator, 

fW2) = f: (g, 9fMlPYO), 
I=0 

where the dependence on n is through the scalar product. 
Writing (9) explicitly, after some manipuations we have 

f(P)(n) = ,IfN g(k) [ w(k - n) $ &(k - n)+?“(O)]. 

(10) 

Making a change in the summation index we obtain the 
solution 

f(PX4 = jN g(n - i)h(i; p) = g(n)*h(n; p), (11) 

where 

w(-n) z. $,(-n)4J/P)(Oh InI 5 N 
Mn;p) = (12) 

0, otherwise 

with the dependence on the parameter p made explicit 
but the dependence on L and N kept implicit. The expres- 
sion (11) is a convolution sum between the data g(n) and 
a finite impulse response filter h(n; p) and is denoted by 
the asterisk. Note that h(n; p) while completely deter- 
mined by the chosen orthonormal basis does not have a 
closed form solution in the general case. We obtained the 
following important result: 

To estimate the pth derivative of the one-dimen- 
sional noisy image at site n in the chosen neighbor- 
hood we have to convolve the image with an a priori 
known filter. 

For the two-dimensional case we restrict ourselves to 
square neighborhoods. In such neighborhoods it is al- 
ways possible to define a separable two-dimensional 
orthonormal basis built by the Cartesian product of two 
identical one-dimensional bases. Thus 

w(x, Y) = W(X)W(Y) and 4w2(x, Y) = ~f,W4d~) (13) 

with all the properties discussed in Section 2 holding. We 
approximate the (p + q)th partial derivative at site (n, 
m), p along the x axis and q along the y axis, by 

Similarly to the one-dimensional case we have 

and the separability of the orthonormal basis allows us to 
write 

f(P+z, m) = 5 2 g(n - i, m - Mi; pY4.i; 41, i=-N j=-N 

(16) 
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where the expression of the filters h(n; *) is given by (12). 
Thus, the two-dimensional problem can be reduced to 
convolution with the product of two filters employed in 
the one-dimensional case. It must be emphasized that all 
the results obtained so far are valid for any orthonormal 
basis defined on a discrete interval. The chosen basis 
defines the continuous approximation and therefore intlu- 
ences the values obtained for the derivatives. In the next 
section we show that by using orthonormal polynomial 
bases closed form solutions can be obtained for the fil- 
ters. 

4. FILTERS BUILT WITH ORTHONORMAL 
POLYNOMIALS 

The orthonormal polynomial basis functions are de- 
fined as 

k=O 

For any 1 and j the orthonormality condition 

must be satisfied, and thus the orthogonality interval 
[-N, N] and the weight function w(x) uniquely deter- 
mine the orthonormal polynomial base, i.e., all the coeffi- 
cients al,&. An extensive literature on orthogonal polyno- 
mials exists. Orthogonal polynomials over discrete 
intervals, however, are less often discussed because they 
can be regarded as particular cases of polynomials de- 
fined over continuous intervals. The most complete refer- 
ence on orthogonal polynomials, the treatise of Szegii 
[31] discusses them in only a few pages (pp. 33-37). 

It is immediate from the definition (17) that the continu- 
ous function g(x) = x k, -N 5 x I N and k I L, can be 
completely represented by polynomial basis functions. 
Thus, when the sequence g(n) = n k, n = -N, . . . , N, 
is applied at the input of the smoothed differentiation 
filter h(n; p), the sought output at 12 = 0 (the center of the 
interval) is 

k+p 
k = p. 

(19) 

Note that both k andp are less than or equal to the largest 
polynomial degree L. When k = 0 the following proper- 
ties of the filters are obtained: 

As expected, the smoothing filter reproduces the mean 
level of the input, while if differentiation is also present 
the mean level is discarded. 

The kth moment of the sequence h(n; p) has the defini- 
tion 

and (19) yields 

pk[hh; P)l = 
(-l)pp!, k = p. 

(22) I 
0, kfp 

In the case of smoothing (p = 0) (22) becomes 

1, k=O 
pk[h(n; 011 = 

0, k = 1, 2, . . . , L. 
(23) 

We can proceed now to compute the moments of the 
output f(P)(n) as functions of the moments of the finite 
input sequence g(n). The input is defined in the interval 
[-M, M] and thus the output is nonzero in the interval 
[-M- N,M+ N], 

pk [f’P’l(n) 

M+N 

= 2 f’P’(n)nk 
n=-M-N 

M+N 

= C (i + n - ijk 2 g(n - i)h(i; p) 
II=-M-N [z-N (24) 

M+N 
= ijh(i; p) n=-zeN (n - i)k-jg(n - i) 

where (;) are the binomial coefficients. Taking into ac- 
count (22) we can reduce (24) to 

E.Lk[f’P’(n)l = (- 1)‘P ! (25) 

The following relation between the moments of the input 
and of the output is obtained: 

lo, k<p 

n=-N 

kk [f’P’(n)l = k! 
L (20) 

(-1)’ (k pk-p[g(d, k 2 Pa 
,..., . (26) 
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All the moments of the output of degree less than the 
order of differentiation p are zero. Higher moments are 
proportional with the first moments of the input. 

The case of smoothing p = 0 is of particular interest: 

~df(41 = /-dg(~)l, k = 0, 1, . . . , L. (27) 

The smoothing filters h(n, 0) preserve all the moments of 
the input signal g(n) up to L, the degree of the polynomial 
fitted to the discrete data. It must be emphasized that the 
input g(n) is not necessarily a signal which can be com- 
pletely represented by polynomials; for example, it can 
be a noisy step edge. Thus the smoothing filters maxi- 
mally reduce the corrupting noise and yield minimum 
distortion. These properties justify Burt’s [6] hierarchical 
surface interpolation method in which only planar fits 
were employed. Since by our method the parameters of 
the smoothing polynomials are not computed explicitly 
additional improvements and/or higher-order local fits 
might be achieved in Burt’s algorithm. 

4.1. Chebyshev and Krawtchouk Polynomial Bases 

Let the dimension of the space spanned by the 
orthonormal polynomial bases be L + 1; i.e., the degree 
of the fitted polynomials is L. Given the orthogonality 
interval -N I x I N, different bases correspond to dif- 
ferent weight functions w(x). Two weight functions are of 
interest for us. 

The Chebyshev polynomials t/(x) are obtained when 
W(X) = 1; -N I x 5 N. They are also known as the Gram 
polynomials to distinguish them from polynomials with 
the same name but different weight function defined over 
a continuous interval. 

The Krawtchouk polynomials k&) are generated when 

a N-xb N+x 

(2N)! 
= (N - x)!(N + x)! aN-*bN+*’ 

a, b > 0, a + b = 1; -N I x 5 N. (28) 

Since only the samples of w(x), x = n = -N, . . . , N, 
are used in the scalar product (1) the binomial coefficients 
can be written as the ratio of factorials and not as of 
gamma functions. For our purpose it suffices to consider 
the Krawtchouk polynomials corresponding to a = b = 4. 

Several methods for generating the polynomials be- 
longing to an orthogonal family are available. The recur- 
rence method through a formula connecting three orthog- 
onal polynomials of consecutive degrees is relevant here. 
The orthonormal polynomials are then obtained by divi- 
sion by their norm. 

The Chebyshev polynomials can be generated from the 
relation (adapted from Steffen [29]) 

21 + 1 
tr+1w = 2 1 + 1 -M4 

- & (2N + 1 - 1)(2N + 1 + l)tr-,(x). (29) 

The Krawtchouk polynomials can be generated from the 
relation (adapted from Greenleaf [8]) 

where 1 = 1, 2, . . . , L - 1; and the initial polynomials 
are to(x) = b(x) = 1 and tl(x) = 2x and kl(x) = x. Because 
only the term x multiplies the Ith polynomial in both re- 
currence relations it is immediate to prove that the poly- 
nomials of even degree are even functions (only even 
powers of x) and the polynomials of odd degree are odd 
functions (only odd powers of x and no free term). Thus 

t;?+‘)(O) = k:zp+“(O) = 0, j, q = 0, 1, . . . 
t’k’ (0) = kc24 (0) = 

2J+1 2Jt 1 
0 ,  j, q = 0, 1, . . . . (31) 

Odd-order derivatives of the even-degree polynomials 
and even-order derivatives of the odd-degree polynomi- 
als are zero in the center of the neighborhood. 

The importance of this property becomes clear when 
we examine the expression for the smoothed differentia- 
tion filters (12). For any two consecutive values L and L 
+ 1, one of them (say L + 1) yields 4:!,(O) = 0 for 
polynomial bases. Thus, the same tilter is obtained for the 
computation of the pth derivative in the center of the 
neighborhood if the underlying function is assumed to be 
a polynomial of degree L or L + 1. 

For example, assume that smoothing is performed by 
fitting at every site a line segment (first-order fit) within a 
neighborhood centered on that site. The value of the fit at 
the center is the free term in the line segment’s equation, 
which as is well known is equal to the mean value of the 
samples (zero-order fit). Similarly, there is no need to use 
a second-order fit when computing the smoothed first 
derivative; the first-order fit gives identical results. 

Another consequence of (31) is that alI the smoothed 
differentiation filters are either odd or even sequences. 
The derivatives at zero always sift out all the polynomials 
of the same nature (odd or even), leaving only the other 
homogeneous group inside the sum. We have 

h(-n; 2q) = h(n; 2q), h(-n; 2q+l) = -h(n; 2q + l), 
InlSN, q=O,l,. . . . (32) 
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The expressions of the first five orthogonal Chebyshev 
polynomials were obtained from (29) by the help of the 
Macsyma program package. They are proportional to the 
polynomials found by Hildebrand [ 13, p. 2901: 

to(x) = 1 
f,(x) = 2x 

t2(x) = 6x2 - 2N(N + 1) 
f3(x) = 20x3 - 4(3N2 + 3N - 1)x 
f4(x) = 70x4 - lO(6N2 + 6N - 5)x2 

(33) 

+ 6N(N2 - l)(N + 2) 
h(x) = 252~~ - 140(2N2 + 2N - 3)x3 

+ 4(15N4 + 30N3 - 35N2 - 50N + 12)x. 

The general expression for the squared-norm of these 
Chebyshev polynomials is 

T2 = $&l fi [(2N + D2 - j2]. I (34) 
J 1 

The orthonormal polynomials are obtained by dividing 
the expressions in (33) by Tl. 

The filters based on Chebyshev polynomials were com- 
puted from (12) with the help of Macsyma and are given 
in Appendix A. Convolution with the filters involves the 
fitting of an Lth degree polynomial to the data. The fitted 
polynomial has L + 1 coefficients which are determined 
implicitly by the filtering and thus the dimension of the 
interval2N+ lmustbeatleastequaltoL+ l,i.e.,N~ 
L/2. 

The filters built with Chebyshev polynomial base are 
called Savitzky-Golay filters after the names of the re- 
searchers who proposed them first in 1964. The filters are 
frequently used in chemistry for processing spectromet- 
ric measurements. Their popularity is shown by the fact 
that according to the Science Citation Index the paper 
was cited in 1987 alone 124 times. Savitzky and Golay 
[27] tabulated the filters up to the fifth degree. The tables 
of Savitzky and Golay were corrected by Steinier et al. 
[30], who also discussed the least squares problem in a 
more general context. Madden [18] was the first to give 
closed form general expressions for the Savitzky-Golay 
filters. He did not elaborate on the method by which the 
filters were obtained. Madden’s results differ from ours 
given in Appendix A by a minus sign for the filters which 
are odd sequences. This is due to Madden’s correlation 
type definition in contrast with ours (11) which is of con- 
volution type. We also found an error in his expression 
for the filter (AlO). Bromba and Ziegler [3, 51 discussed 
only the Savitzky-Golay smoothing filters. Different 

properties are presented and a recursive filter implemen- 
tation (more adequate for on-line scanning of the input 
data) was proposed. Steffen [29] and Schiissler and Stef- 
fen [28] also restricted themselves to smoothing filters. 
They gave two different methods of obtaining the 
Savitzky-Golay filters, proved their properties, and 
showed the shape of the filters and of the corresponding 
frequency responses for N = 11, L = 0, 2, . . . , 22. 

The expressions of the first five orthogonal Krawt- 
chouk polynomials corresponding to a = b = t in the 
weight function (28) were obtained from (30) by the help 
of the Macsyma program package. They are proportional 
to the polynomials found by Greenleaf [8]: 

M-4 = 1 

kl(X) = x 

k2(x) = 4[2x2 - N] 

5(x) = ?&lx3 - (3N - 1)x] 
k4(x) = &[4x4 - 4(3N - 2)x2 + 3N(N - l)] 

(35) 

k5(x) = &4x5 - 2O(N - 1)x3 + (15N2 - 25N + 6)x]. 

The general expression for the squared-norm of these 
Krawtchouk polynomials is 

Kf = 2-2’ (36) 

The expressions of the filters built with the Krawtchouk 
orthonormal base are given in Appendix B. They are less 
frequently employed than the Savitzky-Golay filters; 
only Bromba and Ziegler [4] discussed their use for the 
case of pure smoothing. 

The behavior of the Chebyshev and Krawtchouk poly- 
nomial bases at the limit is also of interest. If we let x = 
Nz and make N go to infinity, the Chebyshev polynomi- 
als defined over the discrete interval [-N, N] become the 
Legendre polynomials in the variable z, defined over the 
continuous interval [ - 1, 11 with unit weight function [ 13, 
p. 2901. Similarly, the Krawtchouk polynomials at the 
limit yield Hermite polynomials defined on the continu- 
ous interval [-a~, co] with Gaussian weights [8]. 

In Section 1 we mentioned that both Legendre and 
Hermite polynomials were employed in computer vision 
for feature detection. The relative small neighborhood 
sizes, however, raise questions about the validity of us- 
ing continuous orthogonal polynomial bases. As was dis- 
cussed above, these continuous polynomials become cor- 
rect approximations for data defined on a discrete lattice 
only at the limit. It is of interest to mention that Hashi- 
moto and Sklansky [ 121 used Krawtchouk polynomials to 
approximate Gaussian derivative estimation filters. Our 
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results, using the discrete approach from the beginning, 
shows that there is no need to consider these filters as 
approximations. 

4.2. Properties of Filters Built with Krawtchouk 
Polynomials 

In this section we discuss some interesting properties 
of the smoothed differentiation filters built with Krawt- 
chouk polynomials. 

Examination of the expressions for the filters (Appen- 
dix B) shows that they all contain the sampled values of 
the weight function (28). To show the relationship be- 
tween some of these filters and well-known edge detec- 
tors developed in the continuous domain, we should re- 
gard the weight as the the discrete approximation of a 
Gaussian. By the DeMoivre-Laplace theorem [23, p. 661 
if N is relative large and 12 > m, the weight of the 
Krawtchouk polynomial base becomes a good approxi- 
mation of a Gaussian with mean 0 and variance N/2. 

The expression of the approximated Gaussian is 

G(x) = LN c(~*‘~), (37) 

where we took into account the unit step size of the sam- 
pling lattice. The first and second derivatives are 

G(‘)(x) = - $ G(x) 

G(2)(x) = $ (2x2 - N)G(x). 

(W 

W-W 

Given that the sampled Gaussian G(n) is a good approxi- 
mation of the sampled weight function w(n), comparison 
of (38a) with (BS) and (38b) and (B8) reveals the following 
equivalences: 

hK(n; 1) = G”‘(n) for L = 1 or 2 (39a) 

Mn; 2) = 2N _ l 2N G(2)(n) for L = 2 or 3. (39b) 

Thus the two smoothed differentiation filters built with 
Krawtchouk polynomials are close approximations of the 
sampled derivatives of a Gaussian with variance N/2. 
The approximation improves as the support of the filters 
increases. 

Canny [7] proposed the first derivative of a Gaussian as 
an efficient approximation for his optimal step edge oper- 
ator. Canny defined optimality in terms of localization 
accuracy and minimum false alarms and the optimization 
was performed in the continuous domain. In our discrete 
approach we employed a different, least mean square 

criterion to determine the expressions for the smoothed 
differentiation filters. Interestingly, when the local struc- 
ture of the image is assumed to be planar or quadratic the 
obtained filter is very similar to Canny’s edge detector. 
Note that higher-order underlying functions yield differ- 
ent first-order differentiation filters ((B6) and (B7)) and in 
our paradigm the first derivative of the Gaussian is no 
longer the desirable operator. 

Marr and Hildreth [ 191 employed the second-order de- 
rivative of a Gaussian as edge detector. They gave an 
empirical justification in the continuous domain for the 
proposed operator. The equivalence relation (39b) sug- 
gests that the discrete mean square criterion for Gaus- 
sian-weighted data yields a similar filter only when the 
local structure of the image is assumed to be a polynomial 
of degree two or three. 

Implementational aspects of the smoothed differentia- 
tion filters are also of importance. We now show that 
some of the filters built with Krawtchouk polynomials 
have sparse structure which reduces fourfold the amount 
of computation needed in two dimensions. The Savitzky- 
Golay filters built with Chebyshev polynomials do not 
have this property. 

Let a filter h(n) be defined on the interval IZ = 
-N, . . . , N. The filter has spare structure if close to 
half of its coefficients are zero in an alternating pattern. 
That is, 

h(n) = 0, In/ = 2q, 

q = c, (c + I), (c + l), . . . , [N/2], 
(404 

where c is either 0 or 1. Another pattern is 

h(n) = 0, InI = 2q + 1, 
WW 

q = 0, 1, . * . 5 [(N - D/2]. 
Mutiplications with these zero-valued coefficients do not 
have to be performed and in convolutions a significant 
decrease in the amount of computation is achieved. Some 
of these filters with sparse structure are known as half- 
band filters. Another application of half-band filters in 
computer vision is described in Meer et al. [20]. 

The smoothed differentiation filters described in this 
paper have three parameters in addition to the discrete 
variable n. The size of the filter is related to N, the degree 
of the Iitted smoothing polynomials is related to L, and 
the order of the differentiation is p. We have found that 
the filters have sparse structure if either 

or 

N=L+ and p=O (41) 

N = L- = p, (42) 
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where the superscript of the parameter L stands for the 
smaller or larger polynomial degree yielding the same 
filter. 

The first two sparse-structured smoothing filters de- 
fined by condition (41) are listed in Table 1. The smallest 
filter (N = 1) is not included because it does not have 
zero-valued coefficients. 

Condition (42) yields the sparse-structured smoothed 
differentiation filters shown in Table 2. The first filter 
(N = 1) is given only for completeness. 

We prove now that the spare structure conditions (41) 
and (42) are a consequence of a property of the roots of 
Krawtchouk polynomials (35). The roots of the algebraic 
equation &&x) = 0 are integers having alternating pat- 
tern. While the roots of any orthogonal polynomial are 
real and distinct and lie inside the orthogonality interval 
[31, p. 441, the above property of Krawtchouk polynomi- 
als is not shared with the Chebyshev polynomials. 

Proof of Condition (41). With the help of the Chris- 
toffel-Darboux summation formula Bromba and Ziegler 
[4] have shown that in the case of pure smoothing (p = 0) 
the expression (12) can be further simplified for the 
Krawtchouk polynomial base to 

h(n;O, 2q) = c, kQ+l(n) 
n 

w(n), q = 0, 1, . . . , (43) 

where C, is a constant, kz,+l(n) is the (2q + 1)th 
Krawtchouk polynomial, the weight function w(n) is de- 
fined in (28), and the dependence on the degree of fitting 
polynomial L = 2q was made explicit. Recall that if L = 
2q + 1 the same smoothing filter is obtained. The polyno- 
mials k%+,(n) are odd functions and thus the division with 
n is always defined. The binomial coefficients w(n) are 
always nonzero, the sparse structure of the smoothing 
filters (41) is then generated by the roots of the even 
polynomial k%+l(n)ln. For example, if q = 1 we are in the 
L- = 2, N = L+ = 3 case and the equation of interest is 

k&d - = i [2n* - 81 = 0 n 

having the solutions n = ?2 which coincide with the 
zeros of the filter in Table 1. 

TABLE 1 
Smoothing Filters with Sparse Structure 

Filter size: Degree of Nature of h(n) = 0 
2N+1 polynomials: L-, L+ sequence InI 

7 2 or 3 Even 2 
11 4 or 5 Even 2, 4 

TABLE 2 
Smoothed Differentiation Filters with Sparse Structure 

Filter Degree of Order of 
size: polynomials: differentiation: Nature of h(n) = 0 

2N-b 1 L-, L+ P sequence Inl 

3 1 or2 1 Odd 0 
5 2 or 3 2 Even 1 
7 3 or4 3 Odd 0, 2 
9 4 or 5 4 Even 1, 3 

11 5 or 6 5 Odd 0, 294 

Proof of Condition (42). Since the Nth-order deriva- 
tive of an 1 < Nth degree polynomial is zero, condition 
(42) reduces the expression (12) of the filter to 

h(n; N, N) = N!aN,Nw(-n)kN(-n), (45) 

where UN,N is the leading coefficient of the k&) Krawt- 
chouk polynomial. Note that w(-n) = w(n) and kN(-n) 
= &k&z) depending on whether N is an even or an odd 
number. Thus, again a sparse filter structure is generated 
by the roots of the Krawtchouk polynomials. For exam- 
ple, if N = 4 the roots are given by 

4n4 - 40n2 + 36 = 0 (46) 

with the solutions n = + 1, +3 which coincide with the 
zeros of the smoothed fourth-order differentiation filter in 
Table 2. 

5. EXPERIMENTAL RESULTS 

We have applied several smoothed differentiation fil- 
ters to the 128 x 128 pebbles image (upper left, Fig. 1) 
and 158 x 158 ua~e image (upper left, Fig. 2). All the 
images presented in the figures are magnified to 256 X 256 
and have 255 gray levels. These two images were chosen 
as examples since most of the information conveyed is 
carried by nonplanar patches. The results are obtained 
with filters built employing the Krawtchouk polynomial 
base. Results obtained with the equivalent Savitzky- 
Golay filters are undistinguishable by the eye. As was 
already mentioned in Section 1, the goal of this paper is 
only to present a mathematically complete approach to 
least square processing of images. Therefore we have 
restricted our experiments to the generation of raw data, 
i.e., the output of the tilter with an additional linear scal- 
ing (gray levels stretched between 0 and 255) in the cases 
of differentiated images. 

All the filters were of size 9 x 9. The same derivative is 
taken along both directions and thus, for example, the 
first derivative filter will not respond to horizontal or ver- 
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FIG. 1. Smoothing of the pebbles image. Upper left: Original. LJp- 
per right: Zero-degree polynomials. Lower left: Second-degree polyno- 
mials. Lower right: Fourth-degree polynomials. The pebbles images are 
128 x 128, magnified to 256 X 256. The filter size is 9 x 9 in all these and 
subsequent images. 

tical edges since one of its components is always zero. 
We did not investigate the effect of “nonisotropic” fil- 
ters, in which the supports of the filter and the degrees of 
the fitted polynomials differ along the IZ and m coordi- 
nates of the lattice. These are the oriented edge detectors 
(among them the discrete versions of the Marr-Hildreth 
and the Canny detectors) and are obtained by combining 
pure smoothing components with smoothed differentia- 

tion ones. The separability along the two lattice coordi- 
nate axes (13) makes building of such edge detectors im- 
mediate. 

A serious amount of blurring of the images appears 
when zero-order polynomials (we will refer from now on 
only to I,-) are fitted to the data through convolution with 
the smoothing filter (upper right, Figs. 1 and 2). How- 
ever, when the degree of the fitted polynomials is in- 
creased to two (lower left, Figs. 1 and 2) most of the 
details remain sharp. An additional increase of the poly- 
nomial degree to four does not seem to yield further im- 
provements (lower right, Figs. 1 and 2). 

The images were also corrupted by zero mean, white 
Gaussian noise-the pebbles image with noise having 
standard deviation 50 (upper left, Fig. 3), and the vase 
image with noise having standard deviation 30 (upper 
left, Fig. 4). As expected the increase in the degree of the 
smoothing polynomials also increased the amount of 
noise retained. The second-degree polynomials (lower 
left, Figs. 3 and 4) appear to optimize the trade-off be- 
tween the smoothness of the background and the sharp- 
ness of the details. 

Different derivatives of the pebbles image are shown in 
Fig. 5. At the upper left, the first derivative obtained with 
first-degree polynomials is given. As was discussed 
above the horizontal and vertical components of the filter 
are approximations of the first derivative of a Gaussian 
with standard deviation o = V?. The gray level changes 
are, however, much more sharply defined if third-order 
polynomials are employed for the smoothing part of the 
filter (upper right, Fig. 5). Similar improvement can be 
observed for the smoothed second-derivative filters. In 

FIG. 2. Smoothing of the vase image. Upper left: Original. Upper 
right: Zero-degree polynomials. Lower left: Second-degree polynomi- 
als. Lower right: Fourth-degree polynomials. The vase images are 158 
X 158, magnified to 256 X 256. 

FIG. 3. Smoothing of the noisy pebbles image. Upper left: Original 
corrupted by zero mean, white, Gaussian noise with standard deviation 
50. Upper right: Zero-degree polynomials. Lower left: Second-degree 
polynomials. Lower right: Fourth-degree polynomials. 
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FIG. 4. Smoothing of the noisy vase image. Upper left: Original 
corrupted by zero mean, white, Gaussian noise with standard deviation 
30. Upper right: Zero-degree polynomials. Lower left: Second-degree 
polynomials. Lower right: Fourth-degree polynomials. 

the lower left of Fig. 5 the second-order derivative is 
shown computed with second-degree polynomials. In 
this case the horizontal and vertical components of the 
filter are approximations of the second derivative of a 
Gaussian with standard deviation o = V’?. In the lower 
right the same derivative is computed with fourth-degree 
smoothing polynomials. 

The upper left of Fig. 6 shows the first derivative of the 
vase image computed after smoothing with third-order 
polynomials. The edges delineating the vase can be rec- 
ognized. The second derivative based on fourth-degree 
polynomials (upper right), the third derivative based on 
third-degree polynomials (lower left), and the fourth de- 
rivative based on fourth-degree polynomials (lower right) 
all retained the highlight feature at the center of the vase 
showing the step-like nature of this feature. 

6. DISCUSSION 

We have presented a systematic approach to least 
square approximation of images and of their derivatives. 
We have shown that by choosing orthonormal polyno- 
mial bases for the description of the neighborhood within 
which the computation is performed, the result can be 
achieved by convolution with filters expressed in closed 
form. We have proved that only every second underlying 
surface degree is meaningful in processing. A spline poly- 
nomial decomposition-based technique was also em- 
ployed to obtain the solution in the more general case of 
minimal-curvature filters where a regularization term is 
also present in the minimization [32, 331. 

One application of the low-order smoothed differential 
filters is in edge detection. The numerical differentiation 
along one coordinate direction combined with smoothing 
along the other direction yields oriented edge detection 
masks. Directional derivatives can also be obtained when 

FIG. 5. Derivatives of the pebbles image. Upper left: First-deriva- 
tive, first-degree polynomials. Upper right: First-derivative, third-de- 
gree polynomials. Lower left: Second-derivative, second-degree poly- 
nomials. Lower right: Second-derivative, fourth-degree polynomials. 

FIG. 6. Derivatives of the vase image. Upper left: First-derivative, 
third-degree polynomials. Upper right: Second-derivative, fourth-de- 
gree polynomials. Lower left: Third-derivative, third-degree polynomi- 
als. Lower right: Fourth-derivative, fourth-degree polynomials. 
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the values of the partial derivatives are available [lo]. We 
have shown that the use of Gaussian smoothed deriva- 
tives (in the Canny and the Mat-r-Hildreth edge detec- 
tors) implies additional assumptions about the degree of 
the underlying polynomial surface, at least when an l2 
norm is employed. 

The degree of the underlying polynomial is the most 
important parameter of the filters. In addition to describ- 
ing the underlying polynomial surface it also controls the 
amount of achieved smoothing, as the experimental 
results have also shown. Given the data and a family of 
models (e.g., polynomial surfaces), the model order 
problem deals with the selection of the model best fitting 
the data. There is no unique solution for the problem and 
it is an active research area both in the context of classic 
[22, Chap. 71 and robust [9, pp. 366-3671 statistical tech- 
niques. The final decision is dictated by the desired trade- 
off between noise reduction and sharpness of details. 
Note also that for a given neighborhood size all the filters 
require the same amount of computation since none of 
the parameters of the fitted polynomials are computed 
explicitly. 

Even higher-order polynomial surfaces cannot model 
discontinuities (edges) in an image. The image data are 
piecewise; that is, they are composed of several surfaces 
separated by model discontinuities (edges). Application 
of least-squares-based surface estimation techniques to 
piecewise data violates the basic assumptions of least 
squares and distortions are always introduced. Discon- 
tinuity preserving smoothing procedures must use either 
adaptive least squares methods (e.g., [24]) and/or high 
breakdown point robust estimators [21]. However, if the 

Unweighted Smoothing Filters 

L = Oor 1,p = 0. 

data are homogeneous (consist of only one surface) least 
squares often yields the optimum solution. 

In our approach the discrete nature of the image has a 
central role and all the computations are restricted to the 
sites of the sampling lattice. We believe that the discrete- 
ness of the data must be taken into account when devel- 
oping algorithms for computer vision. Transition from a 
continuous formulation of the problem to discrete algo- 
rithms may not always yield correct results. For exam- 
ple, recently Lindeberg [17] has shown that scale-space 
properties in the continuous domain can be violated after 
sampling. The filters proposed in this paper allow treat- 
ment of least square problems directly in the discrete 
realm. 

APPENDIX A 

Smoothed Differentiation Filters from Chebyshev 
Polynomials 

In this appendix the expressions for smoothed differen- 
tiation filters derived from Chebyshev polynomials up to 
degree five are given. The filters were obtained from (12) 
with the help of the Macsyma program package. The unit 
weights of the Chebyshev polynomials yield unweighted 
smoothing of the input. Convolution with a filter supplies 
the value of the derivative in the center of the neighbor- 
hood. 
Notation 

Support of the filter: -N, . . . , 0, . . . , N. 
Degree of the fitted polynomial: L. 
Order of differentiation: p. 
The corresponding filter is h&n). 

he(n) = $-q. 

L = 2 or 3, p = 0. 

3&z* - (3N2 + 3N - l)] 
hc(n) = - (2N - 1)(2N + 1)(2N + 3)’ 

L = 4 or 5, p = 0. 

he(n) = 15[63n4 - 35(2N2 + 2N - 3)n2 + (15N4 + 30N3 - 35N2 - SON + 12)] 
4(2N - 3)(2N - 1)(2N + 1)(2N + 3)(2N + 5) 

Unweighted Smoothing, First-Order Differentiation Filters 

L= lor2,p= 1. 

(Al) 

642) 

(A3) 

3n 
hc(n) = - N(N + 1)(2N + 1) ’ (A4) 
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L = 3or4,p = 1. 

5[7(3N2 + 3N - l)n3 - 5(3N4 + 6N3 - 3N + l)n] 
hc(n) = (N - l)N(N + l)(N + 2)(2N - 1)(2N + 1)(2N + 3) ’ 

L = 5or6,p = 1. 

21 33(15N4 + 3ON’ - 35N2 - 50N + 12)n5 
k(n) = (- Q) (N - 2)(N - l)N(N + 1) 

- 105(6N6 + 18N5 - 15N4 - 60N3 + 17N2 + 50N - 12)n3 
(N + 2)(N + 3)(2N - 3)(2N - 1) (A@ 

+ 7(25N* + lOON’ - 50N6 - 500Ns - 95N4 + 760N3 + 180N2 - 300N + 72)n 
(2N + 1)(2N + 3)(2N + 5) 

Unweighted Smoothing, Second-Order Differentiation Filters 

L = 2 or 3, p = 2. 

30[3n2 - N(N + l)] 
hc(n) = N(N + 1)(2N - 1)(2N + 1)(2N + 3) ’ 

L = 4 or 5, p = 2. 

105 k(n) = (- T) 15(6N2 + 6N - 5)n4 - 21(4N4 + 8N3 - 4N2 - 8N + 5)n2 
(N - l)N(N + l)(N + 2)(2N - 3) 

+ 5(N - l)N(N + l)(N + 2)(2N2 + 2N - 3) 
(2N - 1)(2N + 1)(2N + 3)(2N + 5) ’ 

Unweighted Smoothing, Third-Order Differentiation Filters 

L = 3 or 4, p = 3. 

210[5n3 - (3N2 + 3N - l)n] 
hc(n) = - (N - l)N(N + l)(N + 2)(2N - 1)(2N + 1)(2N + 3) ’ 

L = 5 or 6, p = 3. 

he(n) = (945) 77(2N2 + 2N - 3)nS - 15(12N4 + 24N3 - 28N2 - 40N + 39)n3 
(N - 2)(N - l)N(N + l)(N + 2)(N + 3) 

+ 7(6N6 + 18N5 - 15N4 - 60N3 + 17N2 + 50N - 12)n 
(2N - 3)(2N - 1)(2N + 1)(2N + 3)(2N + 5) ’ 

Unweighted Smoothing, Fourth-Order Differentiation Filter 

L = 4 or 5, p = 4. 

1890[35n4 - 5(6N2 + 6N - 5)n2 + 3(N - l)N(N + l)(N + 2)] 
hc(n) = (N - l)N(N + l)(N + 2)(2N - 3)(2N - 1)(2N + 1)(2N + 3)(2N + 5) ’ 

Unweighted Smoothing, Fifth-Order Differentiation Filter 

L = 5 or 6, p = 5. 

20790[63n5 - 35(2N2 + 2N - 3)n3 
hc(n) = - (N - 2)(N - l)N(N + l)(N + 2)(N + 3) 

+ (15N4 + 30N3 - 35N2 - 50N + 12)n] 
(2N - 3)(2N - 1)(2N + 1)(2N + 3)(2N + 5) ’ 

(A7) 

(A@ 

(A9) 

(AlO) 

(Al 1) 

6412) 
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APPENDIX B 

Smoothed Differentiation Filters from Krawtchouk 
Polynomials 

In this appendix the expressions for smoothed differen- 
tiation filters derived from Krawtchouk polynomials up 
to degree five are given. The filters were obtained from 
(12) with the help of the Macsyma program package. The 
expression for the sampled weight function 

1 (2N)! =- 
22N (N - n)!(N + n)! W 

Gaussian-Weighted Smoothing Filters 

L=Oorl,p=O. 

L = 2 or 3, p = 0. 

L = 4 or 5, p = 0. 

appears in all the filters and is not given in its explicit 
form. Because of the presence of w(n) the data can be 
regarded as weighted by the discrete approximation of a 
Gaussian with variance N/2. Convolution with a filter 
returns the value in the center of the neighborhood. 

Notation 

Support of the filter: -N, . . . , 0, . . . , N. 
Degree of the fitted polynomial: L. 
Order of differentiation: p. 
The corresponding filter is hK(n). 

h&z) = w(n). 

hK(n) = - 
2n2 - (3N - 1) 

2N - 1 w(n). 

k(n) = 
4n4 - 20(N - l)n2 + (15N2 - 25N + 6) 

2(2N - 3)(2N - I) w(n). 

Gaussian-Weighted Smoothing, First-Order Differentiation Filters 

L = 1 or2,p = 1. 

hK(n) = - 
2n 
E w(n). 

L=3or4,p= 1. 

k(n) = 
2[2(3N - l)n3 - (15N2 - 15N + 4)nI 

3(N - l)N(2N - 1) w(n). 

L=5or6,p= 1. 

hK(n) = (- 3) 4(15N2 - 25N + 6)rzz--2;$?$~ ;$3N2 + 56N - Wn3 

+ (525N4 - 2100N3 + 2835N2 - 148ON + 276)n 
(2N - 3)(2N - 1) w(n). 

Gaussian- Weighted Smoothing, Second-Order Differentiation Filters 

L = 2 or 3, p = 2. 

(B2) 

033) 

(J34) 

(B5) 

ew 

(B7) 

4[2n2 - N] 
h,(n) = NczN _ 1) w(nh 038) 
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L = 4 or 5, p = 2. 

(- 
4 
5) 4(3N 

- 
h,(n) 2)n4 

- - 39N 
2(24N2 

+ 
17)n2 

+ 
15N(N 

- 
1)2 = (N - l)N(2N - 3)(2N - 1) w(n). 

Gaussian-Weighted Smoothing, Third-Order Difierentiation Filters 

L = 3 or 4, p = 3. 

8[2n3 - (3N - 1)nl 
hK(n) = - (N - l)N(2N - 1) w(nh 0310) 

L = 5 or 6, p = 3. 

h& = 
8[4(N - l)n5 - 2(12N2 - 27N + 16)n3 

(N - 2)(N - 1)N 

+ (21N3 - 63N2 + 56N - 12)n] w(n) 
(2N - 3)(2N - 1) 

Gaussian-Weighted Smoothing, Fourth-Order Differentiation Filter 

L = 4 or 5, p = 4. 

h& = 
16[4n4 - 4(3N - 2)n2 + 3(N - l)N] 

(N - l)N(2N - 3)(2N - 1) w(n). 

Gaussian-Weighted Smoothing, Fifth-Order Differentiation Filter 

L = 5 or 6, p = 5. 

1. 

2. 

3. 

4. 

5. 

6. 

h 
K 

(n) = _ 32[4n5 - 20(N - l)n3 + (15N2 - 25N + 6)n] 
(N - 2)(N - 1)(2N - 3)(2N - 1) w(n). 0313) 

REFERENCES 10. 

H. H. Barrow and J. M. Tenenbaum, Interpreting line drawings as 
three dimensional surfaces, Artt&xal Intelligence 17,1981,75- 117. 
A. P. Blicher, Edge Detection and Geometric Methods in Com- 
puter Vision, Technical Report AIM-352, Department of Computer 
Science, Stanford University, 1985. 
M. U. A. Bromba and H. Ziegler, Efficient computation of polyno- 
mial smoothing digital filters, Anal. Chem. 51, 1979, 1760-1762. 
M. U. A. Bromba and H. Ziegler, Explicit formula for ftlter func- 
tion of maximally flat nonrecursive digital filters, Electron. Lett. 16, 
1980, 905406. 
M. U. A. Bromba and H. Ziegler, Application hints for Savitzky- 
Golay digital smoothing filters, Anal. Chem. 53, 1981, 1583-1586. 
P. Burt, Moment images, polynomial fit filters, and the problem of 
surface interpolation, in Proceedings, IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, Ann Ar- 
bor, MZ, June 5-9, 1988, pp. 144-152. 
J. Canny, A computational approach to edge detection, IEEE 
Trans. Pattern Anal. Mach. Zntell. PAhII-8, 1986, 679-698. 
H. E. H. Greenleaf, Curve approximation by means of functions 
analogous to the Hermite polynomials, Ann. Math. Statist. 3, 1932, 
204-256. 
F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Sta- 
hel, Robust Statistics: An Approach Based on Zrlfluence Functions, 
Wiley, New York, 1986. 

039) 

(Bll) 

0312) 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

R. M. Haralick, Digital step edges from zero crossing of second 
directional derivatives, IEEE Trans. Pattern Anal. Mach. Zntell. 
PAMI-6, 1984,58-68. 

R. Hartley, A Gaussian-weighted multiresolution edge detector, 
Computer. Vision Graphics Zmage Process. 30, 1985, 70-83. 
M. Hashimoto and J. Sklansky, Multiple-order derivatives for de- 
tecting local image characteristics, Comput. Vision Graphics Image 
Process. 39, 1987, 28-55. 
F. B. Hildebrand, Introduction to Numerical Analysis, McGraw- 
Hill, New York, 1956. 
R. A. Hummel, Feature detection using basis functions, Comput. 
Graphics Zmage Process. 9, 1979,40-55. 
M. F. Hueckel, A local visual operator which recognizes edges and 
lines, J. Assoc. Comput. Mach. 28, 1973,634-647. 
R. Lenz, Optimal filters for the detection of linear patterns in 2-D 
and higher dimensional images, Pattern Recognition 28,1987, 163- 
172. 
T. Lindeberg, Scale-space for discrete signals, IEEE Trans. Pattern 
Anal. Mach. Zntell. PAMI-12, 1990, 234-254. 
H. H. Madden, Comments on the Savitzky-Golay convolution 
method for least-squares fit smoothing and differentiation of digital 
data, Anal. Chem. 50, 1978, 1383-1386. 
D. Marr and E. Hildreth, Theory of edge detection, Proc. Roy. Sot. 
London B 207, 1980, 187-217. 
P. Meer, E. S. Baugher, and A. Rosenfeld, Frequency domain 



72 MEER AND WEISS 

analysis and synthesis of image pyramid generating kernels, IEEE 
Trans. Pattern Anal. Mach. Zntell. PAMI-9, 1987, 512-522. 

21. P. Meer, D. Mintz, and A. Rosenfeld, Least median of squares 
based robust analysis of image structure, in Proceedings, DAZ?PA 
Image Understanding Workshop, Pittsburgh, PA, September 1990, 
pp. 231-254. 

22. D. C. Montgomery and E. A. Peck, Introduction to Linear Regres- 
sion Analysis, Wiley, New York, 1982. 

23. A. Papoulis, Probability, Random Variables, and Stochastic Pro- 
cesses, McGraw-Hill, New York, 1972. 

24. R.-H. Park and P. Meer, Multiresolution Adaptive Least Squares 
Smoothing of Images, CAR-TR-513, Computer Vision Laboratory, 
University of Maryland, College Park, 1990. 

25. K. Paton, Picture description using Legendre polynomials, Com- 
put. Graphics Image Process. 4, 1975, 40-54. 

26. J. Ponce and M. Brady, Toward a surface primal sketch, A. I. 
Memo 824, Artificial Intelligence Laboratory, Massachusetts Insti- 
tute of Technology, 1985. 

27. A. Savitzky and M. J. E. Golay, Smoothing and ditferentiation of 
data by simplified least squares procedures, Anal. Chem. 36, 1964, 
1627-1639. 

28. H. W. Schtissler and P. Steffen, Some advanced topics in filter 
design, in Advanced Topics in Signal Processing (J. S. Lim and 
A. V. Oppenheim, Eds.), pp. 416-491, Prentice-Hall, Englewood 
CliEs, NJ, 1988. 

29. P. Steffen, On digital smoothing filters: A brief review of closed 
form solutions and two new filter approaches, Circuits Systems 
Signal Process. 5, 1986, 187-210. 

30. J. Steinier, Y. Termonia, and J. Deltour, Comments on smoothing 
and differentiation of data by simplified least square procedure, 
Anal. Chem. 44, 1972, 1906-1909. 

3 1. G. Szegii, Orthogonal Polynomials, American Mathematical Soci- 
ety Colloquium Publications, 4th ed., Vol. XXIII, Providence, RI, 
1975. 

32. I. Weiss, Image smoothing and differentiation with minimal curva- 
turefilters, CAR-TR-470, Computer Vision Laboratory. University 
of Maryland, College Park, 1989. 

33. I. Weiss, High order differentiationjilters that work, CAR-TR-545, 
Computer Vision Laboratory. University of Maryland, College 
Park, 1991. 

PETER MEER was born in Oradea, Romania, on February 14, 1949. 
He received the Dipl. Engn. degree from the Bucharest Polytechnic 
Institute, Bucharest, Romania, in 1971, and the D.Sc. degree from the 
Technion, Israel Institute of Technology, Haifa, Israel, in 1986, both in 
electrical engineering. From 1971 to 1979 he was with the Computer 
Research Institute, Cluj, Romania, working on R&D of digital hard- 
ware. Between 1986 and 1990 he was an assistant research scientist at 
the Center for Automation Research, University of Maryland at College 
Park. In 1991 he joined the Department of Electrical and Computer 
Engineering, Rutgers University, Piscataway, New Jersey, as an assis- 
tant professor. His research interests include application of estimation 
techniques and probabilistic algorithms to machine vision problems. 

I. WEISS received his Ph.D. in physics from the Tel-Aviv Univer- 
sity, Israel. Before joining the Center for Automation Research of the 
University of Maryland, he was a research scientist at the Courant 
Institute of Mathematics of New York University and at the Massachu- 
setts Institute of Technology. His current research interests are com- 
puter vision, image processing, pattern recognition, and robotics. 


