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Abstract 
Regression analysis (fitting a model to noisy data) is a basic technique in computer vision. Robust regression methods 
that remain reliable in the presence of various types of noise are therefore of considerable importance. We review 
several robust estimation techniques and describe in detail the least-median-of-squares (LMedS) method. The method 
yields the correct result even when half of the data is severely corrupted. Its efficiency in the presence of Gaussian 
noise can be improved by complementing it with a weighted least-squares-based procedure. The high time-complexity 
of the LMedS algorithm can be reduced by a Monte Carlo type speed-up technique. We discuss the relationship 
of LMedS with the RANSAC paradigm and its limitations in the presence of noise corrupting all the data, and 
we compare its performance with the class of robust M-estimators. References to published applications of robust 
techniques in computer vision are also given. 

1 Introduction 

Regression analysis (fitting a model to noisy data) is 
an important statistical tool frequently employed in 
computer vision for a large variety of tasks. Tradition 
and ease of computation have made the least squares 
method the most popular form of regression analysis. 
The least squares method achieves optimum results 
when the underlying error distribution is Gaussian. 
However, the method becomes unreliable if the noise 
has nonzero-mean components and/or if outliers 
(samples with values far from the local trend) are pres- 
ent in the data. The outtiers may be the result of clut- 
ter, large measurement errors, or impulse noise cor- 
rupting the data. At a transition between two homo- 
geneous regions of the image, samples belonging to one 
region may become outliers for fits to the other region. 

Three concepts are usually employed to evaluate a 
regression method: relative efficiency, breakdown 
point, and time complexity. The relative efficiency of 
a regression method is defined as the ratio between the 
lowest achievable variance for the estimated parameters 
(the Cramer-Rao bound) and the actual variance pro- 
vided by the given method. The efficiency also depends 
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on the underlying noise distribution. For example, in 
the presence of Gaussian noise the mean estimator has 
an asymptotic (large sample) efficiency of 1 (achieving 
the lower bound) while the median estimator's effi- 
ciency is only 2/7r = 0.637 (Mosteller & Tukey 1977). 

The breakdown point of a regression method is the 
smallest amount of outlier contamination that may force 
the value of the estimate outside an arbitrary range, For 
example, the (asymptotic) breakdown point of the mean 
is 0 since a single large outlier can corrupt the result. 
The median remains reliable if less than half of the data 
are contaminated, yielding asymptotically the max- 
imum breakdown point, 0.5. 

The time complexity of the least squares method is 
O(np 2) where n is the number of data points and p is 
the number of parameters to be estimated. Feasibility 
of the computation requires a time complexity of at 
most O(n2). 

A new, improved regression method should provide: 

a. reliability in the presence of various types of noise~ 
i.e., good asymptotic and small sample efficiency; 

b. protection against a high percentage of outliers, i.e., 
a high breakdown point; 

c. a time complexity not much greater than that of the 
least squares method. 
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Many statistical techniques have been proposed 
which satisfy some of the above conditions. These 
techniques are known as r o b u s t  r egres s ion  methods, In 
section 2 a review of robust regression methods is 
given. In section 3 the least-median-of-squares 
(LMedS) method is discussed in detail. A comparison 
of the LMedS method with the RANSAC paradigm in 
section 4 gives us the opportunity to analyze its 
behavior for data usually met in computer vision prob- 
lems. Through a simple application of LMedS, window- 
operator based smoothing, we compare its performance 
in section 5 with the class of robust M-estimators. The 
article is concluded in section 6. 

2. Robust Regression Methods 

The early attempts to introduce robust regression 
methods involved straight-line fitting. In one class of 
methods the data is the first partitioned into two or three 
nearly equal sized parts (i < L; L < i < R; R < i), 
where i is the index of the data and L = R in the former 
case. The slope fll and the intercept Go of the line are 
found by solving the system of nonlinear equations 

med (Yi - t3o - t3,xi) = m e d  (Yi - 13o - 13,xi) 
i < L  i > R  

(1) 
med (Yi - Go - Blx~) = 0 

for all i 

where med represents the median operator applied to 
the set defined below it. The breakdown point of the 
method is 0, 5 / k  where k is the number of partitions (2 
or 3) since the median is used for each part separately. 
Brown and Mood (1951) investigated the method for k 
= 2, and Tukey introduced the resistant line procedure 
for k = 3 (see Johnstone & Velleman 1985). 

Another class of methods uses the slopes between 
each pair of data points without splitting up the data 
set. Theil (1950) estimated the slope as the median of 
all n(n  - 1)/2 slopes which are defined by n data points. 
The breakdown point of these methods is 0.293 since 
at least half the slopes should be correct in order to 
obtain the correct estimate. That is, if e is the fraction 
of outliers in the data we must have (1 - e)2 > 0,5. 
The intercept can be estimated from the input data by 
employing the traditional regression formula. 

The theory of multidimensional robust estimators was 
developed in the seventies. The basic robust estimators 
are classified as M-estimators, R-estimators and L- 
estimators (Huber 1981). 

The M-estimators are the most popular robust regres- 
sion methods. (See the book by Hampel et al. (1986) 
for a leading reference.) These estimators minimize the 
sum of a symmetric, positive-definite function p(ri) of 
the residuals ri, with a unique minimum at r i = 0. (A 
residual is defined as the difference between the data 
point and the fitted value.) For the least squares method 
p(r~) = r~. Several p functions have been proposed 
which reduce the influence of large residual values on 
the estimated fit. Huber (1981) employed the squared 
error for small residuals and the absolute error for large 
residuals. Andrews (1974) used a squared sine function 
for small and a constant for large residuals. Beaton and 
Tukey's (1974) biweight is another example of these p 
functions. The M-estimates of the parameters are ob- 
tained by converting the minimization 

min Z o(ri)  (2) 
i 

into a weighted least squares problem which then is 
handled by available subroutines. The weights depend 
on the assumed o function and the data. The reliabil- 
ity of the initial guess is of importance and the con- 
vergence of the solution is not proved for most of the 
0 functions. Holland and Welsch (1977) developed 
algorithms for solving the numerical problems asso- 
ciated with M-estimators. We will return to the sub- 
ject in section 5. 

R-estimators are based on ordering the set of 
residuals. Jaeckel (1972) proposed obtaining the 
parameter estimates by solving the minimization 
problem 

min ~ an(Ri ) r  i (3) 
i 

where r i is the residual; R i is the location of the 
residual in the ordered list, that is, its rank; and an is 
a score function. The score function must be monotonic 
and 

a~(Ri) = 0 
i 

The most frequently used score function is that of 
Wilcoxon: a~(Ri)  = Ri  - (n + 1)/2. Since la,,(Ri)] <- 

(n - 1)/2, the largest residuals caused by outliers cannot 
have too large a weight. Scale invariance (independence 
from the variance of the noise) is an important advan- 
tage of R-estimators over M-estimators. Cheng and 
Hettmansperger (1983) presented an iteratively 
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reweighted least squares algorithm for solving the 
minimization problem associated with R-estimators. 

The L-estimators employ linear combinations of 
order statistics. The median and or-trimmed-mean based 
methods belong to this class. It is important to notice, 
however, that the mean (c~ = 0) is a least squares 
estimate, while the median can be regarded also as the 
M-estimate obtained for p = Irij. Various simulation 
studies have shown that L-estimators give less satisfac- 
tory results than the other two classes (Heiler 1981). 

In spite of their robustness for various distributions 
the M-, R- and L-estimators have breakdown points that 
are less than 1/(p + 1), where p is the number of 
parameters in the regression (Hampel et al. 1986, p. 
329; Li 1985). For example, in planar surface fitting 
we have p = 3, and the breakdown point is less than 
0.25, making it sensitive to outliers. 

Recently several robust estimators having breakdown 
points close to 0.5 were proposed. Siegel (1982) in- 
troduced the repeated-median (RM) method of solv- 
ing multidimensional regression problems. Suppose p 
parameters are to be estimated from n data samples. 
A parameter is estimated in the following way: First, 
for each possible p-tuple of samples the value of the 
parameter is computed yielding a list of C(n, p)  (the 
binomial coefficient) terms. Then the medians for each 
of the p indexes characterizing a p-tuple are obtained 
recursively. When the list has collapsed into one term, 
the result is the RM estimate of the parameter. Once 
a parameter has been estimated, the amount of com- 
putation can be reduced for the remaining p - 1 
parameters. 

For example, let p = 3 and suppose that we start by 
estimating the parameter f12 of the planar fit 

z = t3o + 13~x + flzY (4) 

First the values 

fl2(i,j, k) = (zi - zj)(xj - Xk) -- (Zj -- zk)(xi -- xj) (5) 
( Y i  - -  y j ) ( X j  - -  X k )  - -  ( y j  - -  YD(Xi - xj) 

are computed for all the triplets defined by i # j # k. 
The estimate is then 

/~2 = m e d  med med fl2(i, j ,  k) (6) 
i j ( # i )  k ( # i , j )  

The parameter fll is estimated next, by applying the 
same algorithm for p = 2 to the data zi - f12 Yi. Simi- 
larly the value of/30 is obtained by taking the median 
of the samples zi - [32yi - f31xi. The breakdown point 
of the repeated median method is 0.5 since all the partial 

median computations are performed over the entire data 
set. Computation of the median is O(n log n) for prac- 
tical purposes, and thus the time complexity of the RM 
method is high, of O(n p log p n) order. The Gaussian 
efficiency of the repeated median method was found 
experimentally as being only around 0.6 (Siegel 1982). 
The repeated median is not affine equivariant, that is, 
a linear transformation of the explanatory variables does 
affect the estimate (Rousseeuw & Leroy 1987, p. 152). 

The least median of squares (LMedS) robust regres- 
sion method proposed by Rousseeuw (1984) also 
achieves 0.5 breakdown point. (We prefer to use the 
LMedS notation instead of LMS, which is used in the 
statistical literature, to avoid confusion with the usage 
in the image processing field where LMS stands for 
least mean squares.) The relative efficiency of the 
LMedS method can be improved by combining it with 
least-squares based techniques. The time complexity 
can be reduced by a Monte Carlo type speed-up tech- 
nique. We will return to this estimator in section 3. 

2.1 Robust Methods in Computer  Vision 

Without trying to give an exhaustive survey, in this sec- 
tion we enumerate some of the computer vision applica- 
tions using the robust techniques mentioned above. For 
the most recent results see the Proceedings o f  the In- 
ternational Workshop on Robust Computer Vision, Seat- 
tle, WA, October 1990. 

Median- and trimmed-mean based local operators (L- 
estimators) have been employed in computer vision for 
a long time. See for example (Bovik et al. 1987) and 
(Coyle et al. 1989) for literature reviews on gray-level 
image smoothing and noise removal. 

In the median of intercepts line fitting method of 
Kamgar-Parsi et al. (1989), similar to (Theil 1950) pair- 
wise median, the intercept and slope is computed for 
every pair of points and the medians of the resulting 
lists are the estimates of the two parameters. 

Recently M-estimators have also become popular in 
computer vision. Kashyap and Eom (1988) treated an 
image as a causal autoregressive model driven by a 
noise process assumed to be Gaussian with a small per- 
cent of the samples (at most 8%) contaminated by im- 
pulse noise, that is, outliers. The same technique was 
used by Koivo and Kim (1989) for classification of sur- 
face defects on wood boards. By employing M-esti- 
mators the parameters of the autoregressive process 
were iteratively refined simultaneously with cleaning 
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the outliers in the noisy image. Besl et al. (1988) pro- 
posed a hierarchical scheme in which local fits of in- 
creasing degrees were obtained by M-estimators. The 
different fits were compared through a robust-fit quality 
measure to determine the optimal parameters. Haralick 
and Joo (1988) applied M-estimators to solve the corres- 
pondence problem between two sets of 2D perspective 
projections of model points in 3D. The correct-pose 
solution was then obtained with up to 30% of the pairs 
mismatched. A similar algorithm was used by Lee et 
al. (1989) for estimating 3D motion parameters. 

The least median of squares estimator has also been 
used to solve computer vision problems. The high 
breakdown point makes it an optimum nonlinear in- 
terpolator (Kim et al. 1989 and Tirumalai & Schunck 
1988), and it can be employed for image structure 
analysis in the piecewise polynomial (facet) domain 
[Meer et al. 1990]. Kumar and Hanson (1989) used least 
median of squares to solve the pose estimation problem. 
A variant of LMedS, the minimum-volume ellipsoid 
estimator, was used to develop a robust feature-space 
clustering technique which was then applied to 
histogram decomposition, Hough space analysis, and 
range image segmentation (Jolion et al. 1990 a, b). 

3 The Least-Median-of-Squares Method 

Rousseeuw (1984) proposed the least-median-of-squares 
(LMedS) method in which the parameters are estimated 
by solving the nonlinear minimization problem. 

min med r 2 (7) 
i 

That is, the estimates must yield the smallest value for 
the median of squared residuals computed for the en- 
tire data set. An excellent application-oriented reference 
on the least-median-of-squares technique is the book 
of Rousseeuw and Leroy (1987) to which the reader is 
referred to for more details on the algorithm described 
below. The application of LMedS estimators to line fit- 
ting (p = 2) was studied in depth by Steele and Steiger 
(1986) and by Edelsbrunner and Souvaine (1988). They 
investigated the number of local minima of (7), and gave 
optimum time-complexity, O(n2), algorithms. 

The LMedS minimization problem (7) cannot be 
reduced to a least-squares based solution, unlike the 
M-estimators (2). The least-median-of-squares minimi- 
zation must be solved by a search in the space of possi- 
ble estimates generated from the data. Since this space 

is too large, only a randomly chosen subset of points 
can be analyzed. We will return to this problem later 
in the section. 

Assume that our data consist of n points from which 
we want to estimate the p regression coefficients/3j, 
j = 0, 1 . . . . .  (p - 1) of the linear model 

p - I  

Zi = ~ f l jx i ( i )  i = 1, 2 . . . . .  n (8) 
j=0 

The explanatory variables xj(i) are monomials of dif- 
ferent degrees in the sampling lattice coordinates. The 
model (8) thus represents polynomial surface fitting to 
the data. 

Let a distinct p-tuple of data points be denoted by 
the indexes il, . • . ,  ip. For this p-tuple the values of 
p - 1 parameters, all except the intercept,/30(il, . . . ,  
ip),can be computed by solving the p linear equations 
in flj(i t . . . .  , ip), j = 1 . . . .  , (p  - 1), 

p - I  

zi : E fli(il, " " ,  ip) xj(i)  i : il . . . .  , ip (9) 
j=0  

The intercept value fl0(i I . . . .  , ie) is then found by 
solving the minimization problem 

min med r 2 given ~3j(il , . . . ,  ip), j = 1 . . . . .  ( p  - 1) 
(10) 

The reduction of a multidimensional regression prob- 
lem to one dimension is known as the pro jec t ion  pur-  

sui t  technique, and has numerous applications in 
statistics (Efron 1988). Rousseeuw and Leroy (1987) 
have discussed the connection between this technique 
and the LMedS estimators. The goal of LMedS method 
is to identify the "outliers" in the data, that is, points 
severely deviating from the model. If these points can 
be discriminated in the projection along the direction 
of the intercept, the above procedure is optimum. We 
discuss the problem in more detail in section 4. 

To solve (10) we must use a mode-estimation tech- 
nique. The mode of a continuous probability distribu- 
tion is the location of its maximum. In the case of a 
discrete, ordered sequence, the mode corresponds to 
the center of the subinterval having the highest den- 
sity. Mode-seeking algorithms are well-known, see for 
example Press et al. (1988, p. 462). It can be shown 
that if the width of the search window is half the data 
size (i.e., [n /2J  ) the mode minimizes the median of 
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the squared residuals (Rousseeuw & Leroy 1987, p. 
169). Thus, if we define the projected sequence 

p-1 

Si = Zi - Z flj(il' "" "' ip)Xj(i) (11) 
j=l 

compute its mode, and take it as/30(il . . . . .  ip), we ob- 
tain the solution of (10). 

The mode-seeking procedure also returns the width 
of the half-data size search window corresponding to 
the mode location. For n data points C(n, p), such win- 
dow sizes are obtained and the smallest one yields the 
final LMedS estimate for the p regression coefficients 
of the model, that is, the solution of (7). 

The breakdown point of the least median squares 
method is 0.5 because all the median computations are 
over the whole data set. The time-complexity of the 
method, however, is very high. There are  O(n p) p- 
tuples and for each of them the sorting takes O(n log 
n) time. Thus the amount of computation required for 
the basic LMedS algorithm is O(n p÷1 log n), pro- 
hibitively large. Notice that this complexity is valid only 
if p _> 2, since for p = 1 only sorting is required. 

The time complexity is reduced to practical values 
when a Monte Carlo type speed-up technique is 
employed in which a Q ,~ 1 probability of error is 
tolerated. Let e be the fraction of data contaminated 
by outliers. Then the probability that all m different p- 
tuples chosen at random will contain at least one or 
more outliers is 

P = [1 - (1 - e)p]m (12) 

Note that 1 - P is the probability that at least one p- 
tuple from the chosen m has only uncorrupted samples 
and thus the correct parameter values can be recovered. 
The smallest acceptable value for m is the solution of 
the equation P = Q, rounded upward to the closest in- 
teger, and is independent of n, the size of the data. The 
amount of computation becomes O(mn log n). This 
time-complexity reduction is very significant. For ex- 
ample, i f p  = 3, Q = 0.01, and e = 0.3, then m = 
11 for any n. Thus, when at most 30 percent of the data 
is contaminated by outliers, by choosing 11 triplets for 
the computation of the LMedS planar surface fit, the 
probability of having the whole set of triplets corrupted 
is 0.01. Rousseeuw and Leroy (1987) recommended tak- 
ing a larger set of p-tuples than the number obtained 
from the probabilistic considerations. During the ran- 
dom sampling, identical p-tuples can be avoided without 

an increase in complexity (Mintz & Amir 1989). Ad- 
ditional speed-up relative to the original LMedS algo- 
rithm can be obtained by decomposition in both the 
spatial and parameter domains (Mintz et al. 1990). 

When Gaussian noise is present in addition to 
outliers, the relative efficiency of the LMedS method 
is low. Rousseeuw (1984) has shown that the LMedS 
method converges for large sample sizes as n -1/3, 
much more slowly than the usual n -1/2 for maximum 
likelihood estimators. To compensate for this deficiency 
he proposed combining the LMedS method with a 
weighted least squares procedure which has high Gaus- 
sian efficiency. Either one-step weighted least squares 
or an M-estimator with Hampel's redescending func- 
tion can be employed but the latter appears to be less 
effective (Rousseeuw & Leroy 1987). Simultaneous 
presence of significant Gaussian noise and numerous 
outliers decreases the reliability of the LMedS estimates 
as is discussed in section 4. 

The robust standard deviation estimate 

3 =  1"4826 I1 + n 5 p l m e d ~ / ~  (13) 

can be immediately obtained since the median of the 
residual is the value returned by the LMedS procedure 
for the final parameter estimates. The factor 1.4826 is 
for consistent estimation in the presence of Gaussian 
noise, and the term 5/(n - p) is recommended by 
Rousseeuw and Leroy (1987) as a finite sample 
correction. 

Based on the robust LMedS model and the standard 
deviation estimate binary weights can be allocated to 
the data points: 

Iri[ < 2 . 5  

w i = f 1 

0 

(14) 

Iri~ I > 2.5  

The data points having w i = 1 are inliers, that is, they 
belong to the assumed model. Points having w i = 0 
are outliers and should not be further taken into con- 
sideration. The weighted least square estimates are then 
the solutions of the minimization problem 

min ~ wir~ (15) 
i 

and are obtained by using any available programming 
package. 
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The presence of noise corrupting all the samples, 
however, may create severe artifacts. Since this is the 
case in numerous computer vision applications, in the 
next section we discuss the problem in detail. 

4 Analysis of the LMedS Technique: Comparison 
with RANSAC 

The LMedS estimates are computed by minimizing the 
cost function (7) through a search in the space of possi- 
ble solutions. Subsets of  the data are chosen by ran- 
dom sampling and for each subset a model is estimated. 
The number of points in the subset is equal to the 
number of unknown model parameters, thus yielding 
closed form solutions. If the number of points used is 
increased, in which case the model must be estimated 
by least squares, no improvement in the final LMedS 
estimates can be expected (Meer et al. 1990). 

The search technique employed to find the LMedS 
estimates (projection pursuit) is common for several 
high breakdown point robust estimators (Rousseeuw & 
Leroy 1987). A similar processing principle was pro- 
posed independently by Fischler and Bolles (1981) for 
solving computer vision problems in the RANSAC 
paradigm. They too compute a model by solving a 
system of equations defined for a randomly chosen 
subset of points. All the data is then classified relative 
to this model. The points within some error tolerance 
are called the consensus set of the model. I f  the car- 
dinality of the consensus set exceeds a threshold, the 
model is accepted and its parameters recomputed based 
on the whole consensus set. If  the model is not accepted 
a new set of points is chosen and the resulting model 
is tested for validity. The error tolerance and the con- 
sensus set acceptance threshold must be set a priori. 

In LMedS, the computed model is allocated an er- 
ror measure, the median of the squared residuals. 
Several models are tried and the one yielding the 
minimum error is retained. The points are classified 
into inliers and outliers only relative to this final fit. 
The LMedS model can then be refined by a least 
squares procedure on the inlier data points. By its 
definition the LMedS estimator will always return at 
least 50 percent of the data points as inliers. The error 
tolerance is set automatically by the estimated robust 
standard deviation. 

The LMedS estimator has a 0.5 breakdown point. 
Without a priori information about the structure of the 
data, in RANSAC the size of an acceptable consensus 

set also cannot be less than half the data size. For ex- 
ample, suppose that a constant must be estimated from 
data having only two values. Then, if the cardinality 
threshold on the consensus set is less than half the data 
size, the RANSAC procedure may validate either of the 
two constants. 

To recover a model representing the relative and not 
absolute majority in the data, additional procedures 
should be implemented. Bolles and Fischler (1981) pro- 
posed the use of nonparametric tests for detecting the 
"white" structure of residuals. A decomposition tech- 
nique applied in both the spatial and parameter domains 
(Mintz et al. 1990) also succeeds to return reliable 
estimates when less than half the data carry the model. 

The maximum number of subsets required to validate 
a model for a tolerated probability of error is estab- 
lished by the same relation (12) in both LMedS and 
RANSAC. In LMedS, the algorithm will process that 
many p-tuples; in RANSAC, consensus may be found 
earlier. However, if a tolerated residual error threshold 
is used in LMedS, a stopping criterion similar to that 
of RANSAC is obtained. Using the statistical ter- 
minology, RANSAC maximizes the number of inliers 
while seeking the best model, and LMedS minimizes 
a robust error measure of that model. The two criteria 
are not mathematically equivalent, but since in the 
general case at least half of the data should become in- 
liers, they yield very similar results. 

We conclude that LMedS and RANSAC, in spite of 
being independently developed in different research 
areas, are based on similar concepts. The only dif- 
ference of significance is that the LMedS technique 
generates the error measure during the estimation pro- 
cedure, while RANSAC must be supplied with it. This 
is an important feature when the noise is not homo- 
geneous, that is, the model is selectively corrupted. The 
robustness of both LMedS and RANSAC in the 
presence of severe deviations from the sought model 
is contingent upon the existence of at least one subset 
of data carrying the correct model. When noise cor- 
rupts all the data (e.g., Gaussian noise) the quality of 
initial model estimates degrades and could lead to in- 
correct decisions. The problem is emphasized when the 
model contains more parameters to represent the data 
than is necessary. That is, the order of the model is 
incorrect. 

Consider again the two-valued data case, specificall); 
a step edge of amplitude h, the difference between the 
two values. Assume the data is evenly split, that is, e 
is close to 0.5. All the data is corrupted by a significant, 
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zero-mean noise process having values with significant 
probability in ( - a ,  a), with a close to h/2. Let the 
RANSAC error threshold be a, and recall that this value 
must be chosen a priori. A first-order model is em- 
ployed (p = 3) and thus planar fits are sought. The 
noise makes the models computed from triplets of data 
points unreliable. A model representing a tilted plane 
(similar to what the nonrobust least squares procedure 
would recover from all the data) already yields an abso- 
lute majority of points within the error tolerance, and 
is accepted by RANSAC. Reducing the error threshold 
decreases the expected number of points within the 
bounds, and thus a satisfactory consensus set size may 
not be obtained for the correct model. With high prob- 
ability RANSAC will return an incorrect decision. 

The LMedS procedure will also err. Most of the 
squared residuals relative to a tilted plane are between 
(0, a 2) and thus the median of the squared residuals 
is much less than a 2. Relative to the correct, horizon- 
tal plane slightly more than half of the squared residuals 
are between (0, a 2) with the median being close to a z. 
Thus the LMedS algorithm too will prefer the tilted 
plane to the correct solution. For experimental data on 
this artifact of the LMedS estimators, and how it can 
be eliminated by a two-stage procedure, see Meer et 
al. (1990) and Mintz et al. (1990). 

The robustness of the RANSAC paradigm, and the 
high breakdown point of the LMedS estimators, are thus 
meaningful only in situations when at least half of the 
data lie close to the desired model. For LMedS, in this 
case projection into the J30 direction results in a well- 
defined mode and there is no need for a complete pro- 
jection pursuit procedure in which the optimum projec- 
tion direction is also sought. 

When LMedS local operators are applied to model 
discontinuities the number of tolerated outliers 
decreases. Consider again the noiseless, ideal step edge 
to which a 5 x 5 robust local operator is applied. 
Assume that 10 pixels in the window belong to the edge 
(high amplitude) and 15 to the background (low 
amplitude) and that the center of the window falls on 
a background pixel. The operator returns the value of 
the majority of pixels, that is, the low amplitude of the 
background. 

The image is then corrupted with fraction e = 0.2 
of asymmetric noise driving the corrupted samples into 
saturation at the upper bound. Without loss of generality 
we can assume that only 3 of the pixels belonging 
to the background were corrupted in the processing 

window. There are now 13 pixels with high amplitudes 
and the operator returns, incorrectly, a high value 
similar to the amplitude of the edge. Thus, even when 
the fraction of corrupted points is much smaller than 
the theoretical breakdown point of a robust estimator, 
the operator may systematically fail near transitions be- 
tween homogeneous regions in images. At transitions, 
samples of one region are outliers (noise) when fitting 
a model to the other region, and a small fraction of 
additional noise may reverse the class having the ma- 
jority. The size of the local operator also limits e, the 
maximum amount of tolerated contamination, but this 
artifact has less importance for images where the win- 
dow operators have relative large supports. 

It should not be concluded from this section that high 
breakdown-point estimation procedures are not useful 
for computer vision. We have emphasized their sen- 
sitivity to piecewise models, that is, to data containing 
discontinuities, in order to increase awareness of pos- 
sible pitfalls. In section 2.1 several successful appli- 
cations of the LMedS estimators were mentioned. 
Recently we have proposed a new technique for noisy- 
image analysis in the piecewise polynomial domain 
combining simple nonrobust and robust processing 
modules. The method has a high breakdown point but 
avoids the problems discussed above. In the next sec- 
tion we use a simple application of the LMedS esti- 
mators, window-operator-based smoothing, to compare 
its performance with M-estimators. 

5 Image Smoothing: LMedS vs. M-estimators 

Signals unchanged by the application of an operator are 
called root signals of that operator. The existence of 
root signals assures the convergence of iterative 
nonlinear filtering procedures (Fitch et al. 1985). Their 
importance is also recognized in computer vision (e.g., 
Haralick & Watson 1981; Owens et al. 1989). In one 
dimension, a noiseless piecewise polynomial signal is 
a root signal of an LMedS-based window operator of 
degree equal to the highest polynomial degree. This 
property is in fact true for any 0.5 breakdown point 
estimator. Indeed, since the input is an ideal piecewise 
polynomial signal, a contiguous group of Fn/2q pix- 
els always carries information about the same 
polynomial. The 0.5 breakdown point assures that the 
estimated regression coefficients are those of this 
polynomial. The value returned by the operator is the 
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value of the polynomial at the window center and is 
identical with the input. The noiseless one-dimensional 
piecewise polynomial signal remains undistorted. This 
root-signal property is not necessarily valid in two 
dimensions. When the window is centered on a cor- 
ner, it is not always the case that 51% of the pixels 
belong to the surface in the window center. Before pro- 
ceeding to compare root-signal properties of the M- 
estimators and the LMedS estimator we give a short 
description of the former. 

M-estimators have already been introduced in sec- 
tion 2. The minimization problem (2) is reduced to 
reweighted least squares by differentiating (2) with 
respect to the sought regression coefficients. After some 
simple manipulations, the following expression for the 
weights is obtained: 

1 do(r/) 
wi = -- - -  (16) 

ri dG 

where ri is the residual of the ith data point. Since the 
p functions have a minimum at rl = 0, expression (16) 
can always yield wi = 1 at the origin. All the weights 
are positive and between 0 and 1. Different p functions 
result in different weights. We consider here two such 
functions. 

The first robust M-estimator was proposed by Huber 
in 1964 (see Huber 1981). It is known as the minimax 
M-estimator and has least squares behavior for small 
residuals, and the more robust least-absolute-values 
behavior for large residuals. The change in behavior 
is controlled by a tuning constant c H and the locally 
estimated noise standard deviation 

= 1.4826 med Ir i - med ril (17) 

where med denotes the median taken over the entire 
window, and the factor 1.4826 compensates for the bias 
of the median estimator in Gaussian noise. Note that 
(17) is a robust estimator of a and can tolerate up to 
half the data being corrupted. The minimax weight 
function has the expression 

~ 1 Iri[ ~ CH& 

w,,,i = c . S  

~_ Iril Ir, I > 

(18) 

and is shown in figure lb together with its p function 
(figure la). Note that the constant weight corresponds 
to the central (least squares) region, and in the least- 

absolute-values region the large residuals have hyper- 
bolically decreasing weights. To achieve 95 % asymp- 
totic efficiency for Gaussian noise Holland and Welsch 
(1977) recommended CH = 1.345. 

In the class of redescending M-estimators, the large 
residuals have zero weights thus improving the outlier 
rejection properties. The biweight 

(19) 

proposed by Beaton and Tukey (1974) is a well-known 
example of this class. The weight function is shown in 
figure 2b and the p function it was derived from in 
figure 2a. Holland and Welsch (1977) recommended CB 

---- 4.685 to assure superior performance for Gaussian 
noise. This tuning constant value was obtained from 
a Monte Carlo study employing homogeneous data 
(i.e., from one model). In computer vision we are often 
dealing with piecewise models (i.e., data with discon- 
tinuities) and smaller tuning constants should be used 
to discriminate the transitions. In our experiments we 
took CB = 2. 

The weights cannot be computed without a standard 
deviation estimate, which in turn requires the estima- 
tion of an initial fit. The quality of the initial fit is of 
paramount importance, especially for redescending M- 
estimators. The use of robust estimators like least abso- 
lute deviations or LMedS is recommended (Hampel et 
al., 1986). We are interested in the outlier rejection 
capability of the M-estimators, since this property 
assures the undistorted recovery of the input. Therefore 
to facilitate the comparison between M-estimators and 
LMedS we employ an unweighted least squares proce- 
dure (all wi = 1) to obtain the initial M-estimates. The 
residual relative to this fit can be computed and the stan- 
dard deviation estimate obtained. Each data point is 
then allocated a weight and in the next iteration the new 
set of parameters is obtained by weighted least squares. 
The standard deviation estimate 3 should not be up- 
dated during the iterations (Holland & Welsch 1977). 
At consecutive iterations, samples yielding large 
residuals (outliers) have their weights reduced, and the 
estimates are computed mostly from values distributed 
around the true surface. Often for the latter samples 
a Gaussian distribution is assumed. 



Robust Regression Methods for Computer Vision: A Review 67 

y 
(a) 
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Fig. 1. The Huber minimax M-estimator. (a) The 0 function. (b) The weight function. 

1/ 
(b) 

Fig. 2. The biweight M-estimator. (a) The 0 function. (b) The weight function. 

The following quality measure was used by us as a 
stopping criterion for the iterations: 

t=l 

where the index I denotes the current iteration. Con- 
vergence is achieved if 

IE ~t~ - E¢l-l~[ < 0.001 I = 1, 2 . . . .  (21) 

The number of allowed iterations was bounded to 25. 
A 100xl00 synthetic image containing several 

polyhedral objects was used as an example. Only planar 
surfaces are present, joined at either step or roof edges. 
In figure 3a the gray level and in figure 3b the wire- 
frame representation of the image is shown. The im- 
age was smoothed with 5x5 window operators by 
replacing the value of the center pixel with the intercept 
of the estimated plane. Note that as an artifact of this 
simple smoothing procedure a systematic error is in- 
troduced at the corners where the center pixel does not 
belong to the surface containing the majority. 

We have used least squares (figure 4a), the minimax 
M-estimator (figure 4b), the biweight M-estimator 
(figure 4c), and the LMedS estimator (figure 4d) in the 

window. The M-estimators did not converge for less 
than one percent of the pixels. For each method the 
smoothing error, defined as square root of the sum of 
the squared differences between the input and output 
values of a pixel, was computed. (See table 1.) 

As is well known, the least squares fit fails at discon- 
tinuities and significant blurring of the input occurs. 
This fit is also the initial estimate for the M-estimators. 
It yields an incorrect, high standard deviation estimate 
and the iterative procedure cannot completely recover 
the input. The two M-estimators also blur edges, 
although in a lesser amount. The minimax M-estimator 
has nonzero weights for all the pixels and thus in- 
troduces slightly more blurring at edges than the 
biweight estimator. All the errors made by the LMedS 
estimator are due to the artifact at the corners. This 
artifact can be eliminated by cooperative processes 
(Meer et al. 1990; Mintz et al. 1990). 

Thus due to its high breakdown point only the LMedS 
window operator succeeds in preserving a piecewise 
polynomial image. This property is useful when the 
operator is used as a nonlinear interpolator. We have 
compared in this section the raw performances of the 
estimators. Their properties can be improved when 
using them as building blocks in more complex 
algorithms. The smoothing performance of the M- 
estimators is corrected when several weight functions 
are employed at successive iterations and the model 
order is sequentially increased under the control of a 
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(b) 
Fig. 3. A synthetic 100xl00 image. (a) Gray-level representation. (b) Wireframe representation. 

quality measure (Besl et al. 1988). Similarly, better 
tolerance of the LMedS smoothing operators to noise 
corrupting all the samples can be achieved (Mintz et 
al. 1990). 

Table 1. Root mean square smoothing errors. 

Method Least Squares Minimax Biweight LMedS 

Error 944 922 855 392 

robust estimators to real computer vision problems, 
with noisy data not perfectly representing the assumed 
model, should be preceded by a careful analysis of the 
problem. If a clear dichotomy exists between the 
"good" and "bad" data (as is usually the case in 
statistics) methods like LMedS are extremely useful. 
If  good and bad data cannot be discriminated, addi- 
tional precautions should be taken. 

6 Conclusion 

We have presented a review of the different robust 
regression methods with special emphasis on the least 
median of squares estimators. We did not present ap- 
plications since most of them involve technical details 
beyond the goal of this article. A literature survey of 
computer vision algorithms employing robust tech- 
niques was given in section 2.1. 

The desirable high breakdown point of the LMedS 
estimators is contingent upon the sought model being 
represented by weakly corrupted data. Using a prob- 
abilistic speed-up technique, the computation of LMedS 
estimates is feasible, although more demanding than 
that of M-estimates. The latter, however, requires a 
reliable initial estimate, possibly the output of an 
LMedS algorithm. We conclude that application of 
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