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A new class of image pyramids is introduced in which a global sampling structure close to 
that of the twofold reduced resolution next level is generated exclusively by local processes. 
The probabilistic algorithm exploits local ordering relations among independent identically 
distributed random variables. The algorithm is superior to any coin tossing based procedure 
and converges to an optimal sampling structure in only three steps. It can be applied to either 
l- or 2dimensional lattices. Generation of stochastic pyramids has broad applicability. We 
discuss in detail curve processing in 2dimensional image pyramids and labeling the mesh in 
massively parallel computers. We also mention investigation of the robustness of multiresolu- 
tion algorithms and a fast parallel synthesis method for nonhomogeneous anisotropic random 
patterns. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

Image pyramids are versatile data structures employed in multiresolution image 
analysis. An image pyramid is a hierarchical stack of arrays reproducing the input at 
decreasing resolution. Each array represents a Zeuel of the image pyramid and is 
composed of cells. The arrays are mesh connected, a cell having eight neighbors. 

Two basic operations are required to generate an image pyramid: low-pass 
filtering and decimation. The low-pass filtering is necessary to prepare the input 
image for resolution reduction. It is achieved by convolving the N x N input with a 
K x K kernel having low-pass filtering characteristics. The resulting image is a 
blurred version of the original with the high resolution details filtered out. The 
extent of the kernel is much smaller than that of the image. 

The filtered image is then resampled, i.e., decimated, to achieve the desired 
resolution reduction. If the first level of the pyramid should contain q2 fewer cells, 
only every q th pixel is kept along the rows and the columns of the filtered input 
image. The first level of the image pyramid is thus an array of size (N/q) x (N/q). 

In practice, the amount of computation is significantly reduced by applying the 
two basic operations in reversed order. First those addresses are selected on the 
lattice where the filtered image is to be retained for the next level. Then, the weights 
of the kernel are employed in computing the weighted average in a K x K 
neighborhood around each of these addresses. The results are allocated to the 
corresponding cells at the next level of the image pyramid. A cell at the next level is 
called a parent whenever it is mentioned in relation to the level below. Similarly, 
the cells in the K X K neighborhood are called children whenever they are men- 
tioned in relation to their parents. 

The same sequence of operations can be applied to the (N/q) X (N/q) array and 
the second level of the image pyramid is obtained. The new array has only 
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( iV/q2) x ( iV/q2) cells and more of the details present in the input image are lost. 
Continuing to apply the procedure recursively, after log, N steps the apex of the 
pyramid is reached, i.e., the whole input image is reduced to one cell. In most cases 
q = 2 and N is a power of 2. 

Processing in an image pyramid is parallel and recursive. Every parent computes 
its value independently of other cells on the same level. The parents become the 
children in the computation of the following level. This leads us to the most 
important property of the image pyramid: an image pyramid is built in 
O[log(image-diameter)] time. For a review of the subject of image pyramids and 
their applications see the books of Rosenfeld [23] and Cantoni and Levialdi [3]. 

Processing in an image pyramid is parallel but not strictly local. Abelson fl] 
defines a computation as inherently local if it can be divided into weakly interacting 
modules. A computation is inherently global if any partition of the process implies 
substantial interaction among the modules. 

Careful analysis of the decimation phase of image pyramid construction shows 
that this operation does not satisfy the above definition of localness. The next level 
in an image pyramid is obtained by computing the weighted averages only around 
the addresses of the form (j . q, k . q) j, k = 0, 1,2,. . . . This set of addresses 
defines the sampling grid of the next image pyramid level. To perform the decima- 
tion process the sampling grid must be generated first. This, however, requires 
knowledge of absolute positions (coordinates) of the cells in the array. The informa- 
tion is global, all the cells being related to the origin of the array. 

At the first sight the globality of the decimation operation does not appear to be a 
restricting condition. The image pyramids are generated on digital computers and 
thus any cell implicitly carries its own address within the array. Nevertheless, there 
are practical problems in which the global information required for decimation 
depends on the processed feature and is not available. Shift-invariant processing of 
planar curves in 2-dimensional image pyramids (Section 3.1) and labeling of the 
mesh in parallel computers (Section 4.1) are discussed as examples later in the 
paper. We show that these problems cannot be solved in traditional pyramids in 
logarithmic processing time without having access to the necessary global informa- 
tion during the decimation process. In the following sections we present a new class 
of image pyramids in which the decimation process makes use only of locally 
available information. We call the resulting data structures stochastic image pyra- 
mids. In stochastic pyramids construction of the next level’s sampling grid employs 
random variables. 

First, l-dimensional stochastic pyramids are introduced. The levels of these 
pyramids are organized in a doubly linked list. The doubly linked lists are one- 
dimensional data structures with a cell being aware (through pointers) only of its 
two neighbors [9]. Note that this comectivity information is exclusively local. A cell 
does not know its position within the list. The doubly linked list can be regarded as 
the l-dimensional world of an observer walking along a curve. In Section 3.1 we 
return to this problem in more detail. 

A cell in the list carries two pointers indicating connections to its upstream and 
downstream neighbors along the curve. The cell cannot discriminate, however, 
which of the neighbors is upstream and which is downstream. This information 
implies a common global scanning direction and cannot be established locally. As 
Fig. 1 shows, applying the same local rule leads to a contradiction in global analysis. 
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left-right 
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FIG. 1. Inconsistency of the local rules on a global scale. The cells mark their left and right neighbors 
without knowledge of a common global scanning direction. Backfolding of the curve leads to contradic- 
tory results when the local directions are concatenated along the curve. 

If both marked cells adopt as scanning direction their locally established “right,” 
global scanning along the curve is ambiguous. 

In traditional image pyramids, to generate the sampling grid of the next pyramid 
level the addresses of the cells within the doubly linked list are necessary. A simple 
sequential approach takes O[list length] time to establish these addresses. Deter- 
ministic methods are available for the recovery in O[log(list.length)] processing 
time of the addresses of cells organized in a linked list. The problem is a particular 
case of the parallel pre$x problem [ll]. The distance doubling algorithm proposed 
by Wylie [25], in which pointers between more and more distant cells are created 
recursively, can be employed to solve the parallel prefix problem. The algorithm 
requires communication between cells through a shared memory and is employed on 
tine-grained parallel machines like the Connection Machine [12]. Cole and Vi&kin 
[4] proposed the detetministic coin tossing algorithm to break symmetry situations in 
parallel environments, a problem equivalent to the recovery of the cells’ position in 
a linked list. The algorithm requires distinct values to be allocated to every cell and 
achieves the symmetry breaking by manipulation of these values’ binary strings. 

We are not concerned here with characteristics of the different versions of the 
above mentioned algorithms, like the speedup achieved and the number of proces- 
sors required. We note, however, that these deterministic algorithms are contingent 
upon the existence of a memory shared by all the cells and/or parallel allocation of 
distinct numbers. Both conditions require implicit involvement of global informa- 
tion. We want to generate image pyramids which can handle inputs in logarithmic 
processing time even if the cells: 

-have no information about their positions in the lattice, 
-are connected only to immediately adjacent neighbors, 
-cannot distinguish the spatial positions of their neighbors. 

Our conditions are much more restrictive than the weakest, exclusive read and 
write (EREW) model of parallel random access machines (PRAM), employed in the 
definition of deterministic algorithms. To satisfy our conditions, probabilistic algo- 
rithms [20] must be considered. These algorithms employ random variables to settle 
ambiguous situations but the decisions taken are governed by deterministic rules. 

In this paper we approach the problem of image pyramid generation from the 
viewpoint of probabilistic algorithms. The addresses of the cells within the doubly 
linked list are not recovered before building a pyramid. While we generate the 
sampling grids based on local ordering of random variables, configurations very 
similar to the regular, “traditional” sampling structures are obtained. A new class of 
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image pyramids, called stochastic pyramids, is obtained. It is shown that stochastic 
pyramids can perform most of the tasks assigned to their traditional (deterministic) 
counterparts although they satisfy much weaker constraints. Starting from the local 
information available in stochastic pyramids, recovery of cell addresses and thus 
reconstruction of deterministic pyramids is possible. 

Section 2 treats the l-dimensional case; Section 3 presents an application to 
pyramid processing of plane curves and an algorithm for the reconstruction of 
deterministic pyramids; Section 4 discusses the 2-dimensional case. 

2. ONE-DIMENSIONAL STOCHASTIC PYRAMIDS 

2.1. Assumptions 

Denote the state of a celI c by a binary number. Let c = 1 when the address of 
the cell should belong to the sampling grid of the next image pyramid level, and 
c = 0 when it should not. The binary string of the states thus reproduces the 
configuration of the sampling grid. In the sequel we assume a twofold resolution 
reduction between consecutive levels of an image pyramid. 

In l-dimensional deterministic pyramids the sampling grid has the configuration 

. . * 10101010 * . . (11 

The state of a cell is determined by inspecting its address witbin the (l-dimensional) 
array, becoming 1 if (say) the address is an even number. In stochastic pyramids 
these addresses are not available. The only allowed global information is: 

-the cells have access to independent identically distributed (i.i.d.) random 
variables; 

-for all the cells the same local decision process is employed. 

This global information introduces much weaker constraints than in the determinis- 
tic case. 

Denote the random variable allocated to a cell by x and the outcome of a specific 
draw by x. It must be emphasized that our results do not depend on the probability 
density function of x, f(x), as long as this density is continuous and the random 
variables are i.i.d. The positivity of the outcomes, i.e., f(x) = 0 for x < 0, will be 
found useful later. The condition is not restrictive; the simplest generator for 
random numbers uniformly distributed between zero and one satisfies it. In stochas- 
tic pyramids the state of a cell is established in a few iterations based on the 
outcomes of the random variables and/or previous states of the cells in a small 
neighborhood. 

A cell can make use of its neighbors only if its neighborhood is symmetrically 
centered on it. A nonsymmetrical neighborhood implies that the cell can discrimi- 
nate between the gZoba1 upstream and downstream directions (see Fig. 1 again). 
Information about global directions, however, is not allowed in a stochastic pyra- 
mid. The ideal sampling grid employed for twofold resolution reduction (1) has a 
periodic pattern of length two. A neighborhood of three cells suffices for generation 
of the local structure of this sampling grid. We denote the states of the three cells in 
the neighborhood after the lath iteration by h(k), c(k), and d(k). We have avoided 
the use of the indices (-LO, 1) to emphasize that the middle cell c cannot 
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discriminate between the spatial positions of b and d relative to a global scanning 
direction. 

In the local decision process only the state of the cell c, on which the neighbor- 
hood is centered, can be modified. There is no need for global synchronization 
among the local processes. If we assume that no celI becomes faulty, i.e., remains in 
an undecided state, local synchronization can always be achieved by employing 
“ ready” flags. 

2.2. Generation of the Initial Sampling Grid 

A cell c can employ two different strategies when setting its initial state based on 
the outcome x of the random variable x. In the discrete case the cell sets the state to 
1 if x is greater than the median of the probability distribution: 

P,,[c(O) = l] = Prob[x > x0,51 = +, (2) 

where the median x0.5 is the unique solution of the equation 

J oxo.‘r(x) G!x = $. 

The probability that the initial state of the cell will be zero is 

P,,,[c(O) = o] = 1 - P,,,,[c(O) = l] = 5. (4 

The discrete case corresponds to the tossing of a fair coin and setting the state of the 
cell to one if (say) tails appears. Coin tossing is a basic method in randomized 
parallel algorithms (e.g., [7, 171). We will prove, however, that for our goal the 
method is inferior to the other possible strategy. 

In the continuous caSe the cell sets its initial state to 1 if the outcome of the 
random variable x, is the largest in the neighborhood: 

P,,,&(O) = l] = Prob[x, < x, > xd] = $. (5) 

The value of this probability is proved in the Appendix. 

P,,,[c(O) = o] = 1 - P,,,[c(O) = l] = $. (6) 

A run is a contiguous set of cells having the same state. Thus, n consecutive cells 
with state 1 constitute a run of length n, and will be denoted by (l),. In order to 
approximate closely the ideal sampling grid (l), the initial grid generated through 
any of the strategies should not have high probability for long runs. The decimation 
ratio D should also be around 2. 

The decimation ratio is defined as the total number of cells divided to the number 
of cells belonging to the sampling grid. That is, the decimation ratio is the inverse of 
the probability that a cell sets its state to 1. From the viewpoint of the decimation 
ratio the discrete case is superior. We have 

1 1 
D dscr = P&J@) = 11 = 2p Dcm = pwnt [c(O) z 11 = 3. (7) 
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TABLE 1 
Probabilities of l(O),1 Configurations in the Initial Sampling Grid 

Length 
n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Discrete 
case 

1.25 x 10-l 
6.25 x lo-’ 
3.12 x lo-* 
1.56 x 1O-2 
7.81 x 10-3 
3.91 x 10-3 
1.95 x 10-3 
9.77 x 10-4 
4.88 x 10-4 

Continuous case 

Experimental 

1.33 x 10-l 

1.11 x 10-l 
5.75 x 10-2 
2.22 x 10-2 
7.08 x 1O-3 
1.92 x 1O--3 
4.50 x 10-4 
1.00 x 10-4 
1.80 x lo-’ 

Q(n) 
- 

1.07 x 10 ml 
5.74 x 10-I 
2.31 x lo-’ 
7.44 x 10 --3 
2.00 x 1o-3 
4.59 x 1o-4 
0.92 x 1O-4 
1.65 x 10m5 

Nevertheless, the decimation ratio is a global characteristic of the sampling grid 
and offers no information about how uniformly the cells with state 1 are distributed. 
The distribution of these cells can only be described if the statistics of the runs are 
available. That is, we must compute for different values of n the probability of a run 
having that length. A run of length n implies that n + 2 cells have given states. For 
example, if the run is of l’s the configuration O(l),0 has to be generated. 

The probabilities are easy to compute in the discrete case. Independence of the 
random variables yields 

= 2-(n+2) = P&JO(l) o] n 3 n = 1,2,3 ,... . (8) 

All the configurations of same length have the same probability, and there is a 
considerable chance of obtaining long runs of 1’s. The values of P&1(0),1] for 
n = 1,2 ,...,9aretabulatedinTablel. 

In the continuous case, two adjacent cells cannot both have state 1. If a cell has 
the outcome of a random variable which is a local maximum, its two neighbors no 
longer can satisfy (5). We can write 

P-JO(l).O] = {;> n=l 
3 n =2,3 )... . 

The computation of P-,[l(O),l] is tedious in the general case. The method of 
computation and examples are given in the Appendix. The exact values of the 
probabilities are of little importance for us. We measured them by running 50 trials 
with lo5 cells each on a VAX 11/785 computer. The random variables were 
uniformly distributed between 0 and 1. The probabilities obtained for n = 1,2,. . . ,9 
are shown in Table 1. A good approximation of these probabilities is given by the 
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expression 

1.61” 
P,,,[l(O),J] 5: Q(n) = 0.0826n,, n = 1,2,... . 

The values of Q(n) are given in Table 1. The multiplicative constant 0.0826 was 
determined by making Q(1) equal to the measured probability. While the relation 
(10) recalls the density function of a Poisson random variable, it should not be 
concluded that the length of runs of O’s precisely obeys that probability law. 

Inspection of Table 1 reveals that runs of more than four O’s have smaller 
probability under the continuous strategy than under the discrete one. The differ- 
ence between the two strategies increases with the length of the run. Recall that in 
the discrete case runs of l’s have the same probability as runs of 0’s. In our 
simulations, the longest run of any value found in the discrete case had a length of 
21. The longest run of O’s found in the continuous case had a length of 11. 

Once the initial sampling grid is established, a cell modities (or not) its state based 
on the local configuration of the neighborhood. The local decision process is not 
related to the strategy under which the initial grid was generated. The efficiency of 
the process is measured by how similar the generated grid becomes to the ideal one 
after a few iterations. The efficiency of the local process is greatly diminished if the 
initial runs are longer and/or more random. In the sampling grids generated under 
the discrete strategy any configuration of the same length has the same probability 
of occurrence. Longer runs are more probable than in the continuous case. 

We conclude that the initial sampling grids obtained under the continuous 
strategy are better inputs into the iterative correction process. These grids have, 
however, a theoretical decimation ratio of 3 and not the desired 2. We show in the 
next section that during the iterations used for correcting the sampling grid, while a 
close approximation of the ideal grid is obtained the decimation ratio is also 
decreased. In the sequel we consider only sampling grids generated under the 
continuous strategy. 

2.3. Iterations for Correction 

The local processes in l-dimensional stochastic pyramids are based on neighbor- 
hoods of three cells with the cell at the center making the decision about its next 
state. The three binary numbers representing the initial states of the cells in the 
neighborhood can be combined into eight local conjigurations. Only five local 
configurations, however, 000, 001, 010, 100, and 101, can be obtained under the 
continuous strategy. 

Our goal is to reduce the decimation ratio of the sampling grid. To achieve this, 
the iterative correction process must increase the number of cells belonging to the 
sampling grid. Similarity with (1) requires that the probability of two adjacent cells 
both having state 1 should be kept nil. All the local configurations except 000 must 
be left unchanged during the correction process. 

The most direct method suggests that the local configuration 000 should always 
be turned into 010. Assume, however, a long nm of zeros: l(O),l, n > 3. The 
probabilities of such configurations are given in the second column of Table 1 for 
different values of n. In Table 2 the same probabilities are shown, this time 
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TABLE 2 
One-Dimensional Pyramids: Probabilities of Different Run Lengths, Average Decimation Ratio 

vs Number of Iterations 

Length Initial grid First iteration Second iteration 
n 1(%1 - o(l)“0 W,,l O(l)“0 l(O)“1 o(i jio 

___-.-.- 
1 1.42 x 10-l 3.39 x 10-l 2.89 x lo--’ 4.32 x 10-l 2.94 x 10-l 4.35 x IO- ’ 
2 1.12 x 10-l 0 1.35 x 10-l 0 1.36 x lo-~’ 0 
3 5.55 x 10-2 0 0.21 x lo- 2 0 < 10-S 0 
4 2.01 x 10-2 0 0.18 x 1O-3 0 0 0 
5 6.44 x 1O-3 0 0.12 x 1o-4 0 0 0 
6 1.74 x 10-3 0 0 0 0 0 

D 2.951 2.317 2.301 

computed for lo5 strings of 64 cells each. The probabilities of runs with n > 2 are 
slightly decreased at the expense of increased probability for the shortest 101 runs. 
This is the effect of truncating at a relatively small base size. There is a significant 
chance that runs of more than three O’s would occur in the initial sampling grid. 
Deterministic transition of 000 into 010 turns the configuration l(O)“1 into 
10(l),-,Ol. The probability of having m adjacent cells with state 1 is then equal to 
the probability of an initial configuration l(0) m + J. A probabilistic transition rule. 
on the other hand, allows the possibility that a long run of O’s is broken into smaller 
pieces. We employ such a rule. 

Let the variable q,(k) be defined based on the local configuration after the 
(k - 1)th iteration as follows: 

q,(k) = 12 ifb(k - 1) = c(k - 1) = d(k - 1) = 0, 

q,(k) = 09 otherwise. 
01) 

Thus q,(k) is the indicator function that a 000 local configuration is present in the 
neighborhood of c after the (k - 1)th iteration. Similarly, the variables qb( k) and 
q,,(k) can be defined based on the local configurations in their neighborhoods. 

At the beginning of the kth iteration every cell draws a random number. The 
following probabilistic rule is employed for the transition of the local configuration 
000 into 010: 

P[c(k) = llq,(k) = l] = Prob[q,(k) . x,, < x, > q,,(k) . XJ 2 4. (12) 

For completeness the rule preserving the other four local configurations is 

I+(k) = c(k - l)lq,(k) = 0] = 1. (13) 

Rule (12) adapts itself to the local con&ration of the five cell neighborhood 
centered on c. Through the variables qb(k) and qa(k) the states of cells at distance 
2 from c are also taken into consideration. If the configuration of the five cells after 
the (k - l)th iteration is 10001 then qb(k) = q,,(k) = 0. The outcomes of the 
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random variables x are always positive, and the configuration 10001 will always be 
changed into 10101. The algorithm deterministically eliminates runs of three 0’s. If 
only one cell with state 1 is present in the five cell neighborhood, i.e., the 
configuration is either 10000 or 00001, the probability of transition is $. For an all 
zero local configuration, the probability of transition is f, the same as for the initial 
grid (Section 2.2). 

The rule (12) applied in the corrective iterations contains as a special case the rule 
(5) employed for the generation of the initial grid. By making all q = 1 at the 
beginning of the sampling grid generation process, when first applied, rule (12) 
reproduces (5). Thus, the generation of the sampling grid is achieved by repeated 
application of the same procedure, (12) and (13). 

The statistics of the run lengths for the grid obtained after the first correction are 
shown in Table 2. As expected, long runs of O’s were destroyed and the largest runs 
now have a length of five. The munber of O’s belonging to runs of length one is 
doubled. The decimation ratio decreased from 2.951 to 2.317. 

The statistics of the sampling grid after the second iteration are shown in Table 2. 
Almost all the runs now have a length of one or two. The residual probability of 
runs of O’s with length three is less than 10M5; only four such runs were detected 
during an experiment with 10’ strings of 64 cells each. These runs would be 
eliminated by a subsequent iteration and in the sequel we do not take 0 runs of 
length three into consideration. The resulting sampling grid is a good approximation 
of the ideal grid. The decimation ratio decreased from 2.317 to 2.301. 

Only runs with a length of one or two appear in the generated sampling grid. 
These runs coincide with roots of the correction process and further iterations 
would not modify the sampling grid. The iteration process thus converged to a 
stable sampling grid after only two steps. For comparison, we applied similar rules 
to the initial sampling grids derived under the discrete strategy. The length of the 
longest run of l’s or O’s decreased to three after six iterations. We conclude that our 
continuous method for generating the sampling grids of the stochastic pyramids is 
better. 

Somewhat digressing from our main topic, we note that binary strings similar to 
(1) can be derived from stationary zero mean random fields by recursive differentia- 
tion. The zero crossings of the differentiated field tend in the limit to a . . . 101010 . . . 
pattern [lo]. The number of iterations required to compute the kth finite difference 
locally is k and thus the asymptotic nature of the result reduces its practical 
importance. 

2.4. Structure of the Pyramid 

In stochastic pyramids, just as in traditional ones, the sampling grid determines 
the structure of the next level. A cell having state 1 after the correction process 
belongs to the sampling grid. Every sampling grid cell has a correspondent on the 
next pyramid level and neighbors on the sampling grid become adjacent at the next 
level. 

The cells in the input are organized in a doubly linked list and are aware only of 
their two immediate neighbors. This local information sufhces to generate the 
sampling grid. Two neighbors in the sampling grid can be separated by at most two 
cells having state 0 (Table 2). The sampling grid cells thus are not yet connected 
through pointers to their neighbors on the next level sampling grid. Without these 
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step 1 

step 2 * - 

FIG. 2. One-dimensional pyramids: Generation of the next pyramid level. The c&s belonging to the 
sampling grid are marked with black squares. These cells expand their receptive fields in both directions. 
When the receptive fields of two adjacent cells collide the local structure of the next pyramid level is 
established by exchanging pointers. The small unfilled circles in the arrowheads show collisions. The 
receptive fields are highlighted by different hashing. 

pointers the next level is not a doubly linked list, and recursive building of the 
stochastic pyramid is not possible. We now describe a method of defining local 
connectivity on the next stochastic pyramid level. 

The ensemble of cells related to a sampling grid cell will be called the receptive 
jield of that cell. Connectivity of the next pyramid level can be established by 
expansion of the receptive fields. The expansion process takes two steps. A collision 
is detected whenever a cell having state 0 is to be incorporated into two different 
receptive fields. The sampling grid cell (state 1) tries to incorporate the two adjacent 
cells (always having state 0) into its receptive field. Detection of a collision stops the 
expansion of the receptive field in that direction. The two sampling grid cells 
involved in a collision exchange pointers, and local cormectivity on the next 
stochastic pyramid level is established. 

If the distance between two sampling grid cells is one, the collision is detected at 
the first step when the cell in the middle is accessed simultaneously from both 
receptive fields. See the collision on the right in Fig. 2. In such a case, the cell with 
state 0 allocates itself to the sampling grid cell having a larger outcome of the 
random variable. In the Appendix we argue why such a process cannot lead to a tie. 
If the sampling grid cells are separated by two cells with state 0 (Fig. 2, left) the 
collision appears at the second expansion step. Note that while the receptive fields 
are not necessarily symmetrical, all the operations used are local. 

The structure of the stochastic pyramid can now be generated recursively. In Fig. 
3 a complete example of a pyramid structure with base length 32 is shown. At each 
level, the initial sampling grid and the results of the two iterations for correction are 
given from the bottom to the top. At Level 0, the longest initial run of O’s has length 
five, but after the corrections the sampling grid employed for the next level has only 
two runs of O’s of length two. The number of sampling grid cells determines the 
total number of cells on the next pyramid level. The cells at the ends of the list have 
only one neighbor. All the rules remain valid for these reduced neighborhoods by 
making b = d. The construction of the stochastic pyramid can thus continue up to 
the apex after only two cells are left (Level 4). 

Let the size of the base of the pyramid be N. A deterministic pyramid with a 
twofold resolution reduction between levels has height, i.e., number of levels, log2 N. 
The almost uniform sampling grid in the stochastic pyramid ensures the logarithmic 
dependence of the height of the base size. Nevertheless, the probabilistic nature of 
the processes involved makes the study of the height distribution of interest. 
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Level 5 

0 

Level 4 

01 

Level 3 

101 
101 
101 

Level 2 

0101010 
0101010 
0100010 

Lcvet 1 

101010100101010 
101000100100010 
101000100100010 

Level 0 

10101001001010101010101010101010 
10101001001010101010101010100010 
10101001000010000010001010100010 

FIG. 3. Example of the structure of a one-dimensional stochastic pyramid with base length 32. At 
each level the initial sampling grid and the results of the two iterations for correction are shown from the 
bottom to the top. The number of cells with state 1 determines the total number of cells on the next level. 

The probabilities of the height of a stochastic pyramid, given the size of its base, 
are shown in Table 3. The results are based on 10’ trials for each base size. The 
heights never exceed log, N. As the size of the base increases, the expected pyramid 
height shifts toward log, N - 1, in conformity with the higher decimation ratio. 

We have computed the average decimation ratio for every level of the pyramid. 
These values were then averaged again for the lower parts of the pyramid. For the 
highest levels the averaging introduces artifacts caused by the unequal heights of 
different pyramids. The results obtained, together with the standard deviation and 
the number of levels employed, are shown in Table 4. The sampling structure is 
robust at the lower pyramid levels, as the small standard deviation values show. 

3. APPLICATIONS OF ONE-DIMENSIONAL STOCHASTIC PYRAMIDS 

3.1. Processing of Planar Curves in 2-Dimensional Image Pyramids 

In this section we discuss a hrst application of the sampling grid generation 
technique presented above. For more details see Meer, Sher, and Rosenfeld [15]. 

TABLE 3 
One-Dimensional Pyramids: Probabilities of the Different Heights vs Base Size 

Base Pyramid height 

size 3 4 5 6 7 8 

16 0.011 0.989 0 0 0 0 
32 0 0.098 0.902 0 0 0 
64 0 0 0.314 0.686 0 0 

128 0 0 0 0.614 0.386 0 
256 0 0 0 0 0.852 0.148 
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TABLE 4 
One-Dimensional Pyramids: Average Decimation Ratio vs Base Size 

____ .- ~~~ ~-~~~~~~ --~ ~~~~~ ~~ 
Base Levels 
size averaged D 

16 3 2.131 f 0.099 
32 3 2.212 + 0.064 
64 4 2.228 & 0.074 

128 4 2.271 i 0.047 
256 5 2.275 + 0.051 

The following definition of a curve in a digital image sufhces for the purpose of our 
discussion. A curve is a connected set of cells (pixels) with every cell having at most 
two neighbors in the set. The above definition restricts the class of curves to those 
that can be represented by chain codes [6]. Assume a binary input image (with only 
two gray level values) containing such a curve. We want to build a 2-dimensional 
image pyramid where each level of the pyramid carries a reduced resolution 
representation of the input curve. 

The problem has practical applications. Let the curve be the bounding contour of 
a planar shape. In the popular scale-space methods, a curve is described by 
l-dimensional intrinsic functions having the arc length as parameter. At every point 
of the curve Gaussian kernels of increasing spread are convolved with these 
functions. The convolution outputs are the smoothed versions of the input. Sym- 
bolic descriptions of the shape are then derived by mapping local descriptors (such 
as inflection points) against the scale of the smoothing process 12, 18, 221. To 
facilitate tracking of the extrema in scale-space, the number of samples representing 
the curve is not reduced with the widening of the smoothing kernel. Parallelism of 
processing is not an issue in the above cited applications. If emphasis is put, 
however, on fast parallel processing instead of on the derivation of symbolic 
representations, decimation of the smoother curve versions is desirable [HI. Image 
pyramids are perfect candidates to perform the smoothing operations. 

In Fig. 4a a generic curve is shown superposed over an intermediate-level array in 
the image pyramid. The curve is partitioned into curve fragments by the cell 

a b 

FIG. 4. Planar curve superposed over the sampling grid of an intermediate level in the image 
pyramid. The curve is only slightly shifted in (b) relative to (a), but the reduced resolution representations 
would differ drastically. 
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boundaries. As can be noticed, a cell may have several curve fragments within its 
boundary and these curve fragments may be located far apart on the curve. Thus 
2-dimensional approaches cannot be employed in the resolution reduction process 
because such methods will fuse the distinct curve fragments together and change the 
topology of the input. 

Fortunately connectivity can always be defined locally across the cell boundaries 
and this is sufficient to track the curve at any level of the image pyramid. In the 
input array every cell builds two pointers (indicating connectivity) toward its 
neighbors along the curve. Note that by employing local connectivity pointers a 
doubly linked list (Section 1) representation of the curve is built. This representation 
is distributed across the cells at the base of a 2-dimensional image pyramid. The 
parents at the first level of the image pyramid employ the pointers of their children 
to establish cormectivity along the curve at the reduced resolution. The new 
representation is distributed across the first level of the pyramid. The procedure is 
applied recursively until the apex of the pyramid is reached. The resulting parallel 
environment, embedded in the architecture of an image pyramid, is called the chain 
pyramid [15]. 

Beside tracking the curve a parent should also perform the decimation operation. 
This cannot be achieved in a 2dimensional image pyramid in a satisfactory way 
without making use of locally generated l-dimensional sampling grids for the curve. 
A process is called shift-variant if a shift of the input does not result in the output 
being shifted by the same amount. Decimation processes are shift-variant [5], and 
their cumulative effect in an image pyramid is especially severe on curve processing. 
Compare Figs. 4a and b. The same curve is shown superposed over the array on the 
same image pyramid level with the curve slightly shifted in Fig. 4b. The small shift 
causes most of the parents to be allocated different values and the reduced 
resolution representation of the curve at the next level will change drastically. The 
recurrent processing in image pyramids only amplifies the effects of the shift at 
the subsequent levels. The shape of reduced resolution curve representations in the 
pyramid depend critically on the partition of the curve by the sampling grid. In the 
worst case even the logarithmic processing time property of the pyramids can be lost 
1151. 

These undesired artifacts of curve processing in 2dimensional image pyramids 
can be eliminated if the processing is guided by the doubly linked representations of 
the curve. As was discussed before, these representations are available on every level 
of the pyramid. A cell carrying a node of the doubly linked list (that is, belonging to 
a representation of the curve) can check if any other cell connected to the same 
parent at next level is part of the list. If not, the cell is called a siblingless child. 
Most of the artifacts of curve processing on image pyramids are caused by the 
existence of siblingless children. 

It can be shown that if a doubly linked list curve representation contains a 
contiguous string of siblingless children, every other cell in this string can be 
removed without breaking the connectivity of the next level’s representation [15]. 
The contents of the removed cells are allocated to their neighbors in the list. 

If a siblingless child has two “normal” neighbors in the list its removal is easy. 
However, if long strings of siblingless children are present the selection of cells for 
removal is equivalent to labeling the string by the sequence * . * 0101010 * * * . Cells 
with label 0 are removed. In Section 2 we gave a method of generating such 
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Level 2 

FIG. 5. Curve processing in the chain pyramid. The input curve (level 0) is recursively smoothed by 
substituting curve fragments with their centroids. Left column: Only the centroids are computed to build 
the next pyramid level. Middle cohnnn: The number of siblingless children is also reduced. Right 
column: Smoothing is one-dimension, along the curve. 

alternating sequences based exclusively on local information. The method does not 
require the cells’ positions in the list and can be employed for labeling of the string 
of siblingless cells. When two adjacent cells both are labeled with zeros (recall that 
this cannot happen for three cells) the cell removed is the one with the smaller last 
outcome of the random variable. 

In Fig. 5 the first three levels of an image pyramid are shown performing 
smoothing of a chain-codable curve. The smoothing is achieved by every parent 
recursively computing the line centroid for the curve fragment seen within its 
boundaries. When these centroids are connected by line segments a smoothed curve 
results. The procedure is described in detail together with other applications of 
curve processing on image pyramids in Meer, Sher, and Rosenfeld [15]. The 
representations in the left cohunn are obtained without eliminating the siblkgless 
children. To compute the representations in the middle, the removal procedure fur 
the siblingless children was also applied. Note the drastic improvement in the 
amount of smoothing achieved. These results are better than the ones obtained 
when the smoothing was performed in one dimension, along the curve, with the arc 
length as the parameter (the right colux.nn of fig. 5). Note that the latter case is used 
in scale-space contour processing [2, 18, 221. The chain pyramid, while through the 
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Level 2 

a b 

FIG. 6. Reconstruction of the l-dimensional deterministic pyramid. (a) Bottom-up processes. The 
sampling grid cells are marked by the insets of the adopted local scanning direction. Cells conneccted to 
an end of the input are marked by a dot. The weight of a cell is shown by the number in the box. 
Adjacent receptive fields have different hashing. (b) Top-down processes. The labels allocated to cells are 
shown by the numbers in the boxes. The sampling grid at the base of the deterministic pyramid is marked 
by filled squares. 

elimination of siblingless children it simulates smoothing in one dimension, also 
takes into account the 2dimensional structure of the curve through the cells 
performing the processing. 

3.2. Reconstruction of the Deterministic Pyramid 
Only local information is allowed during the construction of stochastic pyramids. 

By exploiting the topology of the levels, however, a l-dimensional stochastic 
pyramid can be transformed into a deterministic one. That is, the addresses of the 
cells within the doubly linked list can be recovered in O[log(list -length)] time. 

The process of delineating the receptive field connected to a sampling grid cell 
was discussed in Section 2.4. Assume that every cell in the pyramid carries a weight, 
and let each cell at the input have weight 1. A sampling grid cell on the base of the 
pyramid can thus count the cells in its receptive field by adding all the weights 
within the field. The result is the weight of the corresponding cell at the first 
pyramid level. 

In Fig. 6a the receptive fields of a stochastic pyramid (base size 16) are shown by 
different hashings. The sampling grid cells are marked by the insets with arrows, to 
be discussed later. Consider the first three sampling grid cells at the left of the base. 
These cells report to the first level the contents 1, 3, and 2. In the first level’s 
sampling grid they become parts of the same receptive field. When the sampling grid 
cell on the first level adds up the weights in its field, the weight 6 for a second level 
cell is obtained. The weight represents the number of cells at the input connected to 
the cell at the second level. 

The process evolves recursively toward the top of the pyramid. The cell at the 
apex of the pyramid has weight equal to the number of cells in the input, i.e., the 
size of the base (Fig. 6a). The base size is global information and was obtained from 
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the structure of the stochastic pyramid. In other applications the cells can perform 
another associative operation instead of addition. Parallel computation of such 
global expressions is known in computer science as the parallel pre$x problem [ill. 
The partial result of our deterministic pyramid reconstruction algorithm can be 
regarded as a randomized solution to the parallel prefix problem. We will not 
diverge here from the main topic of the paper by comparing our method with other 
randomized solutions or by discussing the number and type of processors required. 

The cells on a given level of the stochastic pyramid are organized in a doubly 
linked list. They cannot discriminate between the spatial positions (upstream, 
downstream) of their neighbors. Given the l-dimensional topology of the list the 
cells know, however, that the two neighbors must be on different sides. This 
important constraint allows each sampling grid cell to choose a local scanning 
direction within its receptive field. During the expansion of the receptive field 
the sampling grid cell correctly connects the cells on either side of it. When the 
expansion is stopped in both directions, the cell arbitrarily calls one of the 
expansion directions upstream. The whole receptive field then adopts the established 
local scanning direction. The insets in Fig. 6a show the local scanning directions 
adopted by each receptive field in the stochastic pyramid. As expected, these local 
directions are often contradictory. 

The two cells at the ends of the list are aware of their special location because 
they have only one neighbor. This information is preserved at higher pyramid levels. 
Cells connected through the structure of the stochastic pyramid to one of the ends 
of the list are marked in Fig. 6a with a dot. 

The operations described until now have employed the stochastic pyramid in a 
bottom-up fashion. The computation starts at the base of the pyramid and continues 
recursively toward the apex. The size of the pyramid base is computed and the 
receptive fields are locally ordered. The second part of the deterministic pyramid 
reconstruction algorithm employs the structure of the stochastic pyramid in a 
top-down fashion. The computation starts from the apex and ends at the base. 

The transition from bottom-up to top-down operations is triggered by the cell at 
the apex establishing a common global scanning direction (Fig. 6a, top). This cell 
also defines the labels from 1 to base-size, equal to 16 in our example (Fig. 6b, top). 
The global scanning direction implies that one of the input list ends becomes the 
first cell of the base. The cell on the level below the apex and connected to this first 
cell is allocated the labels from 1 to its weight (in our example 12). Recall that the 
weight carried by a cell represents the number of cells of the input connected to it. 
The remaining labels are allocated to the other cell (Fig. 6b). 

The label allocation process continues recursively toward the base of the stochas- 
tic pyramid. The global scanning direction is propagated downward and compared 
with the local one. When the two directions coincide the labels are allocated in the 
existing ordering; otherwise, they are allocated in reversed order. A cell divides the 
received set of labels among its children according to the weights of the children. In 
our example the weights are 6, 2, and 4 and the scanning directions coincide. The 
labels are allocated to the first three cells on Level 2 in accordance with the ordering 
of the receptive field (Fig. 6b). The process stops at the base where every cell now 
carries a label describing its distance from the starting point. 

We have thus succeeded in synthesizing the global information required for the 
deterministic pyramid. The ideal sampling grid can now be generated by letting 
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every cell with an even label in the input become a sampling grid cell. Resolution 
reductions different from 2 can be achieved by using congruence modulo other 
numbers. 

4. TWO-DIMENSIONAL STOCHASTIC PYRAMIDS 

Assume that at each node of an N X N square lattice a processor cell is placed. 
The array is arranged in an 8-connected mesh in which a cell is linked to its 
neighbors on the north, northeast, east, etc. While the cells can communicate with 
their neighbors, they cannot localize them in the plane, i.e., they do not know 
whether a neighbor is on the northeast or on the southwest. The restrictions 
generalize those in the l-dimensional case. 

Two-dimensional stochastic pyramids can be built starting from strictly local 
information. As in the l-dimensional case, the pyramid can then compute global 
information about the cells. Once the cells are labeled in accordance with their 
absolute position in the array, simultaneous loading of input information into the 
pyramid computer is possible. Cell labeling can also be applied to other massively 
parallel computer architectures [21]. 

We show that under the most restrictive local conditions labeling of the cells can 
only be performed in O[N . log N] time. However, if the conditions are slightly 
relaxed, allowing the cells to be aware of the relative positions of their adjacent 
neighbors, the construction of the deterministic pyramid is possible in O[log N] 
time. 

The key feature in building stochastic pyramids is the generation of the next 
level’s sampling grid. The ideal 2-dimensional sampling grid in a twofold resolution 
reduction in both coordinate directions (decimation ratio of 4) has the structure 

00oooooO * . * 
10101010 * * * 
oooooooo . * * (14 
10101010 * * . 
. . . . . . . . . . . . 

where the cells with state 1 are preserved for the next level. The ideal sampling grid 
can be generated by recursively employing the l-dimensional pyramid reconstruc- 
tion algorithm described in Section 3.2. 

4.1. Jigsaw Reconstruction Algorithm 

All the premises discussed in Section 2.1 for l-dimensional stochastic pyramids 
remain valid. The cells have access to i.i.d. random variables with a continuous 
probability density function. A cell knows the number of its neighbors but cannot 
localize them on the lattice. The cells on the border are aware of their special 
positions because they have only five or three neighbors. This fact allows us to 
reconstruct the grid of (14) under the strictest local information constraints. 

Let a connection between two cells be valid only if ,both cells have fewer than 
eight neighbors. When a cell has two such neighbors, the connection is made to the 
one with the fewest neighbors of its own. In Fig. 7 an example with N = 8 is shown. 
Application of the connectivity rule results in all the 4(N - 1) cells on the border 
being connected into a l-dimensional doubly linked list. The l-dimensional pyramid 
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FIG. 7. The jigsaw pyramid. See text for details. 

reconstruction algorithm (Section 3.2) can now be applied. The four cells in the 
corners are the only ones with three neighbors in the array and they mark 
themselves as candidates for the starting point of the list. Assume that the lower left 
corner was chosen at the apex of the l-dimensional pyramid. It is marked with a dot 
in Fig. 7. The global positions of the cells within the doubly linked list are thus 
determined in O[log4(N - l)] time. The states of these cells can now be defined as 
in (14). 

At the beginning of the next algorithm step the cells on the border mark 
themselves as already processed. The starting point cell transfers its special role to 
its only unprocessed neighbor. Then the next cell on the list (with address 2) marks 
its yet unprocessed and nonstarting point neighbor (Fig. 7). This transfers the 
adopted global scanning direction to the second ring of the array. 

Connection from an unprocessed cell to a processed one is now forbidden, and 
the already processed cells are no longer counted as neighbors. The same connection 
rule is applied and the second ring of the array containing 4(N - 3) cells is reduced 
to a doubly linked list (Fig. 7). The cells in the ring are aware of their distances from 
the border, by adding one to the distances received from their already processed 
neighbors. The l-dimensional pyramid reconstruction takes O[log 4( N - 3)] time to 
establish the states of the cells as in (14). 

The algorithm proceeds recursively toward the center of the array and stops after 
[N/2] steps with no unprocessed cells left. The total time required to generate the 
ideal 2-dimensional sampling grid is 

c O[log4(N - 2i + l)] < O[N. logN]. 05) 
i-l 

The algorithm is similar to solving a jigsaw puzzle. First the pieces with at least one 
straight side are assembled; then the pieces fitting into the already existent frame 
are sought; etc. 

When 2dirnensional problems are approached as a concatenation of l-dimen- 
sional cases, there is extensive use of the natural ordering (the neighbors are always 
on di.Eerent sides) in the latter structures. While such algorithms can produce 
excellent results, the partitioning of the problem into pieces limits the processing 
time to 0[ N . log N]. In order to reduce the processing times to O{log N] the 
problem must be dealt with in a nondecomposed, 2dimensional fashion. In Section 
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4.3 we show that once the natural ordering cannot be employed, reconstruction of 
the ideal sampling grid is not possible under the strictest local information con- 
straints. Nevertheless, 2dimensional stochastic pyramids can still perform most of 
the data manipulation tasks of their deterministic counterparts. 

4.2. Two-Dimensional Approach 

The sampling grids of 2-dimensional stochastic pyramids are generated under the 
same conditions as those of their l-dimensional counterparts. A cell c cannot 
discriminate between the spatial positions of its neighbors bj, j = 1,2,. . . ,8 on the 
square lattice. 

Let Q denote the 8-connected neighborhood containing the cell c: 

Q:{b,,=c,bj,j=1,2;+3}. (16) 

On the border, the definition of Q is adjusted according to the number of neighbors. 
The rules (12) and (13) employed to obtain the l-dimensional sampling structure 
can be generalized to two dimensions. To generate the initial sampling grid, every 
cell draws an i.i.d. random variable x. The state of c is set to 1 if the outcome of the 
random variable is the largest in a: 

P[c(O) = 11 = Prob[x, = mFx] = $. (17) 

The value of this probability is proved in the Appendix. Note that the maximum 
based generation rule (17) assures that two cells having state 1 will be separated by 
at least one cell with state 0. The resulting decimation ratio is 

1 

D = P[c(O) = l] = 9Y (18) 

which is much higher than the value 4 obtained for the ideal sampling grid. An 
example of an initial sampling grid is shown for N = 16 in Fig. 8a. 

a b 

FIG. 8. Example of the 2dimensional sampling grid generation. (a) Initial grid. (b) The grid after two 
iterations. The sampling grid cells are marked by the filled squares. The receptive fields in the final grid 
are delineated by different hasbings. 
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TABLE 5 
Two-Dimensional bramids: Probabilities of Different Neighborhoods, Average Decimation 

Ratio vs Number of Iterations 

Initial First Second Third Ideal 

c=l 
No. of zeros: 

<8 0 0 0 0 0 
8 0.111 0.168 0.183 0.184 0.25 

c=o 
No. of ones: 

0 0.205 0.026 0.001 < lo- 5 0 
1 0.484 0.336 0.214 0.27 0 
2 0.185 0.379 0.418 0.42 0.5 
3 0.016 0.085 0.114 0.116 0 
4 1O-4 0.006 0.01 0.01 0.25 

r4 0 0 0 0 0 

D 
Average 8.994 5.943 5.464 5.439 4 

S.D. 0.184 0.082 0.069 0.067 0 

Numerous configurations of Q are possible and a precise description of their 
statistics is unwieldy. We distinguish the neighborhoods by the state of the cell c. 
The number of neighbors having the opposite state are then counted. There are thus 
two classes of eight neighborhood types each. The probabilities for the different 
neighborhoods were computed from 100 trials with N = 64. The cells on the border 
were not included. 

The measured probabilities for the initial sampling grid are shown in the left 
column of Table 5. For comparison, the same probabilities for the ideal sampling 
grid are given at the right of Table 5. Because no two neighbors can both have state 
1, all the neighborhoods with c = 1 contain eight O’s and no neighborhood with 
e = 0 can have more than four 1’s. There is a sign&ant probability of empty 
neighborhoods, i.e., neighborhoods with all the cells having state 0. The average 
decimation ratio is close to the theoretical 9. 

The goal of the iterations for correction is to put in the center of each empty 
neighborhood a cell having state 1 and thus reduce the decimation ratio. Adjacency 
of two cells with state 1 must be avoided and the correction rule should be also 
based on local maximum detection. 

As in one dimension, we define the indicator function q,(k) for an empty 
neighborhood Sa after the (k - 1)th iteration: 

q,(k) = 1, if bj(k - 1) = 0, j = 0, 1,. . . ,8, 

q,(k) = 0, otherwise. (19i 

At the beginning of the kth iteration every cell draws a random number. To change 
state, the outcome of the random variable drawn by c should be the largest among~ 
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the outcomes drawn by all those neighbors which also have empty neighborhoods: 

P[c(~) = llq,(k) = 11 = Prob[x, = mFqj(k) . xj]. 

The statistics of the sampling grid after each of the first three iterations are given 
in Table 5. There are no significant changes in the probabilities after the second 
iteration, and thus as in the l-dimensional case the correction process converges in 
only two steps. 

Unlike the case of one dimension, however, the resulting sampling grid bears no 
close similarity to the ideal case. In the initial sampling grid the absence of a natural 
ordering allows several possible local arrangements among the cells having state 1. 
These local structures then constrain the generation of further sampling grid cells. A 
typical sampling grid obtained after two iterations is shown in Fig. 8b. The 
decimation ratio of the grid is 5.444, which is close to the average 5.464. It must be 
noted that the average decimation ratio corresponds to two l-dimensional decima- 
tions with ratios 2.38, not far from the value 2.3 obtained in the l-dimensional case. 

The receptive jiela!r of the sampling grid cells are delineated by the same 
expansion process as in one dimension (Section 2.4). The cells expand their fields 
simultaneously in all eight directions. The expansion in a direction is stopped 
whenever at least two receptive fields collide. At collision the nonsampling grid cell 
allocates itself to the sampling grid cell with the largest outcome. All the sampling 
grid cells involved in a collision exchange connectivity pointers (they are distin- 
guishable by the different outcomes of the random variables) and the structure of 
the next 2-dimensional stochastic pyramid level is established. The receptive fields in 
the Fig. 8b example are delimited by different hashings. 

Depending on the local order among the outcomes of the random variables the 
receptive fields have all the possible shapes from one cell to a complete 3 x 3 
neighborhood. As another effect of the probabilistic sampling grid generation 
algorithm the 2dimensional stochastic pyramid levels beyond the base are no longer 
organized in a regular square lattice. The number of sampling grid neighbors varies 
and the expected number of neighbors is less than eight. The structure of 2-dimen- 
sional stochastic pyramids is analyzed in detail in Meer and Connelly [13]. We 
conclude that the structure of the stochastic 2-dimensional pyramid becomes 
increasingly distorted toward random tessellations with fewer connections per cell. 

4.3. Applications of Two-Dimensional Stochastic Pyramids 
The receptive fields on every level of the stochastic pyramid cover the array in a 

compact, nonoverlapping fashion. If the receptive fields are mapped down onto the 
square lattice of the base (level 0), highly irregular tessellations are obtained. The 
structure of the 2-dimensional stochastic pyramid can be employed for parallel 
generation of random patterns [13]. 

Nonhomogeneous patterns are generated if the tessellation of the base is built 
with receptive fields taken from several pyramid levels. The hierarchy of the 
pyramid assures that the different receptive fields combine into a compact covering 
of the input. Fields chosen from the lower levels yield finely grained random 
patterns while the ones from the highest levels generate coarse patterns. Anisotropi- 
cal patterns can be obtained if in (20) weights are also introduced for the pairs 
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c, bj, j = 1,2, . . . , 8. The preferred orientation of the pattern is then controlled by 
adequately detining the set of weights. All the computations are performed in 
parallel and the final pattern is obtained in logarithmic processing time. For 
examples, see Meer and Connelly [13]. 

Stochastic pyramids are useful tools in investigating the robustness of pyramidal 
algorithms under structural perturbations. Two multiresolution algorithms imple- 
mented on stochastic pyramids have shown only slight decrease in performance 
when compared with the results obtained using regular pyramid architecture [14]. In 
the bimodality analysis algorithm, the hierarchy of the pyramid is employed for 
recursive computation of a statistic. In the object delineation algorithm in spite of 
the irregular pyramid structure the top-down delineation process grows correctly the 
outline of a blob discriminated at some higher level. Thus, under the most restrictive 
conditions the stochastic pyramids can be applied to numerous theoretical [16] and 
practical [24] problems. 

Reconstruction of the 2dimensional deterministic pyramid, i.e., labeling the cells 
in the base’s square lattice with their absolute locations, is not possible in logarith- 
mic time if the cells are not aware of the relative positions of their neighbors. Recall 
that the jigsaw algorithm described in Section 4.1 makes possible an 0[ N . log N ] 
reconstruction. 

Let the restriction on local information be relaxed, and a cell be allowed to 
distinguish among the spatial positions of its neighbors (south, southwest, etc.). The 
cells are still not aware of their absolute addresses in the array. A local scanning 
direction (say, west-east and north-south) can now be defined for each receptive 
field. The sampling grid cells localize their neighbors by keeping track of the 
direction of receptive field expansion before collision. The 2dimensional determin- 
istic pyramid reconstruction algorithm is identical under the relaxed constraint with 
the l-dimensional algorithm described in Section 3.2. 

In a possible extension of stochastic pyramids, generation of the sampling grids 
can be made adaptive to the weights of the cells. More “busy” regions would have 
less resolution reduction than smoother parts of the input. Such adaptive pyramids 
have already been proposed in the deterministic case by Peleg, Federbusch, and 
Hummel [19]. 

5. CONCLUSION 

We have introduced a new class of image pyramids in which only local informa- 
tion is employed to construct the reduced resolution representations of the input. 
These stochastic pyramids can perform most of the operations their deterministic 
counterparts are employed for. They can also serve as preprocessors for data 
structures in which the only available information is local. Global information can 
be synthesized starting from such inputs and the structure of the traditional 
pyramid can be reconstructed. 

APPENDIX: COMPUTATION OF THE PROBABILITIES OF l(O),1 CONFIGURATIONS 

In this Appendix we give a method of computing the probability that a run of O’s 
has length n when generated under the continuous strategy. 

Let xj, j = 0,1,2, . . . , be independent identically distributed random variables 
with continuous probability density function f(x). We also define the binary 
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random variables cj, j = 1,2,. . . . The density of cj is determined as 

P[Cj = l] = PrOb[X,_l < Xi > xi+l]’ 

We now compute this probability. 
Let the outcomes of the random variables be xj-i, xi, xj+i. The continuous 

probability density function assures that these three numbers are unequal with 
probability 1 [8]. (The finite range of numbers which can be represented in a 
computer introduces only a negligible chance for equality.) We arrange them in 
ascending order and call the position of the outcome fj in the sequence its rank 5. 
The value of 5 changes for every new outcome xi, but it is always 1,2, or 3. We can 
allocate to xi a new discrete random variable rj taking only integer values between 1 
and 3. The variables rj are no longer independent. The sought probability can now 
be written as 

P[cj = l] = Prob[rj = max rj+k] = Prob[rj = 31. 
k= -l,O,l 

642) 

The probability of having rj = 3 is obtained by dividing the number of successes by 
the total number of possible outcomes: 

Prob[r, = 31 = $ = f . 

In the general case it is immediate to prove 

max rk = n, 
I 

(n - l)! = 1 
k-l,...,n n’ 

(A31 

(A41 

We now focus our interest on sequences of cj having the form l(O),l. Based on 
(Al) it is easy to verify that a sequence l(O),1 will appear whenever one of the n 
following ordering relations is satisfied: 

x0 < x1 > x2 *a* > xi < -*- x,+1 < x,+2 > x,+3, j=2,3 ,...,n + 1. 

(A9 

As mentioned above, we do not have to be concerned with equalities. The ranks 
have values between 1 and n + 4, and (n + 4)! possible permutations exist. The 
ranges of ranks satisfying (A5) are overlapping. For example, the ranks rO, rn+ 3 are 
allowed to take values between 1 and n + 3; rl, r,,, between 3 and n + 4; and rj 
between 1 and n + 4 - j. The computation of the probability of having a sequence 
l(O),1 in the general case is beyond the scope of this paper. We will examine only 
the cases n = 1, 2, 3, and 4: 

n = 1, Configuration : 101. 

Ordering relation: 

x0 -c x1 > x2 < x3 ’ x4. 646) 



292 PETER MEER 

Only the following 16 rank configurations satisfy (A6): 

ro 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 

This yields 

r1 

3 
4 
4 
5 
5 
3 
4 
4 
5 
5 
4 
4 
5 
5 
5 
5 

r2 

2 
2 
3 
2 
3 
1 
1 
3 
1 
3 
1 
2 
1 
2 
1 
2 

r3 

5 
5 
5 
4 
4 
5 
5 
5 
4 
4 
5 
5 
4 
4 
3 
3 

P[lOl] = ; = ; = 0.1333 (A? 

r4 

4 
3 
2 
3 
2 
4 
3 
1 
3 
1 
2 
1 
2 
1 
2 
1 

which is equal to the experimentally found probability in Table 1. 

n = 2, Configuration: 1001. 

Ordering relations: 

x0 < Xl > x2 > x3 < x4 > x5 
xo<x1>x2<x3 <x4>xg. (‘48 1 

When the two ordering relations are combined together we notice that the values of 
x 2 are not conditioned by x3 and vice versa. Whatever are the outcomes x2 and x3 
any of their relative orders satisfy (A8). We can break (AS) into two indepen&nt 
parts. This yields 

P~l(W = p[ x0 < x1 > x2] . P[x, < x4 > x5] = 4 . $ = $ = 0.1111 (A9) 

which is equal to the experimentally found probability in Table 1. 

n = 3, Configuration : 10001. 

Ordering relations: 

xo<xl > x2> x3 > x4<x5 > xg 

x0 c Xl > x2 > x3 < x4 < x5 > xg (AlO) 
x0 < Xl > x2 < x3 < x4 -c x5 ) xc. 
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Again we can combine the first two ordering relations and have 

p[1(0)311 = a x0 < x1 > x2 > Xj] * P[x, < x5 ’ %I 
+P[x,<x, > x2<x3 <x4< x5-61. (All) 

This yields 

80 
P[l(O),l] = ;. ; + F = $ = 0.05754 W) 

which is equal to the experimentally found probability in Table 1. 

n = 4. Configuration : 100001. 

Ordering relations: 

x,,<X1 > X2> X3>x4'x5 < x6'x7 

x0< X1 > X2> X3>x4<x5<x6'x7 

x,, < X1 > X2> X3 <x4 < xS < x6'x7 (A13) 
x,, < X1 > X2<x3 <x4<x5 cx6'x7* 

We combine the first two and the last two ordering relations and notice that all the 
random variables have the same distribution. This yields 

P[l(O),l] = 2 * fq x0 < x1 > x2 > x3 > x4]d’[X5 <x6=7] (A14) 

which gives 

P[l(O),l] = 2 * & * f = ; = 0.0222 (fw 

which is equal to the experimentally found probability in Table 1. 
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