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immediate area is the shape from texture processing where the
boundaries obtained from the texture segmentation may be used in
localizing the process of surface geometry extraction. A feedback
from the shape from texture algorithms may in turn provide useful
information about possible borders between textured regions.
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A Fast Parallel Algorithm for Blind Estimation of
Noise Variance

PETER MEER, JEAN-MICHEL JOLION, AND
AZRIEL ROSENFELD

Abstract—The only information available to a blind noise variance
estimation algorithm is the corrupted image and the white nature of
the zero mean Gaussian noise. The proposed algorithm recovers the
variance of the noise in two steps. First, the sample variances are com-
puted for square cells tessellating the noisy image. Several tessellations
are applied with the size of the cells increasing fourfold for consecutive
tessellations. The four smallest sample variance values (the outcomes
of the first four order statistics) are retained for each tessellation and
combined through an outlier analysis into one estimate. The different
tessellations thus yield a variance estimate sequence. In the second part
of the algorithm, the value of the noise variance is determined from
this variance estimate sequence. We have applied the blind noise vari-
ance algorithm to 500 noisy 256 X 256 images derived from seven pro-
totypes of classes often employed in computer vision and image pro-
cessing. In 98 percent of the cases the relative estimation error was less
than 0.2 with an average error of 0.06. Application of the algorithm to
differently sized images is also discussed. All the operations in the al-
gorithm are parallel and if they are implemented on an image pyramid,
the variance of the noise is recovered in O[log(image_ size)] process-
ing time.

Index Terms—Image pyramids, noise estimation, order statistics.

[. INTRODUCTION

Let f'be an image defined on an N X N square lattice. The pixels
have values between O and (say) 255. Let w be samples of a sta-
tionary, zero mean, normal, white noise source independent of f,
with variance o2. When the image f is additively corrupted by w
the noisy image g is obtained. The following blind noise variance
estimation problem is of importance in computer vision and image
processing:

Estimate o2, the variance of the noise, from the noisy image
g (m, n) without having access to a priori information about
the original image f (m, n).

In this correspondence we present a fast parallel algorithm for the
blind noise variance estimation problem. In most of our tests of
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this algorithm the estimation error was below 10 percent. In a par-
allel implementation the estimate is obtained after a number of pro-
cessing steps on the order of log [image_size].

The precise value of the noise variance is required in many ap-
plications in which algorithms are employed that have the variance
as a parameter. Image restoration by least squares (Wiener filter-
ing) [14, vol. 1], smoothing with Kalman filters [1], and optimal
threshold selection [15] are among such applications.

The noise is independent of the original image f (m, n) and for
any region in the noisy image g(m, n) we have

(1)

where the different s are the sample variances computed for that
region. In blind noise variance estimation we are given a set of
values of s, (or of some function of it) and must find ¢2 without
knowing the corresponding s;. The discussion of the relation be-
tween s,. and o2 can be postponed for the moment. In order to
estimate the variance of the noise, the ensemble of s, values must
be separated into signal, sy and noise, s, components. The dichot-
omy is achieved by noticing that uniform regions in the image con-
tribute only to the s,, term in (1), while local changes in gray level
(e.g., edges) influence both terms.

To estimate the variance of the noise, Canny [5] separated the
signal and noise components at the output of his edge detector. The
lower 80th percentile in the amplitude histogram of the edge de-
tector responses was taken as the contribution from noise and em-
ployed in the estimation. Voorhees and Poggio [16] fitted a Ray-
leigh distribution to the histogram of the image gradient magnitude.
The mode of the distribution is then the noise variance estimate.
Meer et al. [9] made use of the orthogonality properties of their
template edge detection masks to obtain the noise variance estimate
from regions declared as uniform. Besl and Jain 2] discriminated
uniform patches in an image by local planar fits and computed the
average variance over these regions.

The accuracy of the estimates is not available for most of the
above mentioned methods. Their dependence on discriminating
features (edges and/or uniform patches) in the noisy image, prior
to the estimation, introduces limitations. When a small noise vari-
ance has to be estimated from an image with severe fluctuations,
usually a residual component from the image is incorporated into
the value of the estimate. At low signal-to-noise ratios (the noise
is comparable with the image fluctuation), edge detection and sur-
face fitting are no longer robust operations, and the regions dis-
criminated as uniform, or the histogram of the edge detector mag-
nitudes, may not be reliable. Whenever the estimation procedure
requires the storage of a global histogram, parallel and therefore
fast implementations are not feasible.

In the new method we overcome these difficulties. Only local
statistics are employed and there is no need for a large memory.
All the computations are recursive and can be implemented in par-
allel on an image pyramid, allowing the estimation procedure to be
accomplished in O[log(image_size)] processing steps. We pre-
sent estimation results for hundreds of noisy images derived from
several pictures representing frequently met classes in computer
vision and image processing. The estimates are obtained for a large
range of noise variance values, from no noise to signal-to-noise
ratios below one.

In Section II the new noise variance estimator is introduced and
its behavior is analyzed. In Section III the estimation algorithm is
described. The experimental results are presented in Section IV. In
Section V the computational complexity of the image pyramid based
implementation of the algorithm and its limitations are discussed.

S, =5+ 8,

II. THE NOISE VARIANCE ESTIMATOR

Without loss of generality we can take the size of the image N
X N to be a power of 2, i.e., N = 2", The image is tessellated into
square cells of size ¢, X ¢;. It is convenient to have the cells’ side
length increase twofold for consecutive tessellations: ¢, = 20 1=
1,2, - - -, n. The hierarchy of such tessellations defines an image

NO. 2, FEBRUARY 1990 217

pyramid, a frequently employed tool in multiresolution image un-
derstanding [13]. We describe the image pyramid in detail in Sec-
tion V-A when the computational complexity of the algorithm is
assessed. The tessellation of the image with 2/ x 2! cells will be
referred to as level /.

The cells belonging to level / are located within the image with
index k, = 1,2, -+ -, K, where K, = 4"~! The unbiased estimate
of the variance, the sample variance s, (k;), computed for the kth
cell is

20 2l

sg(ki) = 4’_1_1 Z;l j§1 [ (if) = gkl]z (2)

where the subscript k, means that the computation is restricted to
the k;th cell. Similarly to (1) we have

sg(ky) = s (k) + s.(ki). (3)

As the noise variance estimator for the tessellation of the noisy
image representing level [, we employ the smallest value of the
sample variance s,(k; ):

q(l, 1) = min s,(k;) (4)
ki

where the second parameter, set to 1, emphasizes that the first order
statistic is the one computed. The significance of this parameter
will become clear later in this section. The contribution of the sig-
nal component s, (k; ) is the minimized term in (4) because the noise
component s,,(k; ) is a quasi-constant function of the noise variance
o2. The cell providing g ([, 1) thus is one of the cells with the most
uniform gray level distribution in the original image.

An important property of the noise variance estimate g(/, 1) is
that its value increases monotonically with the level [ for the tes-
sellation sizes we are concerned with. This monotonic behavior of
the first order statistic is a consequence of the well known fact that
the sample variance is a consistent estimator, i.e., its spread (con-
fidence interval) decreases with the increase of the degrees of free-
dom of the sample. For a uniform field, the larger the data set from
which the sample variance is computed, the closer to the real vari-
ance of the image must the obtained value of the first order statistic
be. Thus, for a sufficiently large increase in the cell size, the out-
comes of the first order statistic must increase too with probability
one. The behavior of the estimator (4) in the case of a uniform field
is analyzed in detail in [9]. In the case of a real image, a larger cell
incorporates more changes, further increasing g(/ + 1, 1) relative
toq(l, 1).

For a given level, the first order statistic of the sample variance
alone cannot be a robust estimator of the noise variance. Its out-
come may be an outlier, a value far away from the mode of the
distribution, having a very small, but nonzero probability. The out-
liers will strongly underestimate the noise variance and should be
discarded. The effect is especially important for the finer tessella-
tions where the number of cells X is large.

We improve the robustness of the estimation procedure by re-
taining for a level not only the first but the first four order statistics,
that is, the smallest four values of the sample variance. The higher
the order of a statistic the lower is the probability that its value is
still an outlier and therefore cannot contribute to a reliable esti-
mate. We have found experimentally that employing more than the
first four order statistics does not yield further improvement on the
accuracy of the variance estimate v (/). The amount of computa-
tion and the data flow in the algorithm is kept minimal by fewer
order statistics.

Let the obtained outcomes be q (I, 1), g(/, 2), g(1,3), q(I, 4).
We can now perform a set of slippage tests to investigate whether
ornot g(l,i),i = 1,2, 3 are outliers. The outliers are discarded
and the remaining values averaged. The final value of the estimate
is denoted v (1).

We employed Dixon’s r statistics for the slippage tests [6]. These
statistics are ratios of differences of order statistics and are com-
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pared to threshold values:

ql,2) —q(l, 1)

q(l,4) —q(l, 1)
_q(h4) —q(3) .

ro(l, 3) = W) —al2)" 1= re(l, 2). (3)

The following tests were employed:

_ 9 3) —aq(2)

ol 1) = S TI ETEY

4
it ro(l, 1) < 0.5 then »(l) = i ~§1 q(l, i) (6)
else
1 4
if r(1,2) < 0.7 then v(l) = 3 ;2 q(l, i) (7
else
if r(l,3) =07 then wv(l) = % _23 q(l, i) (8)
else
v(l) = q(l, 4). (9)

The thresholds correspond to a 0.25 error probability of not de-
tecting an outlier [3]. Their values, as long as they do not yield a
too low or too high error probability, have only weak influence on
the overall performance of the algorithm.

For the very coarse tessellations [ = n — 1, n the slippage tests
cannot be applied. In these cases we have only four samples and
one sample, respectively. The value of v (/) is taken as the average
of the four order statistic outcomes (! = n — 1), or equal to the
global sample variance of the noisy image (/ = n).

Thus the following operations are performed on the noisy image
to obtain the sequence of variance estimates.

® The 2" x 2" noisy image is tessellated with cells of size 2'
x20,1=2,3,---,n

® For each level [

1) the sample variance is computed at every cell, (2);

2) the four smallest values (except for [ = n) are retained;

3) a set of slippage tests (except for / = n — 1, n) are per-
formed, and the final value v (/) of the variance estimate is
computed, (5)-(9).

The obtained sequence of variance estimates, v(l), [ = 2, 3,

+, n, is the input into the blind noise variance estimation al-
gorithm. It preserves the monotonicity property of the first order
statistics discussed at the beginning of the section.

The variance estimate retained for a given level is the result of
nonlinear operations on the first four order statistics of the sample
variances. In the noise variance estimation algorithm we will em-
ploy the ratio of consecutive variance estimates and will make use
of a lower bound on the values of these ratios. In Table I we present
the experimentally obtained smallest values of v (I — 1)/v(l) for
different image sizes: 64 x 64, 128 x 128, 256 X 256. The un-
corrupted uniform field has 128 as gray level. Fourteen instances
of noise variance ranging from 3 to 582, with five different random
fields per variance value (a total of 70 cases), were employed. The
average values of the ratios are also given.

The experimental ratios are slightly larger than the theoretically
found bounds for the ratios of first order statistics [9]. In the blind
noise variance estimation algorithm we employ the bounds 3(/)
generated by the expression:

B(I)y=1-0.1-27"*°
The values of 3(/) are given in Table II.

(10)

III. THE BLIND NOISE VARIANCE ESTIMATION ALGORITHM

An efficient blind noise variance estimation algorithm should re-
turn the correct noise variance for a large range of values. This
includes the case of an uncorrupted image when we expect to ob-

TABLE 1
EXPERIMENTAL BOUNDS ON THE RATIO ¢ (! — 1) /v () FOR THE UNIFORM
FIELD IMAGE
Level {
Size Value 3 i 5 6 7 ]
Minimum 0.323 0.660 0.833 0.998
613 64
Average 0.189 0.780 0.902 1.000
Minimum 0.332 0.631 0.831 0.921 0.999
128 X 128
Average 0.424 0.739 0.892 0.954 1.000
Minimum || 0.263 | 0.639 | 0.827 | 0922 | 0.961 | 1.000
256 % 256
Average || 0370 | 0.710 | 0.875 | 0.941 | 0.976 | 1.000
TABLE 11
THE EMPLOYED BounDs 3(/)
1 3 1 5 6 [ 7 R 9
H0) 0.2 0.6 08 0.9 0.95 0.075 0.0875

tain zero as the estimated variance of the noise. To obtain the se-
quence of estimates, at every level the algorithm automatically se-
lects the sample variances obtained in the cells with most uniform
pixel values in the original image. For a noiseless image, the vari-
ations seen by the selected cells are the smallest ones at that tes-
sellation. Thus the noise variance estimate cannot be less than these
residual signal components. The following rule detects that an im-
age is not corrupted by noise.
Rule 1:

if 3! = 2suchthatg(l,4) <1 (11)

where &2 is the estimated noise variance value, the output of the
algorithm. Erroneous decisions for small noise variances are
avoided by comparing the fourth order statistic to a minimum vari-
ation threshold.

In our blind noise variance estimation algorithm the dichotomy
between the contribution of the signal and that of the noise is
achieved by analyzing the shape of the deviation sequence com-
puted as:

then 62 =0

_vl-1)
a(l) = o)

where 3(/) are the lower bounds obtained for the uniform-field
(Table II). Since v(I — 1) < v(!) the values of a (/) are always
between —1 and 1. Tessellations at lower levels employ small cells
and at least a few of them contain quasi-uniform regions. For quasi-
uniform regions, « (/) is positive or has very small negative values
since B(!) is a lower bound for uniform regions.

As the cell size increases (/ increases) the sample variances are
computed for larger and larger regions of the image. For arbitrary
images, the larger the region the less constant its gray level distri-
bution should be. Depending on the original image, at a given level
1,, cells with almost constant pixel distribution no longer can be
found. All the sample variance values increase steeply, yielding a
much larger estimate v(/,) and ~1 < «a(l,) << 0. The noise-
signal dichotomy thus can be achieved by detecting in the deviation
sequence the level where the value of « (/) becomes significantly
negative.

To avoid false alarms for images with a not well defined noise—
signal separation (to be discussed below) a cumulative thresholding

-8y 1=3,4,---,n (12)
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technique is employed:

for [ =3,4, -+ ,n I, = min arg [«(]) < 0]
i

[

!, = min arg[‘z; all) < T}
{ i=l

b+ 1

Zoall)y<T.

i=l,

for ly=3,4,---,n—2 (13)
The threshold T is equal to —0.1, a small negative number. Its
precise value does not effect the performance of the algorithm. The
estimates at levels [ < [, belong to the noise domain, and the ones
at levels [ = [, to the signal domain.

In Fig. 1 examples of deviation sequences are shown. The im-
ages are assumed to have size 256 X 256 and thus n = 8. In the
case of a uniform field [Fig. 1(a)] the a([) values decrease with
the level but remaining always positive. The noise domain spans
all the levels. The estimation of the variance of a normally distrib-
uted stationary random field thus can be accomplished by applying
the following rule.

Rule 2:

(14)

Note that the variance of the uniform field is recovered without the
knowledge that there is no variation present in the original image.

For an image with a good noise-signal separation [Fig. 1(b)] the
noise domain is more extended than the signal domain. The tran-
sition between the two domains is sharp, /, = [,, and occurs at a
high level yielding reduced spread of the sample variances. The
outcomes of the order statistics are then close to the correct noise
variance value and an accurate &% can be obtained.

In the moderate noise-signal separation case [Fig. 1(c)] the sig-
nal domain is more extended than the noise domain. The transition
between the domains is not well defined (/, = /[, + 1 = 5 in the
example) and occurs at intermediate levels. The estimates in the
noise domain are obtained from ensembles with larger spreads.

An example of poor noise-signal separation is shown in Fig.
1(d). The noise domain is reduced to level 3, the first one for which
a value is available. At every level all the cells see regions in the
original image with significant variations. The algorithm should
recognize the case of poor noise-signal separation (/, < 4) and
warn about its incompetence to return an accurate estimate. This is
achieved by the following two rules.

Rules 3 and 4:

if I,=3or4

if I,=n then &2 = v(n).

‘WARNING: CANNOT ESTIMATE!’
(15)

The busyness of the signal, i.e., how much gray level variation
is present per unit area [14, vol. 2], is an important parameter of
our blind noise variance estimation algorithm. The more busy the
signal, the less good is the separation between the two domains.
Information about the busyness of the original image is obtained
from the signal domain. If the signal domain spans several levels
and its sequence of variance estimates increase steeply, the image
is probably a busy one. The assumption appears to hold for real
scenes, as will be proved by our experimental results. In the rules
applied for 5 < I, < n we employ a parameter derived from the
signal domain to characterize the busyness of the original image.

While Rules 1 to 4 are independent of the image size, the inter-
polation rules employed when 5 < I, < ndo depend on it. In what
follows we describe these rules for 256 X 256 images, n = 8. The
cases of 128 X 128 and 512 X 512 images are discussed in Section
V-B.

then

A. Transition at Level I, = 5
The busyness of the signal is characterized by the value of the

parameter
p = a(5) + a(6)

-2<p=xT=-0.1. (16)
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Fig. 1. Examples of deviation sequences. (a) Uniform field. (b) Good
noise-signal separation. (c) Moderate noise-signal separation. (d) Poor
noise-signal separation.

More negative values of p indicate more variation in the original
image and the estimates belonging to the noise domain are then
more contaminated by residual signal variations. The noise vari-
ance is underestimated at the lower levels; however, the residual
signal components compensate for the underestimation and inter-
polation between two such levels yields the correct estimate.

The (—2, T} range of p is partitioned into four regions marked
by the index i = 1, 2, 3, 4 with p,_, and p; being the bounds of
the ith region. The first region, i = 1, corresponds to the busiest
signal, p having the smallest negative values. The noise and the
signal components of the variance (3) are strongly combined. The
output of the algorithm is as follows.

Rule 51:

for pp= -2 <p =<p =—1.5 6. =v(3).

(17)

The contamination by the signal is the weakest at level 3 and thus
the value allocated to &2 in (17) is the most ‘‘reliable’’ one. Such
busy images are seldom met in the classes to which the algorithm
is applicable. In fact in our experiments Rule 51 was never em-
ployed.

In the other three regions linear interpolation is employed. First
the interpolation variable is computed:

L

for p;_1 = p = p; 0 = (18)
Pi—1 — Pi
The explicit interpolation rules are given below.
Rule 52:
for py= —1.5<p <p= -1
6L =6 -0v(3)+ (1 -0 v(4). (19)
Rule 53:
for p = -1 <p <p;=-05
6L =6 v(4)+ (1 —28) v(5). (20)
Rule 54:
for p3= -05<p=<p,=T
62 =56+ v(S5)+ (1 —29)-v(6). (21)

These interpolation rules are identical and the interpolation is con-
tinuous across the whole range of p.
B. Transition at Level I, = 6 or 7

When the transition occurs at level 6 or 7, the variance estimates
at the higher levels (but still in the noise domain) are close to the
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correct value of the variance, being computed from larger samples.
To characterize the busyness of the signal the two o’s at the tran-
sition between the noise and signal domains are employed. Their
ranges, T < a(l, — 1) < land —1 < a(l,) < T, are partitioned
into two regions. The threshold T has the same —0.1 value.

The parameter from the noise domain, (I, — 1), is taken into
consideration first. In its first region o (/, — 1) takes only negative
values corresponding to a ‘‘blurred’’ transition between the noise
and signal domains. As in the case of /, = 5, we again interpolate
based on the busyness of the signal between two levels in the noise
domain, leaving the residual signal component to compensate for
the underestimation. As interpolation variable § = |« (l,)| is em-
ployed.

Rule 61:

for T<a(l,-1) =
oL =08 0v(l,-2)+(1-8)-
The more busy is the signal, i.e.,
closer to v (I, — 2) is &2

In the second region, a:(!, — 1) takes positive values. This re-
gion corresponds to a well-defined transition between the noise and
signal domains. Let the two regions of the parameter a(l,) be
bounded by «;_; and o, i = 1, 2. Similarly to (18) the interpola-
tion variable 6 is

v(l, - 1). (22)

the more negative a(/,) is, the

for 0 < a(l, - 1) <1 and
goasal)sq s=2blza o
Qo) T
The interpolation is achieved by the following rules.
Rule 62:
for a9 = -1 < a(l,) = a; = =-0.5
62=06-0v(l,—2)+ (1 —=8) - v(l, — 1). (24)
Rule 63:
for oy = -05=<a(l))<a,=T
6 =05[(1 +8) - v, + 1)+ (1 -8) - v(l,)]. (25)

The 1nte|;polation is continuous across the regions of a(l,). The
largest ¢, value cannot exceed 0.5[v (I, — 1) + v(l,)], still in
the noise domams At the higher levels there is no need to go for-
ward into the signal domain; the estimate values at the transition
are already reliable.

Rules 3 and 4 (15) warn about the incompetence of the algorithm
to return an accurate output. While this warning is necessary,
sometimes the correct noise variance can be obtained if the algo-
rithm is applied a second time with a smaller threshold value 7).
For the few 256 X 256 images in which /, = 3 or 4, changing the
threshold to T} = —0.2 was successful in our experiments. A rule
employed in this second iteration has its number supplemented with
1 on the left. Thus in the experimental results we can have Rules
4 and 14, or 52 and 152. If in the second iteration the transition is
still at level 3 or 4, the value v (3) is the output of the algorithm.

To conclude this section, we summarize the steps of the blind
noise estimation algorithm, after the variance estimate sequence
v(!) has been obtained:

¢ Compute the deviation sequence a (/) (12).

® Find the level of transition /, between the noise and signal
domains by cumulative thresholding, (13).

* Apply the correct rule (14) to (25).

¢ Optional: If /[, = 3 or 4, lower the threshold and repeat the
above procedure.

The rules employed in the blind noise variance estimation al-
gorithm take into account all the available information: the level at
which the transition between the noise and signal domains occurs,
and the cue about the amount of variation present in the signal. In
the following section we demonstrate the effectiveness of the al-
gorithm. On a set of 500 noisy images derived from seven classes,
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the algorithm returned a variance within a 20 percent relative error
in more than 98 percent of the cases. The average relative error
was 6 percent.

IV. EXPERIMENTAL RESULTS

To assess the efficiency and robustness of the blind noise vari-
ance estimation algorithm we ran it on several 256 X 256 noisy
images derived from seven prototype images belonging to different
classes often employed in image processing and computer vision:
uniform field, binary, parts, portrait, outdoor, aerial, and texture.
The images are ranked on a scale of increasing structural complex-
ity, i.e., decreasing separation between the noise and signal do-
mains in their noise corrupted versions. All the images were de-
fined on a 256 gray level scale and were corrupted additively with
zero mean, normal noise having one of fourteen variance values
between 37 and 58°. For each noise variance value five noisy im-
ages were generated. The noise variance value was also estimated
in the noiseless case, 02 = 0. Thus in total 71 different instances
were measured for each prototype image. Two parameters were
used to assess the accuracy of the algorithm’s output the relative
error € and the signal-to-noise ratio \:

2 _ a2 2
|‘7w - | 9f
- =L 26
A P (26)

where o2 is the variance of the corruptmg noise, 62 the variance
estimated by the algorithm, and of is the variance of the original
image. In the noiseless case € = o2 For the largest o2 values em-
ployed the signal-to-noise ratio was less than 1 for all the images.

We present now the performance of the algorithm for each of
the seven prototype images. A more detailed analysis can be found
in [9].

All the pixels in the uncorrupted uniform field image have their
gray level value equal to 128. The obtained relative error was in
97.18 percent of the cases less than 0.05, and no error above 0.1
was obtained.

In the binary image [Fig. 2(a)] only two gray level values are
present, the object having 75 and the background 175. The mean
gray level value is u; = 162.6 and the variance a} = 32.9°. The
uncorrupted binary image has large uniform regions and the sharp
transition between the noise and signal domains always occurs at
level 6 or 7. The Rule 61 is never employed. No e value larger than
0.1 was obtained.

The parts (industrial-type) image [Fig. 2(b)] is a gray level im-
age with mean pu; = 132.93 and variance a} = 35.87°. The back-
ground is no longer uniform but has a slowly changing illumination
pattern and also contains shadows of the objects. The noise and
signal domain are well separated, with the transition between them
appearing in most of the cases at level 6. The transition, however,
is less sharp than in the binary image and Rule 61 was also em-
ployed. The relative error for the parts image was always less than
0.2.

The portrait image [Fig. 2(c)] is often employed in image pro-
cessmg The i image has mean gray level value p; = 99.18 and var-
iance o7 = 52.31°. The image contains much more detail than the
parts 1mage but the scale of the details is relative large and regions
with quasi-constant gray level values can still be found. The tran-
sition between the noise and signal domains occurs at level S in
most of the cases. Only one image out of 71 had ¢ between 0.2 and
0.25.

The outdoor image [Fig. 2(d)] is a representative of the class of
natural scenes with significant detail at every scale. Its mean gray
level value is u; = 154.78 and its variance af = 41.24%. Uniform
regions are more difficult to find, most of the background having a
fine texture (grass, bushes). The noise-signal domain transition is
almost always detected at level 6. Only two images had € between
0.2 and 0.25.

The aerial image [Fig. 2(e)] is a representative of the class of
images with significant detail at the smallest scale. The contrast of
the image is less than that of the other 1mages The aerml 1mage
has mean gray level value u; = 88.82 and variance af 31.37°.
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(e)

Fig. 2. The 256 X 256 images employed in the experimental results. (a)
Binary. (b) Parts. (c) Portrait. (d) Outdoor. (e) Aerial. (f) Texture.

The transition between the noise and signal domains always occurs
at level 6. Only three images out of 71 had e between 0.2 and 0.3.

The texture image [Fig. 2(f)] is an example of a highly struc-
tured natural scene taken from [4]. The mean gray level is p; =
102.18 and the variance af2 = 57.89%. The image has no uniform
regions, even the largest pebbles having ramp-like gray level pro-
files and the noise and signal domains are strongly intertwined. For
21 outcomes Rule 4 (warning about incompetence to estimate) had
to be applied. The transition detection threshold was then lowered
from T = —0.1to T = —0.2 and the algorithm was run again for
the rejected cases. For all the 71 images, and both iterations, only
two images had e between 0.2 and 0.25.

The experimental results are shown centralized in Table II1. The
upper part of Table III shows the distribution of the relative error
e by its density and cumulative value. The list of rules employed,
the number of times they were used, and the distribution of the
relative error obtained are given in the lower part. Of the total of
497 images derived from the 7 prototypes, the variance of the noise
was estimated in the first iteration for 476 images with an average
relative error 0.0597 and standard deviation 0.0543. The average
error for all the images (after two iterations) was 0.0605 and the
standard deviation 0.0539.

The range of corrupting noise was very large, from noiseless
images to signal-to-noise ratios well below 1. Nevertheless, our
blind noise variance estimation algorithm returned an estimate with
less than 20 percent error in more than 98 percent of the cases. The
algorithm did identify correctly all the noiseless images (Rule 1)
and uniform fields (Rule 2). It was also successful for very noise
images where methods based on edge detection (see Section I)
would be less reliable.

V. DiIsCUSSION

The noise variance estimation algorithm has two parts. The first
part, summarized at the end of Section II, yields the variance es-
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TABLE III
EXPERIMENTAL RESULTS FOR ALL THE IMAGES
Relative Error Distribution ( ¢ )
—
€ 0-0.05 | 0.05-0.1 | 0.1-0.15 | 0.15-0.2 | 0.2-0.25 | 0.25-0.3 > 0.3
Bin 54.62 24.58 11.98 7.14 1.26 0.42 0
Total 54.62 70.20 91.18 98.32 96.58 100 100

Employed rules Distribution Against Relative Error
Number Times Used 0-0.1 0.1-0.2 > 0.2
Rule 1 7 7 0 0
Rule 2 70 70 0 0
Rule 52 38 29 8 1
Rule 53 42 19 21 2
Rule 54 30 18 12 0
Rule 61 74 65 7 2
Rule 62 93 88 2 3
Rule 63 122 81 41 0
Rule 14 5 3 2 0
Rule 152 10 6 4 0
Rule 153 6 5 1 0

timate sequence v (/). For every level (tessellation) the four small-
est sample variance values are selected. This can be done in par-
allel and recursively, if the algorithm is implemented on the
hierarchical structure of an image pyramid, as will be shown be-
low. The second part, summarized at the end of Section IIL, returns
the value of the corrupting noise variance by applying the corre-
sponding rule. Only a few numbers are involved in the second part
of the algorithm, and the computations do not require access to the
original image.

A. Parallel Implementation on an Image Pyramid

An image pyramid is a stack of decreasing resolution represen-
tations derived recursively from the input image. Usually, the res-
olution decreases twofold between consecutive levels of the image
pyramid. Thus, if the size of the input image is 2" X 2", the rep-
resentation at level / is of size 2"~/ x 2"~/ The image pyramid
has n = log(image_size) levels, the ‘‘highest’” level, the apex,
having only one pixel. For the implementation of the blind noise
variance estimation algorithm the simplest architecture suffices. A
cell at level [, the parent, is connected with four cells at level / —
1, its children.

The receptive field of a cell at level [ can be delineated at the
input by mapping downward the connections between the parents
and their children. The receptive field of the parent is the concat-
enation of the four fields of its children and has the size 2/ x 2.
The ensembie of receptive fields of the cells at level / generates the
level ! tessellation of the blind noise variance estimation algorithm.

Assume that the sample variances have already been computed
for level I — 1, i.e., for cells of size 2/~ x 2/~'. The sample
variances sg(k, ) at level / must be computed for cells of size 2/ x
2! 1f in (2) the average gray level within the cell, g, is made ex-
plicit, the well known computational expression of the sample vari-
ance is obtained:

202! 5 20 2! 2
i§l jgl [gk'(i'j)] -4 ]:2:1 jgl gk’]

4 -1

where the subscript k; means that the computation is restricted to
the k,th cell on level [. The sums in (27) are computed by concat-
enating the corresponding sums of the children. The procedure is
parallel because a parent at level / needs access only to its four
children at level [ — 1. It is fast, the pyramid being *‘loaded’” with
all the sample variance values after O[log(image_size)] =

se(ki) = (27)
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O[logn] processing steps. Round-off errors [12] are also reduced
by computing recursively the sums in (27) since all the quantities
are of the same order of magnitude.

The outcomes of the first four order statistics for level / can also
be selected in parallel if a parent retains only the four smallest
values among the 16 available from its children. At the apex of the
pyramid the four smallest sample variance values from the whole
ensemble at level / are obtained. The four order statistic values
derived from level / are available at the apex of the pyramid in
Ollog(n — I)] steps. The specific architecture of the machine on
which the algorithm is implemented determines the convenient data
communication pattern.

The Connection Machine [7] is a fine-grained parallel machine
with increasing popularity in computer vision applications. The
parallel noise variance estimation algorithm based on the Canny
edge detector (see Section I), was implemented on the Connection
Machine by employing local histograms [11]. The authors com-
plain about ‘‘costly processing required to accumulate a histo-
gram’’ and necessary improvements ‘‘where a more precise esti-
mate of noise is needed’” [11, p. 183]. Image pyramids can be
implemented on the Connection Machine [8] and thus the blind
noise estimation algorithm described in this correspondence avoids
the above problems.

B. Limitations of the Algorithm

To obtain accurate estimates with the blind noise variance esti-
mation algorithm, the noise and signal components should be sep-
arable. That is, there should exist at least a few cells at lower levels
for which the sample variance is given by the noise alone. These
cells should be corrupted by the same noise process, and thus ho-
mogeneity of the distorsion across the image is of importance.
Highly textured images like the one shown in Fig. 3 do not satisfy
this condition. The residual signal component of this image (the
variance returned by the algorithm for o2 = 0) is 8.25%. For large
noise variance values the residual signal component becomes in-
significant; however, the algorithm is not effective because in highly
textured images the noise-signal domain transition is not well de-
fined.

Clipping, pixel values driven into saturation (0 or 256) by the
noise, may influence the output of the algorithm. For our examples
the effect of clipping was negligible since most of the pixels in the
regions providing the order statistics outcomes were close to the
average gray level value (minimum 88.82 for the aerial image).
However, if the quasi-uniform regions have gray levels close to the
gray scale boundaries, severe distortions are introduced and the
algorithm strongly underestimates the variance of the noise.

The presence of clipping can be recognized by the algorithm.
The average gray level value is available to every cell for the com-
putation of its sample variance. Thus, after the noise variance is
determined, the average gray level values of the eight cells in-
volved (supplying the order statistics outcomes for the rule being
employed) could be compared to 4,. If most of these values are
less than (say) twice 6,., a warning about underestimation should
be issued. It is possible to correct the variance estimate when the
amount of clipping is known; however, the necessary computations
do not justify such a procedure.

The application of the algorithm to 128 X 128 images is ex-
pected to be less successful because the uncertainty associated with
the variance estimate sequence becomes much larger. The experi-
ments described in Section IV were repeated for seven 128 x 128
prototype images derived by either reduction or windowing from
the 256 X 256 prototypes. The same number, 71, of noisy images
was derived and the algorithm was first applied without any mod-
ification. Rules 3 and 4 (warning about incompetence to estimate)
were employed for 82 noisy images. The average error for the re-
maining 415 images was 0.2695 with a standard deviation of 0.344.
The performance of the algorithm was improved if the threshold
was increased to 7 = 0, and the rules for /, = 5 modified. Rules
52 and 53 both yielded interpolation between levels 3 and 4, while
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Fig. 3. An example of an image for which the algorithm cannot be applied
successfully.

Rule 54 interpolated between levels 4 and 5. The number of re-
jected images increased to 132; however, the average relative error
for the remaining 365 images decreased to 0.0911 with a standard
deviation of 0.0796. The distribution of the rejected images (Rules
3 or 4) was as follows: parts 10, portrait 30, outdoor 7, aerial 20,
and texture 65. The 128 X 128 images will tend to have more
details carried by fewer pixels, increasing the busyness of the im-
age and decreasing the chances of finding uniform regions. This
can explain why the noise-signal domain transition appeared fre-
quently at levels 3 or 4 in 128 X 128 images.

The algorithm was also applied unchanged to several 512 x 512
images whose prototypes were enlarged from the 256 X 256 ones,
unless the latter were part of larger images. Of 23 images, the al-
gorithm wamned about 8 (6 of them texture). The average relative
error for the remaining 15 images was 0.0671 with a standard de-
viation of 0.0881.

In conclusion, application of the blind noise variance estimation
algorithm to a 128 X 128 image should be assessed for the specific
image to be processed. For relatively simple images the algorithm
will perform well; for more complicated ones it may fail. For 512
X 512 images the algorithm is valid.

VI. CONCLUSION

We have presented a blind noise variance estimation algorithm
for recovering the variance of additively corrupting zero mean
Gaussian noise without any information about the characteristics
of the original image. While the algorithm is most effective if im-
plemented on the parallel, hierarchical structure of an image pyr-
amid, it can be equally successful (ailthough not as fast) when em-
ployed on a serial machine. In the former case, the algorithm returns
the value of the noise variance after a few tens of processing cycles
and may be used on-line in control loops which require updating
of the noise variance value continuously.
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Comments on ‘“A Three-Module Strategy for Edge
Detection”’

RAE-HONG PARK anp WOO YOUNG CHOI

Abstract—The purpose of this corresp is to indicate that in
the above paper,' the proposed new orthogonal bases are the same as
the edge subspace bases in Frei and Chen’s approach and the ratio for
detecting edge is not different from that proposed by Frei and Chen
for special cases. We also propose the fast computational method of
Frei and Chen’s approach by using the property of normalized orthog-
onal masks.

Index Terms—Edge detection, edge subspace, orthogonal basis.

In the above paper,' Lacroix pointed out a mistake in Frei and
Chen’s approach [1], in which (1) will not provide the desired ratio
unless some normalization factors are introduced.

r= <Z (w- Tf)2>l/2/<.-§91 (w- T.-)2>1/2 (1)

i=1

Lacroix used the natural canonical basis and built new orthogonal
bases By, - - - , B;. In fact, the new orthogonal bases with a =
V2 are the same as the edge subspace bases proposed by Frei and
Chen {1]. By using the canonical basis in order to compute the
norm of the pattern vector (1) becomes

r o <Z (W - B,»)2>1/2/<él w%)l/z ()

and (2) has similar structure to the criterion proposed by Frei and
Chen (see [1, eq. (2)]) for orthogonal bases having same norms.
Instead of using canonical basis, Gonzalez and Wintz used the
normalized orthogonal basis (see [2, p. 344]). When the orthogonal
masks are normalized, we can extract the property of orthogonal
masks which can be used for fast computation of Frei and Chen’s
approach. To solve the complex computational requirement of Frei
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Fig. 1. Weights of a mask.

and Chen’s approach, we propose the fast computation method by
making use of the property of the normalized orthogonal masks.

The masks proposed by Frei and Chen are classified as follows
[1]: the first four masks are suitable for detecting edges; the second
set of four masks represents templates suitable for line detection;
and the last one is proportional to the average of the pixels in a 3
x 3 mask. If the weights of each mask are defined as ¢;;’s as shown
in Fig. 1, each mask can be represented in the vector form T; =
(tios tins = ** » tg)', i = 1,2, -+, 9, where (*)' denotes the
transpose operation of a vector *. With pixels corresponding to the
3 X 3 mask represented by W = (wy, wy, * * * , wg)', assuming
that the vectors T, i = 1, 2, - - - , 9, are normalized to N;, we can
find the magnitudes, P,, P, and P,, of the projection of W onto the
edge, line, and average subspaces, respectively.

4 1/2
8 1/2
P = (-:ZS(W' N,-f) :

P, =(W:-N) (3)

where Nyis T,/ T, and | T,|l = (¢% + ¢4 + -+ - + t])'/% Sim-
ilarly, 0,, 6;, and 0, denote the angles between W and its projections
onto the edge, line, and average subspaces, respectively [1]. If 6,
is less than the threshold, the point is assumed to be an edge. In
our proposed method for reducing the computation time, we use
the relation P2 + P} + P2 = || W|? and the relation between vec-
tors of edge subspace. First, P? can be caiculated as follows:

4 4
P=XW-N =g X (W) @)

Since 1,3 = 0 fori = 1, 2, 3, 4, we can expand each squared term

as follows.
7 4
5 (zt,.jt,k>w,wk> (s)
k#j \i=1

WA 7

P == Zwl+ 2

¢ g\j=oi=1 Y j=o

Here we use the relation of the masks of the edge subspace, i.e.,

4
E‘] tyty = —48(n)

-4, ifn=(k—j—4)mod8 =0
= ‘ (6)
0, otherwise.
4
Yith=4, fork=0,1,""-,7. (7)
i=1
We can write
7 7 7
PP=1(4 23 - )
cF < <1§3w!> 41§0 kz*:j 6(n)w’wk>
2 2
= % <i§0 (w; — wieq) > (8)
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