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Abstract. Invariant representations are frequently used in computer vision algorithms to eliminate the effect of
an unknown transformation of the data. These representations, however, depend on the order in which the featur
are considered in the computations. We introduce the class of projective/permyt&iovariants which are
insensitive to the labeling of the feature set. A general method to compupé-theariant of a point set (or of

its dual) in then-dimensional projective space is given. The one-to-one mapping betweed points and the
components of thep?-invariant representation makes it possible to design correspondence algorithms with superior
tolerance to positional errors. An algorithm for coplanar points in projective correspondence is described as ar
application, and its performance is investigated. The ugB-givariants as an indexing tool in object recognition
systems may also be of interest.
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1. Introduction For real images the explicit correspondence problem
usually is solved making use of metrical properties, i.e.,
The following generic problem often appears during the correspondence is obtained from proximity rela-
the execution of many computer vision tasks. Two sets tions. Salientfeatures (mostoften corners) are detected
of features are given, called in the sequel thfer- in bothimages. The two feature sets are related to iden-
enceand thetransformed set An unknown transfor- tical coordinate systems and the correspondences are
mation maps a subset of reference features into a subsesought in windows defined around (say) the reference
of the transformed set. It is required to match the feature locations. Whenever the two images are taken
corresponding features between the two sets. In thefrom very different viewpoints (the two feature sets
correspondence probleroentral to motion and stereo  are connected by a strong affine or projective trans-
tasks, this issue is directly addressed. Howeveirthe  formation) the search window based correspondence
dexing problemi.e., identifying from a database the methods will yield many false matches. In this case the
model best representing the data, can also be regardedvindows have to be large to account for the changes
as belonging to the same class. between the two images and numerous candidates are
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included. Foran extensive application of thistechnique wherer, and T(rx) are the reference and the trans-

see for example (Zhang et al., 1994). form features respectively, amdrs, . .., r¢} describes
The role of metric information is different in the a permutation of the labels.
solutions proposed for the indexing problem. For ex-  Invariant representations are very sensitive to noise,

ample, in thealignmenttype methods (Huttenlocher i.e., to positional errors in the location of the features.
and Uliman, 1990), the most proper transformation be- Errors of one or two pixels can drastically change
tween the two sets is sought by randomly sampling the the value of the invariant associated with a subset
space of possible transformations. For a given transfor- of features. To reduce the amount of false matches,
mation, the transformed set is backprojected onto the topological relations among the features (e.g., they
reference set and the local deviations are used to buildare known to belong to the same object located in
a performance measure. Alignment implies a correct the front of the camera) are extensively employed.
transformation, and thus a correct match between the Examples of such object recognition systems are
points is used to define that transformation. The random described in (Mundy et al., 1994b; Rothwell, 1994;
sampling of the transform space is eliminated by using Zisserman et al., 1995).
invariant representations for the two sets. Geometric  The p?-invariants are useful beyond removing the
hashing (Lamdan et al., 1990) is an example of the in- dependence on the labeling. IR" an (n + 3)-
variance based approach toward the indexing problem.tuple of points can be represented with onlywum-
The method described in this paper belongs to the bers, the number of independent projective invariants.
class of invariant representations, and treats the corre-However, it will be shown that using a redundant
spondence and indexing problems as equivalent. Its ap-p?-representation (based on at least 3 numbers),
plication to object recognition is discussed at the end of significantly increases the tolerance to positional errors
the paper. Today, invariance is a major research area ofand allows the design of less sensitive correspondence
computer vision. See the books (Mundy and Zisserman, algorithms.
1992; Mundy et al., 1994a) for comprehensive surveys  In Section 2 the basip?-invariant of four collinear
of the results. Invariant representations, however, are pointsis derived. The solution for arbitrary dimensional
permutation-sensitive. That is, the value of an invari- projective spaces is presented in Section 3. In Section
ant associated with a subset of features often depends4 an application in the projective pla®, a robust
on the order in which the features were considered in method for establishing point correspondences with re-
its computation. Permutation sensitivity introduces a duced sensitivity to outliers and positional errors, is
combinatorial explosion inthe indexing problem. Inthe described. The case & is discussed in Section 5.
n-dimensional projective spaé¢® an invariant repre-  The consensus principle, repeatedly exploited to in-
sentation is based an + 3)-tuples of features, and for ~ crease the tolerance to noise, as well as the ugé-of
each(n + 3)-tuple (n 4 3)! different labelings have to  invariants in object recognition tasks, are discussed in
be considered. Section 6.
In this paper we describe a general method to ob-
tain representations of point-sets in projective spaces
of arbitrary dimension which are insensitive to both 2. p?-Invariant of Four Collinear Points
projective transformations and permutations of the la-
beling of the set. They will be callegrojective and The fundamental projective invariant is the cross ratio
permutation p?-invariants. Interchanging the indices of four collinear points;,i = 1, ..., 4. Letthe points
of n 4 3 features is equivalent to the action of the per- have homogeneous coordinaxgs= (x|, x5’ )", then
mutation group on thén + 3)-tuple. The permutation  their cross ratio can be defined as
group has its own permutation invariants, expressions

whose valueszqre unchanged by the reordeﬂng of the L (X0. X, Xa. Xa) = & = (A1A3)(A2A1)
elements. Ap“-invariant, I[-], thus must satisfy the (A3A) (AzAY)
condition XB x®||x@ ¥
B Xél) XéS) XéZ) X§4) (2)
I(re, ..., 1) = L(mw{ry, ..., re}) xf) xf) xi“) xil)
=1 (x(T(r). ... T) (1) X3 X || x5
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where (A A) is the oriented length of the segment in the context of the indexing problem. The noise sen-
from the pointA; to the pointA,;. sitivity is transferred into the?-invariant.

The four points can be considered in4124 differ-
ent orderings which yield only six different cross ratio

) . . .
values (e.g., Springer, 1965, Sec. 1.8). 3. FI;'|_”V3t_”a”;'” the n-Dimensional
rojective Space

1 A—1
A=A, he = Ag=——, For a more detailed introduction on projective
N 1 ) spaces see (Faugeras, 1993, Sec. 2). A point in the
M=——, =——, Ag=1-—2A1. n-dimensional projective spac®"”, has the homo-

geneous (g)oordinatexi =, .. xT )t with at
I

Any symmetric polynomial inth#; is already invariant Iea_st onex;’ nonzero. The standard projective basis is
of the permutation of the indices. These polynomials defined as

are als@?-invariants by the projective invariance of the

cross ratios. The simplest ong)°_, A;, is trivial hav- e =(@0..1...,0" i=1....,(n+1 (6)

ing the value 3. Nontrivial permutation invariants can g, , = (1,1,..., 1) (7)

be obtained by considering a second degree symmetric
polynomial built with the pairwise producis ;.

For a systematic investigation of all the possible
second-order permutation invariants, representations
of the permutgtion grou, acting on the four points (n+ 1) x (n+ 1) matrix (a projective transformation
must be con5|dered. I_t was shown in (Lenz and M_eer, in P") into the standard basis.
1994)_ tha_t these invariants can be expressed as a linear 1o projective invariants ifP"
combination of

It can be shown that angn + 2)-tuple of points in
general position, i.e., na + 1 of them are in the
same hyperplane, can be transformed by a nonsingular

are defined based
on n+3 points in general position. Similar to

MBS} P} 41 (Carlsson, 1994) the notation

‘]1[)"] = 2 2
6 5 A ik — 1)3 2 xil) x}”“)
2).° —6A° 4+ 9t — 813+ 90° — 6L + 2 @ (n+1)
] = i s 2 X3 X'
A2 =1 [Xe, .o s Xna] = | . , (8)
BA]=3 S :
3[A] @ (D
J4[)»] —_3 n+1 n+1
will be frequently used. The determinant (8) of the
The nontrivial p?-invariants J;[A] and J,[A] are un- homogeneous coordinates mf+ 1 points is propor-
bounded functions. Their ratio tional to the oriented volume of the parallelepiped
defined by those points. In double algebra, a tool re-
JA] = ‘]2[)“]’ (5) cently introduced in computer vision (Carlsson, 1994),
Ji[2] the determinant is known as thHeracket over the

(n + 1)-dimensional vector space.
The definition of a projective invariant P' can then
be written as

however, is bounded between 2 and 2.8 and for com-
putational convenience it is taken as fbreinvariant
function of the four collinear points. Thus, indepen-
dent of how the labels of the four points were chosen,

when the cross ratio computed from (2) is used as ar- n (X1, - Xny3)

gument in (5), the same value is obtained. _ X Xn Xn Xnaol[Xa - - Xno1 Xng, Xnia]
The cross ratio is very sensitive to changes in the [X1. ..o X1, Xn, Xnga][X1, - - Xno1, Xnga, Xno2]

location of the points on the line. Since the sensitivity )

is configuration dependent, the underlying probabil-

ity distributions are complex. Seé$tr0‘m and Morin, Based on the similarity to (2) the invariant is often re-

1995; Maybank, 1994, 1995) for theoretical analyses ferred to as a cross ratio i". From the properties
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of the bracket follows that, (X4, ..., Xny3) IS invari- homogeneous coordinates
ant to projective transformations of the point set, e.g.,
(Brill and Barrett, 1983). Thus the first + 2 points P, =(0,....0, 1)

can always be chosen as the standard projective basis.

_ t
After the transformation of the point set into the stan- Pnt1=0,....1,0

13
dard projective basis, let the homogeneous coordinates Pr2=(0,...,1, -1 (13)
of the last point be Poiz= (0, ..., 1, —An)t.
Xn+3 - ()\.]_, PR )\.n, 1)t . (10)

The four hyperplaneB,, ..., Py 3 intersectim, i.e.,

To obtain (10) the equivalence class property of homo- they form a pencil of planes (Faugeras, 1993, p. 26).
geneous coordinates was used. For the ease of expo- N€ Pair of points(en, &1} define the line
sition the last component of the vector is taken to be

nonzero, i.e., the point,,3 is not in the hyperplane at X = (1€ + U2€n+1, (14)
infinity. Extension to the general case is immediate.
The value ofis(€y, . .., €42, Xny3) (note the use of  \where (uq, uo) are the homogeneous coordinates of
standard basis) is easy to compute. We have a point on the line in the projective bagie,, €n1).
The four intersection points of the line with the pen-
[€1,....€-1,6n,E042] =1 cil of four hyperplanesy;, have the homogeneous
[e1,...,€n1, €11, Xnt3] = —An 1) coordinates
[elv ) en—la ena Xn+3] - 1 (1 O)t
[elv e B, en+17 el"l+2] = _1’ Y= (0’ 1){
. Yoen =05 (15)
yielding Yotz = (L D)
(X1, - > Xosa) = A (12) Ynis = (hn, DV
Being a projective invariant,, is called a projective Considering the points in the above order the value
coordinate of the point,,3. The otheri; can be ob- of their cross ratio (2) is\n = 11(Yny ..., Yni3)-
tained by interchanging ande,, i =1,...,(n—1) The definition of the line, however, was arbitrary.

in (9). Thus, am + 3 point configuration in gene-  The projective structure of the pencil of planes as-
ral position inP" has onlyn independent projective  sures that the effect of using a different point pair

invariants. when defining the intersecting line (14) is the same
There are(n + 3)! different labelings of ther + 3 on the cross ratio as a change in the order of the

points, and for each labeling the invariant (9) can be pointsy;.

computed. Our goal is to derive thg-invariant of Thus the effect of permutation of the last four points

the configuration. An important observation resulting in the expression of tha-dimensional projective in-
from the employed definition of the invariant (9) is that variant (9) can be reduced to a permutation of the four
In(es, ..., 2, Xne3) remains unchanged under the intersection points. The 24 possible permutations yield
permutation of the firgt— 1 points{ey, ..., e,_1}. In- one of the six expressions (3), and it was shown in
deed, these permutations yield the same sign change inSection 2 that the permutation dependence is elimi-
allfour determinants which then cancel each other. The nated by using thg?-invariant functionJ[-] (5). The
geometric interpretation is also easy to establish. The result that then-dimensional projective invariant (9)
firstn — 1 points define the sam@a — 2)-dimensional can be reduced to a one-dimensional cross ratio (2) is
hyperplaneQ, independent of the order of the points. known for the projective planB? as a form of Pap-

To examine the influence of the permutation of the pus’theorem (Springer, 1965, Sec. 5.6), and is also of-
last four points,{en, €11, €112, Xn+3}, four (n — 1)- ten used in projective reconstructions, (e.g., Faugeras,
dimensional hyperplanes are defined together with 1995; Rothwell et al., 1995). The novelty of our anal-
the firstn — 1 points. The hyperplanes (marked with ysis lies in exploiting it to achieve the desired permu-
the index of the last point) are represented by the tation invariance properties.



Given a labeling of then + 3 points inP" it was
therefore proven that

I[In(X, - -+, Xn13)]

= J[ln(mw{X1, ..., Xn=1}, {Xn, ..., Xny3})], (16)

for all permutationsr over the firstn — 1 points, and
all permutationsr over the last four points. Any ex-
change of a poink;, i = 1,..., (n — 1) with a point
Xj, J =n,...,(n+ 3) violates (16) since the hyper-
plane defined by the new first— 1 points is different.

There are only(n*3)=("}?) different arrangements
of the labels in (16). Thus thg?-invariant ofn + 3

points inP" is a vectorJ with (”23) components,
each having a different argument &f-]. These argu-
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are

@ _ @ _ ®_ M

JW =J[r] 39 =[] J _J[ }
A2

(18)

g _ g[*2=1] o _ 4[M02-D
)\.]_ -1 )MZ()\l - 1)

and are sorted in ascending order, i&.= (JM,
‘][2]’ ‘][3]’ ‘][4]’ 3[5])t_

The lastthred ) values correspond to first exchang-
ing X1 with X3, X4 andxs respectively, and substituting
the computed projective invariantinto the functidfr].
Thus every point is uniquely associated with a compo-
nentJ® of thep?-invariant vector. The factthe number
of points in a configuration is the same as the dimension

ments can be computed with any symbolic mathemat- of theJ vector is true only irP?. Forn > 2 additional
ics package (we have used MAPLE) using the standard processing must be introduced to obtain a one-to-one

projective basis instead &f, i =1, ..., (n+ 2), and
the projective coordinatesj, j = 1,...,n for the

last point. To remove the dependence on the initial la-

beling of then 4 3 points, the components dfmust

be ordered in (say) increasing sequence. It must betion the vectorJ is computed.

emphasized that the?-invariant vector has onlg in-
dependent components.

For four collinear points we use thg-invariant
function J[A]. The p?-invariant of five coplanar points
is a five-dimensional vector with two independent com-
ponents. Thep?-invariant of six points in the three-

mapping between the components of $heector and
then + 3 points. This is discussed in Section 5.

Given a set of coplanar points, their labels are cho-
sen arbitrarily. For each five-tuple in general posi-
If a five-tuple of
points from the reference set and one from the trans-
formed set havegp?-invariant vectors with identical
components, the two five-tuples are matched. More-
over, since the components are associated with in-
dividual points, the projective correspondence of the
points is also established. That is, the two five-tuples

dimensional projective space is a fifteen-dimensional are the same up to a planar projective transforma-
vector with three independent components, etc. The tion. The projective transformation introduces eight
derivedp?-invariants can also be used for the dual ele- degrees of freedom which can yield to a significant
ments (lines irP? and planes ifP). In the following probability of mismatch, especially in the presence of
sections practical issues in the context of some appli- outliers (points with no correspondent). Mismatches
cations of interest are discussed. can also appear due to the high sensitivity of the in-
variants to positional errors. These errors are inher-
ent since even ideal data is quantized to the closest
grid location. The influence of the noise sensitivity of
the invariant representations on the performance of al-
In P2, five points with homogeneous coordinates gorithms employing them was studied mostly in the
Xi, i =1,...,5, nothree of them collinear, have two context of the indexing problem (Grimson et al., 1994;
independent projective invariants which are defined as Lamdan and Wolfson, 1991; Maybank, 1995).

The performance of any algorithm processing noise-
corrupted data is characterized by two probabilities:
the probability of detection, and that of false alarms.
These two measures are intimately connected; increas-
ing the probability of detection (through manipulation

4. Robust Correspondence of Planar Features

)"l = IZ(Xls X21 X33 X43 X5)7
(17)
A2 = l2(X2, X1, X3, X4, X5).

Sincen = 2, the second invariant is obtained by ex-
changingx; with x,, in accordance with (16). The
computed components of the?-invariant J vector

of thresholds) will inherently increase the number of
false alarms. A satisfactory probability of detection in
invariance-based matching of point-sets implies a very
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high probability of false alarms. The ultimate goal of also the smallest squared singular value of the ma-
an efficient correspondence algorithm is to reduce the trix X = (X3 X2 X3), i.e., the matrix having as columns
false alarm rate while minimally decreasing the prob- the vectors of the three points (Biglieri and Yao, 1989).
ability of detection. This can only be achieved if the The closeness to rank deficiency X%f(the closeness
candidates are validated by using constraints which are of its smallest singular value to zero) measures how
independenbf the information used in their selection collinear the three points are (the linear dependency of
process. Since the five components of pRénvariant their vectors).

vector of a five-tuple of points are in one-to-one corre-  The correspondence algorithm will not include three
spondence with the points, such constraints are easy topoints into a five-tuple if the smallest eigenvalue is
define, and a less sensitive correspondence algorithmless than 0.001. The influence of this threshold is very

can be designed. weak, similar performance of the correspondence al-
Several procedures have to be incorporated into a gorithm is obtained within several orders of magnitude
robust point correspondence algorithm. (Ramakrishna, 1994). This is not unexpected since a

threshold derived from the singular valuesXofvould
e Elimination of five-tuples with degenerate configu- be considerably larger. The collinearity verification
rations (Section 4.1). procedure is applied to both the reference and trans-
¢ Definition of configuration dependent bounds onthe formed sets. While collinearity is a projective invari-
components of thg?-invariant vector to compensate ~ ant property, quasi-collinearity which involves metric
for the effect of positional errors (Section 4.2). relations, is not. However, the correspondence algo-
e Reducing the influence on the overall performance rithm has a probabilistic nature and it is not necessary
of the correspondence algorithm of erroneously to use all the possible five-tuple pairs from the two
matched five-tuple pairs. This is achieved in two sets.
steps (Section 4.3) and (Section 4.4).
¢ Validation of the extracted point correspondences in-
dependent of the context, e.g., information about the
content of the image (Section 4.5).

4.2. Positional Uncertainty

The behavior of the one-dimensional cross ratio un-
der i.i.d. Gaussian perturbation of the point coordi-
nates was investigated by Maybank (19943)str6m
and Morin (1995) studied the probability distribution
of the cross ratio, and obtained the region of confi-
4.1. Collinearity Verification dence for a given perturbation. Morin (1993) extended
the distribution to the two-dimensional case based on
Without loss of generality we can assume in the se- experimental evidence. In a practical point correspon-
quel that the points have affine coordinates, ke~ dence algorithm, configuration dependent bounds must
x{",x5’,1). The points in a five-tuple must be in  be established for each component of phénvariant
a general position with no three of them collinear. vector, J, to reduce the amount of mismatched five-
Should three points be quasi-collinear, the area of the tuples. While linear approximations of the expressions
defined triangle, the bracket (8) is close to zero and (18) can be used, satisfactory bounds can already be
the computation of the invariants (17) becomes numer- obtained by the “worst case” approach.
ically unstable. Lek;, x; andxs be three points. The The positional uncertainty in measuring the location
value of their bracket is not a reliable indicator for near of a pointx; is represented as two uniformly distributed,
singularity (Golub and van Loan, 1989, p. 81), i.e., of zero-mean random variablea';ande‘2
guasi-collinearity. Instead, following (Kanatani, 1991)

we define the moment matrM 1,3 X0 = x® e X0 x4 (20)

More details about the first three procedures can be
found in (Meer et al., 1994; Ramakrishna, 1994).

3
_ ! o
Mi2s = ; XiX;. (19) where the corrupted location & = (X{’, X§’, 1).

Let ¢ be the largest half-range ef'), j = 1,2, over
The matrix is also known as scatter or Gram matrix the point-set, i.e., no coordinate was corrupted beyond
in the literature. The smallest eigenvalueMf,s is the interval [-¢, €]. Neglecting the second-order error
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terms we have from (8) Whenever al vector from the transformed set falls

within the confidence region associated with a five-
[X1, X2, Xa] = [, X2, X3] tuple from the reference set, the two five-tuples are
candidates for a match. The vectors should match
x _ (k)
te X; Z (21) component-wise, i.e.,
j i=

wherek = modi, 3)+1. Thus, the change in the UM < < W™ i=1.....5 (23)

value of a bracket due to positional ereois bounded

by the quantity thus eliminating the problem of overlapping bounding

intervals. Since the sorted componéfit is associated
2 3 with the point labeled in the reference set five-tuple,
B3 =¢€ Z Z ’X - ka)|~ (22) and !l .is associated with the point label&dn the
j=li=1 transformed set five-tuple, a matched five-tuple pair
provides five point correspondences.

The main role of the parameter, is to control
the number of matching candidates. Many of these
candidates are incorrect due to the projective equiv-
alence of the five-tuples and the noise sensitivity of
the p?-invariant. It is the role of the subsequent com-
putational modules to eliminate the erroneous corre-
spondences. I€ is too small, the number of match-
ing candidates is not large enough to extract sufficient
evidence for a point correspondence. Otherwise, the
performance of the algorithm remains very simi-
lar up to values ofe yielding the largest possible
range of bounds2, 2.8) for theJ vector components
(Ramakrishna, 1994), in which case the matchingis no
longer selective. The implementation uges 0.4.

The configuration-dependent minimum and maximum
values are obtained by adding and subtraaingto the
original value. Using the bounds for all the employed
brackets, the boundg. ™, AT®) and(AJ"", AJ'®) for
a positional uncertainty can be computed by inter-
val arithmetic (Alefeld and Herzberger, 1983). The
bounds on the other three arguments required for the
p?-invariant vector (18) can be derived from thatgf
anda,.
The functionJ[ -] is strictly monotonic on the six in-
tervals(—oo, —1), (-1, 0), (0, 0.5), (0.5, 1), (1, 2),
(2, o0) which correspond to the six distinct cases of
the one-dimensional cross ratio under permutation of
the indices (3). Whenever the interva™", A™2) is
not entirely contained within one of these six intervals,
using theJ[-] function the interval can be mapped into
one in whichx, the unperturbed value lies. For exam- 4.3. Convex Hull Constraints
ple, if .1 = 0.3, the interval(A"", A7®) is mapped
into (0, 0.5). Thus |f/\m'“ = 0.1 andAT® = 0.6, the A perspective transformation preserves the convex
bounds are set a6.1, 0. 5). The procedure is applied  hull of a point-set (e.g., Haralick and Shapiro, 1993,
to all five arguments in (18). Sec. 13.3.3); Hartley (1993) extended the result for the
The function J[-] being strictly monotonic on  projective transformation which exist between two im-
each interval, its bounds can be derived from the ages of the same coplanar point set. A pair of matched
bounds of the argument. Thus, for each compo- five-tuples puts five points in correspondence. A nec-
nent of the p?-invariant vector JI'!, an interval essary (but not sufficient) condition for the match to be
(Jllmin - glil.maxy s obtained. Note that the intervals correct is that the two convex hulls should also be in
established for the different components can overlap. correspondence.
See (Ramakrishna, 1994) for an example. Given a The convex hull of five points may contain 3, 4, or
five-tuple of points, the three vectad®™, J andJ™® 5 of the points. Thus, the following conditions can be
determine a configuration-dependent confidence re- defined.
gion in the five-dimensional space of th&invariant
representations. 1. The number of points on the convex hull must be
To account for positional errors when matching five- the same.
tuples, a positional uncertaintyis assumed for (say) 2. Corresponding points must lie either on or inside
the reference set. Since projective transformations  the convex hull.
do not preserve metric properties, cannot be di- 3. For points lying on the convex hull, neighborhood
rectly equated with a distance in the transformed set.  relations must be preserved.
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The last condition is meaningful only if the convex hull A reference/transformed point correspondence casts a
contains at least four points, in which case the corre- vote into the correctly addressed cell with probability
spondence between two points implies the correspon-1 — Peror. The same reference point will cast, under
dences between their neighbors as well. the uniform sampling assumption, incorrect votes into
The convex hull preservation was employed by a given cell with probabilityPe,ror/(N — 1). To be able
Morin (1993) to construct tw@?-type invariants for to detect the correct point correspondence after all the
a five-tuple of coplanar points. Opf-invariant repre- votes were cast, the latter probability should not exceed
sentation did not use the convex hull of the five-tuple, the former.
and therefore the convex hull constraints provide the  The contingency table is an effective tool for accu-
most effectiveindependeninformation for the val- mulating the votes since it distributes the incorrect ones
idation of the matching candidates. Note that the over the entire set of points. Indeed, the above condi-
constraints imply that the point correspondences are tion gives the tolerated probability of error in pairing
hypothesised between the matched five-tuples. Aswasa point from the reference set with a point from the
discussed in the previous section this is available from transformed set:
the p?-invariant representation.
Should more than one matching candidate remain Porror < 1 — 1 (24)
after the verification of the convex hull constraints, N
the candidate with the smalle$ts, Jyans distance in ) )
the five-dimensional space of th-representations, ~ 1he relation (24) predicts theeror can exceed 0.8,
computed withL, norm is chosen. Our experiments with mo;t of the point pairs erroneously votlng. into
with synthetic data have shown that for a noisy trans- the contingency table while the two sets are still put
formed set the correct match is often not the closest INto correctcorrespondence. Experimental results have
one among all the candidates. Thus, after applying Shown that this is indeed the case for> 10.
the convex hull constraints it is not guaranteed that  When asufficiently large number of transformed set
the nearest-neighbor rule selects the correct candi- five-tuples were matched, enough votes were entered
date. The consensus-seeking technique described irfNte the contingency table. To extract the point corre-
the next section, can tolerate a significant amount of SPondences, a simple greedy algorithm is used. The
mismatches. Retaining all the candidates which ver- cell with the highest number of votes in the table iden-
ified the convex hull constraint, will introduce more tfies the first correspondence. This pair of points is
mismatches than when keeping only one candidate. eliminated by removing from thetgble the row and thg
The error tolerance of the correspondence algorithm column of the cell. The procedure is then repeated until

is well illustrated by the fact that the performance does 2ll the row (or column) entries were used. Note that it
not change significantly in former case. is not necessary to have thecorrect point correspon-

dences associated with thelargest values in the ini-

tial contingency table. It suffices that at every iteration
4.4. Tolerated Mismatch the largest value in the table indicates a correct cor-

respondence. This property of the algorithm compen-
The point correspondences obtained from a matched sates for the nonuniform point selection almost always
pair of five-tuples can contain zero to five errors. Let present in real data, i.e., some points are more fre-
the probability of an incorrectly detected point corre- quently present in the matched five-tuples than others.
spondence bBq . Extensive simulations have shown For a set olN points ONY] different five-tuples can
that Peror remains the same for all the points in a five- be defined, and thus the same numbep®invariant
tuple. representations. Without label permutation invariance,

Assume for convenience that the two sets contain the the number of projective representations increases

same number of point$y, and that all the points have  more than two orders of magnitude &!120). For the
an equal chance to pass the matching criterion. Every reference set all thp?-invariant representations have
established correspondence casts a vote ¢ordin- to be computed, however, to generate enough votes
gency table The contingency table has the labels of in the contingency table only a subset of the possible
the reference set as row addresses and the labels of théransformed set five-tuples has to be processed. These
transformed set as column addresses. Thus a referencéive-tuples can be chosen by random sampling, and
and a transformed point pair uniquely defines a cell. their number depends on the amount of positional error
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present in the data. For slightly corrupted data 20-30 orderd?,. A robust quality measure of the backprojec-
percent of the total number is enough. tion can be defined as

The contingency table is a computational tool
through which econsensus decisida extracted from 81034 = m;
the mostly incorrect point correspondences. (In experi- =my d[zi]
ments with synthetic data and positional errors of a few

pixels, Peror Often exceeded 0.81). As discussed above, Wheremy = 1andm, = [0.4x (N —4)]. The indices
the success of the technique is due to the distribu- M andm;, control the sensitivity of the validation pro-

tion of errors across the entire table. The contingency c€dure. The trade-off is between exclusion of large dis-

table based voting technique is basically different from tances due to errorsne small), and increased support
the accumulation procedure used in geometric hashing fOr the computation of1234(m; large). The accumula-
(Lamdan et al., 1990). An analytical comparison ofer- (OF Cells 110 4 are incremented widlpss. After all (or

ror sensitivities is beyond the goal of this paper, but it & 1arge number) of the possible transformations were
is well-known that geometric hashing has a rather poor USed, the confidence in a point correspondence is given
performance once the transformation group becomesbY the value in the associated accumulator cell.

more complex than rigid motion (Grimson et al., 1994;  Whenever an incorrect point correspondence is used
Lamdan and Wolfson, 1991). The size of the hashing t© compute the transformatio#is more likely to de-

table required for accumulating the votes in the projec- créase. The cumulative effect keeps the value of those
tive case is O] with a constant 4= 24, while the accumulator cell which are associated with such cor-

respondences significantly lower. In the absence of
large positional uncertainties outliers are immediately
revealed having confidences an order of magnitude
4.5. Correspondence Validation smaller.
Large positional uncertainties level off all the con-

The output of the contingency table analysis is the cor- fidence values and therefore it is difficult to establish
respondence between the points in the reference anda unique validation threshold. Data-dependent thresh-
the transformed sets. These correspondences must belds, however, can be derived frobh randomcorre-
validated since if the two sets do not share all the points, spondences between the two sets. The above described
i.e., outliers are present, false correspondences are in-confidence computation procedure is performed with
troduced. An efficient validation technique should also these random pairings of points. To compensate for
remove most of the correspondence errors and recog-accidental proximity, the summation limits in (25) are
nize when the algorithm failed completely. The natural increased ton; = 3, andm, modified accordingly. For
way for validation is backprojection of the transformed |large number of pointsy; = 2 can also be used.
set onto the reference set and computation of a quality ~ All the “random” confidence values belong to the
measure. Exploiting the fact that the correspondencessame (unknown) distribution. The mean and the stan-
were already established, a consensus-seeking methodard deviation of the distribution are computed and the
similar to the contingency table based analysis can be validation threshold is set as the mean plus three stan-
used. dard deviations. The accuracy of this threshold does

A planar projective transformation is uniquely deter- not seem to improve if the distribution is based on more
mined by four point correspondences. Thublipoint than one random shuffling of the correspondences. The
correspondences were establisl‘(é}i) possible trans-  method employed to derive the data-dependent thresh-
formations can be defined. Note the relative smallnum- old belongs to the family of resampling techniques,
ber, in contrast to the number needed for the alignment more precisely to bootstrapping (Efron and Tibshirani,
method (Huttenlocher and Ullman, 1990). TiHecor- 1993).
respondences are labeled from 1Ncand associated A correspondence established by the algorithm is
with empty accumulator cells. Let a transformation declared valid if the associated confidence value ex-
be obtained from the correspondences labeled 1 to 4.ceeds the threshold. The validated point correspon-
The remainingN — 4 points of the transformed set are dences can be used to compute by least squares (or
projected into the reference set. For these poits,  if additional safeguards are to be taken, by the robust
the squared Euclidean distance to the correspondingleast median of squares) the transformation between
reference point is computed, and sorted in ascendingthe two point-sets. Any practical algorithm should be

(25)

size of the contingecy table Id x N.
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able to diagnose its own failure. The validation method of rotations aroun®x andOy axes wag—57°, 57°),

declares complete breakdown whenever less than fourand full rotations were allowed around the optical axis.

point correspondences are declared valid. In such casedn the few cases when points in the transformed scene
context-dependent information must be used. plane moved behind the image plane, the artifact was
eliminated by iteratively reducing the amount of rota-

tion that caused it. The transformed scene plane was

then projected into the image plane and rescaled to a

256 x 256 array.

The positional uncertaintywas introduced into the

1. For each nondegenerate five-tuple in the referencetransformed set by independently perturbingthand
set itsp*-invariant representation together with the  x, coordinates of the points with uniformly distributed
bounds (fore = 0.4) are computed. random variables having half-rangeand thus a max-

2. The p?-invariant representation foK randomly imum shift in location ofy/2u could be introduced by
chosen nondegenerate five-tuples from the trans- the noise. Outliers were obtained by replacing one to
formed set are derived, and the matching candidatesthree transformed set points with points at a randomly
established. chosen location. After the perturbation, the point co-

3. The best candidates (if any) are retained after prun- ordinates were quantized to the closest pixel center.
ing with the convex hull constraints. Note that when deriving performance statistics no con-

4. The obtained point correspondences vote into the straints on minimum interpoint distances or collinearity
contingency table, from where the correspondence (beside that in Section 4.1) are used.
between the two point-sets is extracted. The performance of the correspondence algorithm

5. The output of the algorithm is validated through mirrors the sensitivity of thg?-invariant representa-
backprojection. tions to perturbations. For every experimental condi-

tion the performance was assessed based on 100 trials.

The number of five-tuples chosen from the transformed

set wasKk = 2000. The output of interest are the val-

idated point correspondences, since these are the ones
used in further processing, either to compute the trans-
formation between the reference and transformed set,
or to recover 3D information. Four probabilities were

L , , i measured from the trials.
The sensitivity of thep?-invariant representations was

studied through the performance of the correspondence

algorithm for synthetic data and real images. In case e Py, (k): The cumulative probability that before val-
of the synthetic data both the reference and the trans- idation there areat most kerroneous correspon-
formed sets contained the same number of points, dences among the extracted 15 pairs. Thus, even

4.6. Algorithm Summary

The processing steps are reviewed below:

Note that context-dependent (task-specific) informa-
tion is not used at any stage of the algorithm. Should
suchinformation be available, it can provide additional
safeguards against erroneous decisions.

4.7. Experimental Results

N =15. The projective camera model had a focal dis-
tance 50. The points to be used for tlederence set

were assumed to be in a plane perpendicular to the opti-

cal axisOzat distance 300. Their coordinates were ran-

if an outlier was put into correspondence with an
outlier, this is considered as an error since such cor-
respondence cannot be used to recover the transfor-
mation between the sets. The cumulative probability

domly chosen betwegn-127, —127) and(128 128
and projected into the image plane. The optical axis
pierced the reference scene and image plan@s &. .
The image was then rescaled independently along the
x andy coordinates to extend over a 256256 pixel
array, and the point coordinates were quantized to the
closest pixel center. .
To obtain thetransformed setthe reference scene
plane was rotated around the three axes in a random
order. The closeness of the image plane put limitations
on the range of allowed rotations. The maximum range

Pu(K) characterizes the input into the validation
module.

pr: The probability of a trial being declared “fail-
ure”, i.e., less than four correspondences are val-
idated. The probabilityor characterizes the self-
diagnosis capability of the algorithm.

P.v(K): The cumulative probability that there ame
most kerroneous correspondences retained after val-
idation of the trials not classified as failure. The cu-
mulative probabilityP,,(k) characterizes the error
detection performance of the validation module.
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Number of outliers: 0. Half-range of the noise: 4 pixels.

[ Kk J o] 1271737 4Ts5]6[7][8[9]10]11]12]
(k) [[0.81[0.81]0.96 [0.97 [0.99 1
(k) [0.93]094] 1
(*)

0981001 0 |0.01

Number of outliers: 1. Half-range of the noise: 4 pixels.

[ x [ o123 456 [7[s[9[0][i]iZ]
() ] 0 [061]069]0.77]0.85]092007]1
(k) | 0.68 | 0.95 | 0.97

(k) | 0.93 | 0.02 | 0.01 | 0.01

Number of outliers: 2. Half-range of the noise: 2 pixels.

[k J o012 ]3] 4756 [7][8][9[10[11]12]
) 0 | 0 [0.68]0.84[0.89]0.94[095]1
(k) || 0.57 | 0.89 | 0.96

(k) || 0.96

Number of outliers: 2. Half-range of the noise: 3 pixels.

%X [ o123 4[5 678 [o]0[u[i]
) 0 | 0 [042[060]0.73]0.83]0.89]0.95]0.99 1
(k) [ 0.62 [ 0.84 | 0.86 | 0.89 | 0.90

(k) || 0.85 ] 0.03 | 0.01 | 0.01

Number of outliers: 2. Half-range of the noise: 4 pixels.

X [ ol T[22 3 4[5 [6 7809 [10]1]12]
(k) 0 0 0.25 | 0.40 [ 0.57 [ 0.68 [ 0.78 [ 0.85 [ 0.91 |1 0.96 [ 0.98 [0.98 | 1
(k) | 0.44 | 0.63 | 0.74 | 0.75

(k) || 0.71 { 0.03 | 0.01

Number of outliers: 3. Half-range of the noise: 2 pixels.

[[x o1 23456 789 J1i0]1i]iz]
(&) O [ 0 | 0 [0.43]0.60[0.77 | 0.85]0.92 [ 0.92 [0.97 [ 0.98 [ 0.99 [ 0.99
P.,(k) | 0.54 | 0.80 | 0.86

(k) | 0.84 ] 0.02

Figure L  Experimental results for 15 points synthetic data. See text.

e psr (K): The probability that there akecorrect corre- In Fig. 1 the results obtained for several experimen-
spondences rejected during the validation of the tri- tal conditions are tabulated. The number of outliers
als not classified as failure. The probabiljpy, (k) was between zero and three, and positional uncertainty
characterizes the false alarm performance of the val- of 2 to 4 pixels were introduced for both coordinates.
idation module. As expected, the performance decreases with the in-

crease of the perturbation, either through positional
The mixed use of cumulative and individual proba- yncertainty or outliers. Once the value of a cumulative
bilities was found to be the most informative way for propability reaches its maximum it is no longer shown.
characterizing the performance of the correspondenceThe validation module succeeds to recover most of the
algorithm. These probabilities are related correct point correspondences while keeping a rela-
12 tive low failure rate (recall that the uncorrupted in-
Z Prr (K) = maxPay(k) =1 — pe.  (26) put has almost all the points in correspondence). The
k=1 K failure rate,pr can easily be determined from Fig. 1
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using (26). For example, if the original data contained
two outliers and was corrupted with positional uncer-
tainty of 3 pixels,pr = 0.1. In (Meer etal., 1994)
and (Ramakrishna, 1994) additional experimental data,
characterized by a different interpretationRf(k), as
well as detailed analysis of a single trial, can be found.
To measure the simulated probabilities with high ac-
curacy an unfeasible large number of trials would be
required. We have found, however, that even with 100
trials the statistical variations of the measured proba-
bilities are satisfactorily low.

Morin (1993; Morin et al., 1994), performed a large
comparative study on the noise sensitivity for sev-
eralp?-type invariant representations of a five-tuple of
collinear points. The two sets contained 50 points de-
fined on a 51 512 image, from which 12 five-tuples

and Rothwell etal. (1995), that using redundant invari-
ant representations is necessary to compensate for the
noise sensitivity of these representations.

In Fig. 2 the performance of the point correspon-
dence algorithm for a real image is shown. The refer-
ence and the transformed sets contiie= 20 points
each, extracted from the images Fig. 2(a) and (b)
respectively. The integer coordinates of the points were
extracted manually with a cursor and thus positional
errors are certainly present. Note that the copla-
narity condition of the points is only approximately
satisfied, and many quasicollinear configurations can
be defined. The last four points (labeled 17 through
20) are outliers being taken as different in the two
images.

The algorithm was run on the data wikh= 10000.

were chosen in the reference set as model candidatesOnly nine of the extracted correspondences are cor-
The allowed configurations were selected for mini- rect. The correct correspondences are associated with
mum interpointdistance (40 pixels) and noncollinearity the largest confidences, and they are all validated
(at least 17 degrees deviations). The introduced posi- (Fig. 2(c)). Note the relative small range of the con-
tional uncertainty was zero-mean Gaussian with 1 pixel fidence values, and the effectiveness of the validation
standard deviation. All the invariant representations threshold derived from the data. The transformation
showed high sensitivity (measured through matching between the images can now be computed and the two
tasks), which probably can be attributed to the pres- images aligned. The registration of the same pair of
ence of many outliers. images using an algorithm which requires a priori in-

Morin has concluded that invariant representations formation (Zheng and Chellappa, 1992), is described
based on symmetric polynomials (the class to which in (Chellappa et al., 1993).
J[] also belongs) are less effective than a convex hull
based representation. As was discussed in Section 4.3 . L3
it is very important to use the information provided 5. PtInvariant Representation in P
by the convex hull for validation and not for deriv- 3 . . .
ing invariant representations. The performance of our _In P%, six points with homogeneous coordinates
correspondence algorithm (tolerating more severe po-! =1..., 6’_ no four of them coplanar, have three
sitional uncertainty for unconstrained configurations) independent invariants which can be taken as
seems to confirm this observation.

The p?-invariant vector] has only two independent
components, and for matching the compone¥s
and J!? should suffice. The effect of using nonredun-
dant representations in the correspondence algorithm
was somewhat unexpected, underlining the complex Thedefinitionis arbitrary, any three arrangement sat-
probabilistic processes on which the correspondenceisfying (16) can be used. Thg-invariant vectod has
algorithm is based. The amount of required compu- fifteen components which must be sorted in ascending
tations instead of decreasing it increased significantly order.
due to the larger number of selected candidates. For

A1 = 13(X3, X2, X1, Xa, X5, Xe)
Ao = 13(Xq, X3, X2, X4, X5, X6) (27)

Az = l3(X1, X2, X3, X4, X5, X6)-

1 2
moderate perturbations the performance of the algo- IV =J[r] 3P =[]
rithm remained practically unchanged, otherwise it 30 J[ﬁ] 3@ _ J[Kz - 1]
declined. For example, with three outliers and a half- Ao A —1
range of the noise 2 pixelps = 0.26 (instead 0f 0.14),
P.v(0) = 0.44 (instead of 0.54), ang;, (0) = 0.70 10 — J[M] JO® = J[xq]
(instead 0f 0.84). We conclude, similar to Morin (1993) A2(k1—1)
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Conf. || 2.006| 2.025| 2.040| 2.042| 2.056 | 2.113| 2.167| 2.213| 2.509 | 2.535

Valid n n n n n n n n n n
R 17 7 2 14 5 16 8 1 13 12
T 19 7 2 14 5 16 8 1 13 12

Conf. | 2.600| 3.747 | 4.292 | 4.455| 5.132| 5.154 | 5.233| 5.285| 5.373| 5.527
Valid n y y y y y y y y y

(©

Figure 2 Correspondence for real data: (a) Reference image. (b) Transformed image. The points labeled 17 to 20 are outliers. (c) Extracte
correspondences and confidence validation.

30— 3 'E} 3® _ 3 [Ag — 1} The fifte(_an arguments are i(_jenti_cal (upto_a pe_rmutation
| 3 A —1 of the point labels) with the invariants derived indepen-
_ dently in (Rothwell et al., 1995) fa givenlabeling of
39— 3 A(hs — 1)} Jao _ 3 [E} the point set. Our result eliminates all dependencies on
| A3(A1 — 1) A3 the ordering of the six points.
Mg — 1 Ao(hg — 1) _ Carls_son (_1995_) has shown rec_ently t_hat the three-
JA = —} 12 - [7] dimensional invariant defined by five pointsi to-
L2 —1 A3z —1) gether with the center of perspective, is the same as the
303 _ [ Ay — Al} 304 _ | |:)\.3()\.2 — Al)} two-dimensional invariant of their projection onto an
T = T (s — A1) arbitrary plane. The result is a generalization of the re-
_ ducibility of an invariant defined in a higher dimension
315 _ g (s — DGz — )‘1)} (28) to one in a lower dimension (see Section 3), and can be
L (A2 — DAz — A1) used to interpret (28).
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From (27) results that™™ to J® in (28) correspond 6. Discussion

to the two-dimensiongl®-invariant representation (18)

of the projections of the five poin{,, X3, X4, X5, Xg}. Two new concepts were introduced in this paper.
Similarly, using (16),J© to J© correspond to the ~ The class ofp®-invariant representations are eco-
p?-invariant representation of the five-tuple obtained nomical representations of a point-set (or its dual
with the pointx, being left out §[11] being already ~ configuration), even when the recommended redun-
generated). The componerdts? to J1? are obtained ~ dantrepresentations are employed. Permutation invari-
with the pointxz discarded J[11] and J[13] are already ants were derived for other transformation groups in

available). The last three componends® to J9 (Lenz and Meer, 1994). For simple groups the effect

capture the intrinsic three-dimensional structure of the of label permutations can also be eliminated by exploit-

six points, and depend on all three invariants. ing metric properties, e.g., volumes are invariant under
To build a contingency table when the projective rigid motion.

space has dimensiam> 2, the intrinsic structure of The second new concept introduced is the use of

the p?-invariant vector has to be exploited. PP consensus-based technigues to increase the noise tol-

the components of the vector are in one-to-one cor- e€rance of an algorithm. From mostly erroneous point
respondence with the points in the five-tuple. A% correspondence hypotheses, reliable decisions were
pairs of points correspond to the vector components. derived since the errors were distributed across the

Thus J@ is associated with the paixy, x2), J@ space of all possible correspondences, while the sought
with the pair(xy, x3), J® with the pair(x1, X4), and evidence was accumulated in a single cell. The tech-
so on, J1® being associated with the paixs, Xg). nigue was successfully applied twice, for the contin-

After two fifteen-dimensional vectors are matched, gency table and for the final validation. Consensus
the correspondence between the six point pairs canseeking provides robust behavior (see the real image
be extracted with a “local” 6« 6 table. The re-  experimentwhere the validation removed all the wrong
dundancy of thep?-invariant representation some- correspondences, i.e., outliers). This is not unexpected
what compensates for matching errors. A confidence since the consensus technique is based on the same
measure in the correspondence is also obtained andprinciple as the robust estimators using elemental sub-

weighted votes can be accumulated in the contingency sets, e.g., least median of squares.
table. We have shown that if additional constraints are used

The problem of six points iR? is central to projec-  to eliminate false matches, tpé-invariant representa-
tive reconstruction, i.e., using uncalibrated cameras. In tions can be used to build practical algorithms either for
this case, the projective coordinates of the six points the correspondence or the indexing problem. It is im-
have to be recovered from two (or more) images of portant that these constraints are context-independent,
the configuration. When the epipolar geometry (the i.e., are not based on information restricted to the input
fundamental matrix) of a pair of uncalibrated cam- image. Such information should provide only an ad-
eras is known, the invariangs;, 1,, A3 can be com- ditional layer of task-specific safeguards to enhance
puted after performing simple geometric constructions performance.
with the images of the six points (Carlsson, 1994; It is probably not very difficult to adapt an ex-
Rothwell et al., 1995). If three images are available, isting, invariance-based object recognition system to
the projective coordinates can be recovered without Usep?-invariants, but this was never attempted in the
knowing the epipolar geometry (Quan, 1995). paper. Such a system, should first break ghabal

The estimated projective coordinates are sensitive to correspondence problem into several (possibly over-
positional uncertainty (Rothwell et al., 1995). A pro- lapping) subproblems, to keep the number of outliers
jective transformation irP® has 15 degrees of free- relatively low. Possible approaches to delineate sub-
dom, and therefore it is expected that ugidnvariant regions can use salient convex groups (Jacobs, 1996),
representations to index into data bases of 3D mod- or class-driven grouping (Mundy et al., 1994b). How-
els (or seeking correspondence between point sets)ever, the grouping has to be chosen to only minimally
will require additional safeguards, similar to those de- interfere with the definition op?-invariants. Based
scribed in Section 4. How such, context-independent on our experimental results, the performance should
constraints (like the convex hull preservationRA) improve, but it is safe to assume that fifeinvariants
can be built, is an open question not addressed here. will not be able to provide the ultimate solution for



object recognition, which definitely needs a top-down
component.
To conclude, it is important to recognize a funda-

mental question raised by the paper. For superior per-

formance in a practical object recognition system an

optimal balance must be achieved between the informa-

tion used in deriving invariant representations, and the
information used in validating the hypotheses derived
from these (inherently) unreliable representations.
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