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Abstract. Invariant representations are frequently used in computer vision algorithms to eliminate the effect of
an unknown transformation of the data. These representations, however, depend on the order in which the features
are considered in the computations. We introduce the class of projective/permutationp2-invariants which are
insensitive to the labeling of the feature set. A general method to compute thep2-invariant of a point set (or of
its dual) in then-dimensional projective space is given. The one-to-one mapping betweenn + 3 points and the
components of theirp2-invariant representation makes it possible to design correspondence algorithms with superior
tolerance to positional errors. An algorithm for coplanar points in projective correspondence is described as an
application, and its performance is investigated. The use ofp2-invariants as an indexing tool in object recognition
systems may also be of interest.

Keywords: invariance, feature correspondence, indexing, geometric hashing

1. Introduction

The following generic problem often appears during
the execution of many computer vision tasks. Two sets
of features are given, called in the sequel therefer-
enceand thetransformed set. An unknown transfor-
mation maps a subset of reference features into a subset
of the transformed set. It is required to match the
corresponding features between the two sets. In the
correspondence problem, central to motion and stereo
tasks, this issue is directly addressed. However thein-
dexing problem, i.e., identifying from a database the
model best representing the data, can also be regarded
as belonging to the same class.

For real images the explicit correspondence problem
usually is solved making use of metrical properties, i.e.,
the correspondence is obtained from proximity rela-
tions. Salient features (most often corners) are detected
in both images. The two feature sets are related to iden-
tical coordinate systems and the correspondences are
sought in windows defined around (say) the reference
feature locations. Whenever the two images are taken
from very different viewpoints (the two feature sets
are connected by a strong affine or projective trans-
formation) the search window based correspondence
methods will yield many false matches. In this case the
windows have to be large to account for the changes
between the two images and numerous candidates are
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included. For an extensive application of this technique
see for example (Zhang et al., 1994).

The role of metric information is different in the
solutions proposed for the indexing problem. For ex-
ample, in thealignmenttype methods (Huttenlocher
and Ullman, 1990), the most proper transformation be-
tween the two sets is sought by randomly sampling the
space of possible transformations. For a given transfor-
mation, the transformed set is backprojected onto the
reference set and the local deviations are used to build
a performance measure. Alignment implies a correct
transformation, and thus a correct match between the
points is used to define that transformation. The random
sampling of the transform space is eliminated by using
invariant representations for the two sets. Geometric
hashing (Lamdan et al., 1990) is an example of the in-
variance based approach toward the indexing problem.

The method described in this paper belongs to the
class of invariant representations, and treats the corre-
spondence and indexing problems as equivalent. Its ap-
plication to object recognition is discussed at the end of
the paper. Today, invariance is a major research area of
computer vision. See the books (Mundy and Zisserman,
1992; Mundy et al., 1994a) for comprehensive surveys
of the results. Invariant representations, however, are
permutation-sensitive. That is, the value of an invari-
ant associated with a subset of features often depends
on the order in which the features were considered in
its computation. Permutation sensitivity introduces a
combinatorial explosion in the indexing problem. In the
n-dimensional projective spacePn an invariant repre-
sentation is based on(n+3)-tuples of features, and for
each(n + 3)-tuple(n + 3)! different labelings have to
be considered.

In this paper we describe a general method to ob-
tain representations of point-sets in projective spaces
of arbitrary dimension which are insensitive to both
projective transformations and permutations of the la-
beling of the set. They will be calledprojective and
permutation, p2-invariants. Interchanging the indices
of n + 3 features is equivalent to the action of the per-
mutation group on the(n + 3)-tuple. The permutation
group has its own permutation invariants, expressions
whose values are unchanged by the reordering of the
elements. Ap2-invariant, I [·], thus must satisfy the
condition

I (r1, . . . , rk) = I (π{r1, . . . , rk})
= I (π{T(r1), . . . , T(rk)}) (1)

where rk and T(rk) are the reference and the trans-
form features respectively, andπ{r1, . . . , rk} describes
a permutation of the labels.

Invariant representations are very sensitive to noise,
i.e., to positional errors in the location of the features.
Errors of one or two pixels can drastically change
the value of the invariant associated with a subset
of features. To reduce the amount of false matches,
topological relations among the features (e.g., they
are known to belong to the same object located in
the front of the camera) are extensively employed.
Examples of such object recognition systems are
described in (Mundy et al., 1994b; Rothwell, 1994;
Zisserman et al., 1995).

The p2-invariants are useful beyond removing the
dependence on the labeling. InPn an (n + 3)-
tuple of points can be represented with onlyn num-
bers, the number of independent projective invariants.
However, it will be shown that using a redundant
p2-representation (based on at leastn + 3 numbers),
significantly increases the tolerance to positional errors
and allows the design of less sensitive correspondence
algorithms.

In Section 2 the basicp2-invariant of four collinear
points is derived. The solution for arbitrary dimensional
projective spaces is presented in Section 3. In Section
4 an application in the projective planeP2, a robust
method for establishing point correspondences with re-
duced sensitivity to outliers and positional errors, is
described. The case ofP3 is discussed in Section 5.
The consensus principle, repeatedly exploited to in-
crease the tolerance to noise, as well as the use ofp2-
invariants in object recognition tasks, are discussed in
Section 6.

2. p2-Invariant of Four Collinear Points

The fundamental projective invariant is the cross ratio
of four collinear pointsAi , i = 1, . . . , 4. Let the points
have homogeneous coordinatesxi = ( x(i )

1 , x(i )
2 )t , then

their cross ratio can be defined as

I1(x1, x2, x3, x4) = λ = (A1A3)(A2A4)

(A3A2)(A4A1)

=

∣∣∣∣∣ x(1)
1 x(3)

1
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∣∣∣∣∣
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where (Ai Aj ) is the oriented length of the segment
from the pointAi to the pointAj .

The four points can be considered in 4!= 24 differ-
ent orderings which yield only six different cross ratio
values (e.g., Springer, 1965, Sec. 1.8).

λ1 = λ, λ2 = 1

λ
, λ3 = λ − 1

λ
,

λ4 = λ

λ − 1
, λ5 = 1

1 − λ
, λ6 = 1 − λ.

(3)

Any symmetric polynomial in theλi is already invariant
of the permutation of the indices. These polynomials
are alsop2-invariants by the projective invariance of the
cross ratios. The simplest one,

∑6
i =1 λi , is trivial hav-

ing the value 3. Nontrivial permutation invariants can
be obtained by considering a second degree symmetric
polynomial built with the pairwise productsλi λ j .

For a systematic investigation of all the possible
second-order permutation invariants, representations
of the permutation groupS4 acting on the four points
must be considered. It was shown in (Lenz and Meer,
1994) that these invariants can be expressed as a linear
combination of

J1[λ] = λ6 − 3λ5 + 3λ4 − λ3 + 3λ2 − 3λ + 1

λ2(λ − 1)2

J2[λ] = 2λ6 − 6λ5 + 9λ4 − 8λ3 + 9λ2 − 6λ + 2

λ2(λ − 1)2
(4)

J3[λ] = 3

J4[λ] = −3.

The nontrivialp2-invariants J1[λ] and J2[λ] are un-
bounded functions. Their ratio

J[λ] = J2[λ]

J1[λ]
, (5)

however, is bounded between 2 and 2.8 and for com-
putational convenience it is taken as thep2-invariant
function of the four collinear points. Thus, indepen-
dent of how the labels of the four points were chosen,
when the cross ratio computed from (2) is used as ar-
gument in (5), the same value is obtained.

The cross ratio is very sensitive to changes in the
location of the points on the line. Since the sensitivity
is configuration dependent, the underlying probabil-
ity distributions are complex. See (Åström and Morin,
1995; Maybank, 1994, 1995) for theoretical analyses

in the context of the indexing problem. The noise sen-
sitivity is transferred into thep2-invariant.

3. p2-Invariant in the n-Dimensional
Projective Space

For a more detailed introduction on projective
spaces see (Faugeras, 1993, Sec. 2). A point in the
n-dimensional projective space,Pn, has the homo-
geneous coordinatesxi = (x(i )

1 , . . . , x(i )
n+1)

t , with at
least onex(i )

j nonzero. The standard projective basis is
defined as

ei = (0, . . . , 1, . . . , 0)t i = 1, . . . , (n + 1) (6)

en+2 = (1, 1, . . . , 1)t (7)

It can be shown that any(n + 2)-tuple of points in
general position, i.e., non + 1 of them are in the
same hyperplane, can be transformed by a nonsingular
(n + 1) × (n + 1) matrix (a projective transformation
in Pn) into the standard basis.

The projective invariants inPn are defined based
on n + 3 points in general position. Similar to
(Carlsson, 1994) the notation

[x1, . . . , xn+1] =

∣∣∣∣∣∣∣∣∣∣∣

x(1)
1 . . . x(n+1)

1

x(1)
2 . . . x(n+1)

2

...
...

...

x(1)
n+1 . . . x(n+1)

n+1

∣∣∣∣∣∣∣∣∣∣∣
(8)

will be frequently used. The determinant (8) of the
homogeneous coordinates ofn + 1 points is propor-
tional to the oriented volume of the parallelepiped
defined by those points. In double algebra, a tool re-
cently introduced in computer vision (Carlsson, 1994),
the determinant is known as thebracket over the
(n + 1)-dimensional vector space.

The definition of a projective invariant inPn can then
be written as

In(x1, . . . , xn+3)

= [x1, . . . , xn−1, xn, xn+2][x1, . . . , xn−1, xn+1, xn+3]

[x1, . . . , xn−1, xn, xn+3][x1, . . . , xn−1, xn+1, xn+2]
(9)

Based on the similarity to (2) the invariant is often re-
ferred to as a cross ratio inPn. From the properties
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of the bracket follows thatIn(x1, . . . , xn+3) is invari-
ant to projective transformations of the point set, e.g.,
(Brill and Barrett, 1983). Thus the firstn + 2 points
can always be chosen as the standard projective basis.
After the transformation of the point set into the stan-
dard projective basis, let the homogeneous coordinates
of the last point be

xn+3 = (λ1, . . . , λn, 1)t . (10)

To obtain (10) the equivalence class property of homo-
geneous coordinates was used. For the ease of expo-
sition the last component of the vector is taken to be
nonzero, i.e., the pointxn+3 is not in the hyperplane at
infinity. Extension to the general case is immediate.

The value ofIn(e1, . . . , en+2, xn+3) (note the use of
standard basis) is easy to compute. We have

[e1, . . . , en−1, en, en+2] = 1

[e1, . . . , en−1, en+1, xn+3] = −λn
(11)

[e1, . . . , en−1, en, xn+3] = 1

[e1, . . . , en−1, en+1, en+2] = −1 ,

yielding

In(x1, . . . , xn+3) = λn . (12)

Being a projective invariant,λn is called a projective
coordinate of the pointxn+3. The otherλi can be ob-
tained by interchangingei anden, i = 1, . . . , (n − 1)

in (9). Thus, ann + 3 point configuration in gene-
ral position inPn has onlyn independent projective
invariants.

There are(n + 3)! different labelings of then + 3
points, and for each labeling the invariant (9) can be
computed. Our goal is to derive thep2-invariant of
the configuration. An important observation resulting
from the employed definition of the invariant (9) is that
In(e1, . . . , en+2, xn+3) remains unchanged under the
permutation of the firstn−1 points,{e1, . . . , en−1}. In-
deed, these permutations yield the same sign change in
all four determinants which then cancel each other. The
geometric interpretation is also easy to establish. The
first n − 1 points define the same(n − 2)-dimensional
hyperplane,Q, independent of the order of the points.

To examine the influence of the permutation of the
last four points,{en, en+1, en+2, xn+3}, four (n − 1)-
dimensional hyperplanes are defined together with
the firstn − 1 points. The hyperplanes (marked with
the index of the last point) are represented by the

homogeneous coordinates

Pn = (0, . . . , 0, 1)t

Pn+1 = (0, . . . , 1, 0)t

(13)
Pn+2 = (0, . . . , 1, −1)t

Pn+3 = (0, . . . , 1, −λn)
t .

The four hyperplanesPn, . . . , Pn+3 intersect inQ, i.e.,
they form a pencil of planes (Faugeras, 1993, p. 26).
The pair of points{en, en+1} define the line

x = µ1en + µ2en+1 , (14)

where(µ1, µ2) are the homogeneous coordinates of
a point on the line in the projective basis{en, en+1}.
The four intersection points of the line with the pen-
cil of four hyperplanes,yi , have the homogeneous
coordinates

yn = (1, 0)t

yn+1 = (0, 1)t

(15)
yn+2 = (1, 1)t

yn+3 = (λn, 1)t .

Considering the points in the above order the value
of their cross ratio (2) isλn = I1(yn, . . . , yn+3).
The definition of the line, however, was arbitrary.
The projective structure of the pencil of planes as-
sures that the effect of using a different point pair
when defining the intersecting line (14) is the same
on the cross ratio as a change in the order of the
pointsyi .

Thus the effect of permutation of the last four points
in the expression of then-dimensional projective in-
variant (9) can be reduced to a permutation of the four
intersection points. The 24 possible permutations yield
one of the six expressions (3), and it was shown in
Section 2 that the permutation dependence is elimi-
nated by using thep2-invariant functionJ[·] (5). The
result that then-dimensional projective invariant (9)
can be reduced to a one-dimensional cross ratio (2) is
known for the projective planeP2 as a form of Pap-
pus’ theorem (Springer, 1965, Sec. 5.6), and is also of-
ten used in projective reconstructions, (e.g., Faugeras,
1995; Rothwell et al., 1995). The novelty of our anal-
ysis lies in exploiting it to achieve the desired permu-
tation invariance properties.
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Given a labeling of then + 3 points inPn it was
therefore proven that

J[ In(x1, . . . , xn+3)]

= J[ In(π{x1, . . . , xn−1},σ{xn, . . . , xn+3})], (16)

for all permutationsπ over the firstn − 1 points, and
all permutationsσ over the last four points. Any ex-
change of a pointxi , i = 1, . . . , (n − 1) with a point
x j , j = n, . . . , (n + 3) violates (16) since the hyper-
plane defined by the new firstn − 1 points is different.
There are only

(
n + 3
n − 1

)
=

( n + 3
4

)
different arrangements

of the labels in (16). Thus thep2-invariant ofn + 3
points in Pn is a vectorJ with

(
n + 3

4

)
components,

each having a different argument ofJ[·]. These argu-
ments can be computed with any symbolic mathemat-
ics package (we have used MAPLE) using the standard
projective basis instead ofxi , i = 1, . . . , (n + 2), and
the projective coordinatesλ j , j = 1, . . . , n for the
last point. To remove the dependence on the initial la-
beling of then + 3 points, the components ofJ must
be ordered in (say) increasing sequence. It must be
emphasized that thep2-invariant vector has onlyn in-
dependent components.

For four collinear points we use thep2-invariant
function J[λ]. Thep2-invariant of five coplanar points
is a five-dimensional vector with two independent com-
ponents. Thep2-invariant of six points in the three-
dimensional projective space is a fifteen-dimensional
vector with three independent components, etc. The
derivedp2-invariants can also be used for the dual ele-
ments (lines inP2 and planes inP3). In the following
sections practical issues in the context of some appli-
cations of interest are discussed.

4. Robust Correspondence of Planar Features

In P2, five points with homogeneous coordinates
xi , i = 1, . . . , 5, no three of them collinear, have two
independent projective invariants which are defined as

λ1 = I2(x1, x2, x3, x4, x5),
(17)

λ2 = I2(x2, x1, x3, x4, x5).

Sincen = 2, the second invariant is obtained by ex-
changingx1 with x2, in accordance with (16). The
computed components of thep2-invariant J vector

are

J(1) = J[λ1] J(2) = J[λ2] J(3) = J

[
λ1

λ2

]
(18)

J(4) = J

[
λ2 − 1

λ1 − 1

]
J(5) = J

[
λ1(λ2 − 1)

λ2(λ1 − 1)

]

and are sorted in ascending order, i.e.,J = (J [1],

J [2], J [3], J [4], J [5])t .
The last threeJ(i ) values correspond to first exchang-

ing x1 with x3, x4 andx5 respectively, and substituting
the computed projective invariant into the functionJ[·].
Thus every point is uniquely associated with a compo-
nentJ(i ) of thep2-invariant vector. The fact the number
of points in a configuration is the same as the dimension
of theJ vector is true only inP2. Forn > 2 additional
processing must be introduced to obtain a one-to-one
mapping between the components of theJ vector and
then + 3 points. This is discussed in Section 5.

Given a set of coplanar points, their labels are cho-
sen arbitrarily. For each five-tuple in general posi-
tion the vectorJ is computed. If a five-tuple of
points from the reference set and one from the trans-
formed set havep2-invariant vectors with identical
components, the two five-tuples are matched. More-
over, since the components are associated with in-
dividual points, the projective correspondence of the
points is also established. That is, the two five-tuples
are the same up to a planar projective transforma-
tion. The projective transformation introduces eight
degrees of freedom which can yield to a significant
probability of mismatch, especially in the presence of
outliers (points with no correspondent). Mismatches
can also appear due to the high sensitivity of the in-
variants to positional errors. These errors are inher-
ent since even ideal data is quantized to the closest
grid location. The influence of the noise sensitivity of
the invariant representations on the performance of al-
gorithms employing them was studied mostly in the
context of the indexing problem (Grimson et al., 1994;
Lamdan and Wolfson, 1991; Maybank, 1995).

The performance of any algorithm processing noise-
corrupted data is characterized by two probabilities:
the probability of detection, and that of false alarms.
These two measures are intimately connected; increas-
ing the probability of detection (through manipulation
of thresholds) will inherently increase the number of
false alarms. A satisfactory probability of detection in
invariance-based matching of point-sets implies a very
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high probability of false alarms. The ultimate goal of
an efficient correspondence algorithm is to reduce the
false alarm rate while minimally decreasing the prob-
ability of detection. This can only be achieved if the
candidates are validated by using constraints which are
independentof the information used in their selection
process. Since the five components of thep2-invariant
vector of a five-tuple of points are in one-to-one corre-
spondence with the points, such constraints are easy to
define, and a less sensitive correspondence algorithm
can be designed.

Several procedures have to be incorporated into a
robust point correspondence algorithm.

• Elimination of five-tuples with degenerate configu-
rations (Section 4.1).

• Definition of configuration dependent bounds on the
components of thep2-invariant vector to compensate
for the effect of positional errors (Section 4.2).

• Reducing the influence on the overall performance
of the correspondence algorithm of erroneously
matched five-tuple pairs. This is achieved in two
steps (Section 4.3) and (Section 4.4).

• Validation of the extracted point correspondences in-
dependent of the context, e.g., information about the
content of the image (Section 4.5).

More details about the first three procedures can be
found in (Meer et al., 1994; Ramakrishna, 1994).

4.1. Collinearity Verification

Without loss of generality we can assume in the se-
quel that the points have affine coordinates, i.e.,xi =
(x(i )

1 , x(i )
2 , 1). The points in a five-tuple must be in

a general position with no three of them collinear.
Should three points be quasi-collinear, the area of the
defined triangle, the bracket (8) is close to zero and
the computation of the invariants (17) becomes numer-
ically unstable. Letx1, x2 andx3 be three points. The
value of their bracket is not a reliable indicator for near
singularity (Golub and van Loan, 1989, p. 81), i.e., of
quasi-collinearity. Instead, following (Kanatani, 1991)
we define the moment matrixM123

M123 =
3∑

i =1

xi xt
i . (19)

The matrix is also known as scatter or Gram matrix
in the literature. The smallest eigenvalue ofM123 is

also the smallest squared singular value of the ma-
trix X = (x1 x2 x3), i.e., the matrix having as columns
the vectors of the three points (Biglieri and Yao, 1989).
The closeness to rank deficiency ofX (the closeness
of its smallest singular value to zero) measures how
collinear the three points are (the linear dependency of
their vectors).

The correspondence algorithm will not include three
points into a five-tuple if the smallest eigenvalue is
less than 0.001. The influence of this threshold is very
weak, similar performance of the correspondence al-
gorithm is obtained within several orders of magnitude
(Ramakrishna, 1994). This is not unexpected since a
threshold derived from the singular values ofX would
be considerably larger. The collinearity verification
procedure is applied to both the reference and trans-
formed sets. While collinearity is a projective invari-
ant property, quasi-collinearity which involves metric
relations, is not. However, the correspondence algo-
rithm has a probabilistic nature and it is not necessary
to use all the possible five-tuple pairs from the two
sets.

4.2. Positional Uncertainty

The behavior of the one-dimensional cross ratio un-
der i.i.d. Gaussian perturbation of the point coordi-
nates was investigated by Maybank (1994).Åström
and Morin (1995) studied the probability distribution
of the cross ratio, and obtained the region of confi-
dence for a given perturbation. Morin (1993) extended
the distribution to the two-dimensional case based on
experimental evidence. In a practical point correspon-
dence algorithm, configuration dependent bounds must
be established for each component of thep2-invariant
vector, J, to reduce the amount of mismatched five-
tuples. While linear approximations of the expressions
(18) can be used, satisfactory bounds can already be
obtained by the “worst case” approach.

The positional uncertainty in measuring the location
of a pointxi is represented as two uniformly distributed,
zero-mean random variablesε i

1 andε i
2

X(i )
1 = x(i )

1 + ε
(i )
1 , X(i )

2 = x(i )
2 + ε

(i )
2 , (20)

where the corrupted location isX i = (X(i )
1 , X(i )

2 , 1).
Let ε be the largest half-range ofε

(i )
j , j = 1, 2, over

the point-set, i.e., no coordinate was corrupted beyond
the interval [−ε, ε]. Neglecting the second-order error
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terms we have from (8)

[X1, X2, X3] = [x1, x2, x3]

+ ε

2∑
j =1

3∑
i =1

(
x(i )

j − x(k)
j

)
, (21)

wherek = mod(i, 3) + 1. Thus, the change in the
value of a bracket due to positional errorε is bounded
by the quantity

e123 = ε

2∑
j =1

3∑
i =1

∣∣x(i )
j − x(k)

j

∣∣. (22)

The configuration-dependent minimum and maximum
values are obtained by adding and subtractinge123to the
original value. Using the bounds for all the employed
brackets, the bounds(λmin

1 , λmax
1 ) and(λmin

2 , λmax
2 ) for

a positional uncertaintyε can be computed by inter-
val arithmetic (Alefeld and Herzberger, 1983). The
bounds on the other three arguments required for the
p2-invariant vector (18) can be derived from that ofλ1

andλ2.
The functionJ[·] is strictly monotonic on the six in-

tervals(−∞, −1), (−1, 0), (0, 0.5), (0.5, 1), (1, 2),
(2, ∞) which correspond to the six distinct cases of
the one-dimensional cross ratio under permutation of
the indices (3). Whenever the interval(λmin, λmax) is
not entirely contained within one of these six intervals,
using theJ[·] function the interval can be mapped into
one in whichλ, the unperturbed value lies. For exam-
ple, if λ1 = 0.3, the interval(λmin

1 , λmax
1 ) is mapped

into (0, 0.5). Thus ifλmin
1 = 0.1 andλmax

1 = 0.6, the
bounds are set as(0.1, 0.5). The procedure is applied
to all five arguments in (18).

The function J[·] being strictly monotonic on
each interval, its bounds can be derived from the
bounds of the argument. Thus, for each compo-
nent of the p2-invariant vector J [i ] , an interval
(J [i ],min, J [i ],max) is obtained. Note that the intervals
established for the different components can overlap.
See (Ramakrishna, 1994) for an example. Given a
five-tuple of points, the three vectorsJmin, J andJmax

determine a configuration-dependent confidence re-
gion in the five-dimensional space of thep2-invariant
representations.

To account for positional errors when matching five-
tuples, a positional uncertaintyε is assumed for (say)
the reference set. Since projective transformations
do not preserve metric properties,ε cannot be di-
rectly equated with a distance in the transformed set.

Whenever aJ vector from the transformed set falls
within the confidence region associated with a five-
tuple from the reference set, the two five-tuples are
candidates for a match. The vectors should match
component-wise, i.e.,

J [i ],min
ref < J [i ]

trans< J [i ],max
ref i = 1, . . . , 5, (23)

thus eliminating the problem of overlapping bounding
intervals. Since the sorted componentJ [i ]

ref is associated
with the point labeledj in the reference set five-tuple,
and J [i ]

trans is associated with the point labeledk in the
transformed set five-tuple, a matched five-tuple pair
provides five point correspondences.

The main role of the parameterε, is to control
the number of matching candidates. Many of these
candidates are incorrect due to the projective equiv-
alence of the five-tuples and the noise sensitivity of
the p2-invariant. It is the role of the subsequent com-
putational modules to eliminate the erroneous corre-
spondences. Ifε is too small, the number of match-
ing candidates is not large enough to extract sufficient
evidence for a point correspondence. Otherwise, the
performance of the algorithm remains very simi-
lar up to values ofε yielding the largest possible
range of bounds(2, 2.8) for theJ vector components
(Ramakrishna, 1994), in which case the matching is no
longer selective. The implementation usesε = 0.4.

4.3. Convex Hull Constraints

A perspective transformation preserves the convex
hull of a point-set (e.g., Haralick and Shapiro, 1993,
Sec. 13.3.3); Hartley (1993) extended the result for the
projective transformation which exist between two im-
ages of the same coplanar point set. A pair of matched
five-tuples puts five points in correspondence. A nec-
essary (but not sufficient) condition for the match to be
correct is that the two convex hulls should also be in
correspondence.

The convex hull of five points may contain 3, 4, or
5 of the points. Thus, the following conditions can be
defined.

1. The number of points on the convex hull must be
the same.

2. Corresponding points must lie either on or inside
the convex hull.

3. For points lying on the convex hull, neighborhood
relations must be preserved.
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The last condition is meaningful only if the convex hull
contains at least four points, in which case the corre-
spondence between two points implies the correspon-
dences between their neighbors as well.

The convex hull preservation was employed by
Morin (1993) to construct twop2-type invariants for
a five-tuple of coplanar points. Ourp2-invariant repre-
sentation did not use the convex hull of the five-tuple,
and therefore the convex hull constraints provide the
most effectiveindependentinformation for the val-
idation of the matching candidates. Note that the
constraints imply that the point correspondences are
hypothesised between the matched five-tuples. As was
discussed in the previous section this is available from
thep2-invariant representation.

Should more than one matching candidate remain
after the verification of the convex hull constraints,
the candidate with the smallestJref, Jtrans distance in
the five-dimensional space of thep2-representations,
computed withL2 norm is chosen. Our experiments
with synthetic data have shown that for a noisy trans-
formed set the correct match is often not the closest
one among all the candidates. Thus, after applying
the convex hull constraints it is not guaranteed that
the nearest-neighbor rule selects the correct candi-
date. The consensus-seeking technique described in
the next section, can tolerate a significant amount of
mismatches. Retaining all the candidates which ver-
ified the convex hull constraint, will introduce more
mismatches than when keeping only one candidate.
The error tolerance of the correspondence algorithm
is well illustrated by the fact that the performance does
not change significantly in former case.

4.4. Tolerated Mismatch

The point correspondences obtained from a matched
pair of five-tuples can contain zero to five errors. Let
the probability of an incorrectly detected point corre-
spondence bePerror. Extensive simulations have shown
that Perror remains the same for all the points in a five-
tuple.

Assume for convenience that the two sets contain the
same number of points,N, and that all the points have
an equal chance to pass the matching criterion. Every
established correspondence casts a vote in acontin-
gency table. The contingency table has the labels of
the reference set as row addresses and the labels of the
transformed set as column addresses. Thus a reference
and a transformed point pair uniquely defines a cell.

A reference/transformed point correspondence casts a
vote into the correctly addressed cell with probability
1 − Perror. The same reference point will cast, under
the uniform sampling assumption, incorrect votes into
a given cell with probabilityPerror/(N −1). To be able
to detect the correct point correspondence after all the
votes were cast, the latter probability should not exceed
the former.

The contingency table is an effective tool for accu-
mulating the votes since it distributes the incorrect ones
over the entire set of points. Indeed, the above condi-
tion gives the tolerated probability of error in pairing
a point from the reference set with a point from the
transformed set:

Perror < 1 − 1

N
. (24)

The relation (24) predicts thatPerror can exceed 0.8,
with most of the point pairs erroneously voting into
the contingency table while the two sets are still put
into correct correspondence. Experimental results have
shown that this is indeed the case forN ≥ 10.

When a sufficiently large number of transformed set
five-tuples were matched, enough votes were entered
into the contingency table. To extract the point corre-
spondences, a simple greedy algorithm is used. The
cell with the highest number of votes in the table iden-
tifies the first correspondence. This pair of points is
eliminated by removing from the table the row and the
column of the cell. The procedure is then repeated until
all the row (or column) entries were used. Note that it
is not necessary to have theN correct point correspon-
dences associated with theN largest values in the ini-
tial contingency table. It suffices that at every iteration
the largest value in the table indicates a correct cor-
respondence. This property of the algorithm compen-
sates for the nonuniform point selection almost always
present in real data, i.e., some points are more fre-
quently present in the matched five-tuples than others.

For a set ofN points O[N5] different five-tuples can
be defined, and thus the same number ofp2-invariant
representations. Without label permutation invariance,
the number of projective representations increases
more than two orders of magnitude (5!= 120). For the
reference set all thep2-invariant representations have
to be computed, however, to generate enough votes
in the contingency table only a subset of the possible
transformed set five-tuples has to be processed. These
five-tuples can be chosen by random sampling, and
their number depends on the amount of positional error
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present in the data. For slightly corrupted data 20–30
percent of the total number is enough.

The contingency table is a computational tool
through which aconsensus decisionis extracted from
the mostly incorrect point correspondences. (In experi-
ments with synthetic data and positional errors of a few
pixels,Perroroften exceeded 0.8!). As discussed above,
the success of the technique is due to the distribu-
tion of errors across the entire table. The contingency
table based voting technique is basically different from
the accumulation procedure used in geometric hashing
(Lamdan et al., 1990). An analytical comparison of er-
ror sensitivities is beyond the goal of this paper, but it
is well-known that geometric hashing has a rather poor
performance once the transformation group becomes
more complex than rigid motion (Grimson et al., 1994;
Lamdan and Wolfson, 1991). The size of the hashing
table required for accumulating the votes in the projec-
tive case is O[N4] with a constant 4!= 24, while the
size of the contingecy table isN × N.

4.5. Correspondence Validation

The output of the contingency table analysis is the cor-
respondence between the points in the reference and
the transformed sets. These correspondences must be
validated since if the two sets do not share all the points,
i.e., outliers are present, false correspondences are in-
troduced. An efficient validation technique should also
remove most of the correspondence errors and recog-
nize when the algorithm failed completely. The natural
way for validation is backprojection of the transformed
set onto the reference set and computation of a quality
measure. Exploiting the fact that the correspondences
were already established, a consensus-seeking method
similar to the contingency table based analysis can be
used.

A planar projective transformation is uniquely deter-
mined by four point correspondences. Thus ifN point
correspondences were established,

(
N
4

)
possible trans-

formations can be defined. Note the relative small num-
ber, in contrast to the number needed for the alignment
method (Huttenlocher and Ullman, 1990). TheN cor-
respondences are labeled from 1 toN and associated
with empty accumulator cells. Let a transformation
be obtained from the correspondences labeled 1 to 4.
The remainingN − 4 points of the transformed set are
projected into the reference set. For these points,d2

i
the squared Euclidean distance to the corresponding
reference point is computed, and sorted in ascending

orderd2
[i ] . A robust quality measure of the backprojec-

tion can be defined as

δ1234 = 1∑m2
i =m1

d2
[i ]

, (25)

wherem1 = 1 andm2 = b0.4∗ (N − 4)c. The indices
m1 andm2 control the sensitivity of the validation pro-
cedure. The trade-off is between exclusion of large dis-
tances due to errors (m2 small), and increased support
for the computation ofδ1234(m2 large). The accumula-
tor cells 1 to 4 are incremented withδ1234. After all (or
a large number) of the possible transformations were
used, the confidence in a point correspondence is given
by the value in the associated accumulator cell.

Whenever an incorrect point correspondence is used
to compute the transformation,δ is more likely to de-
crease. The cumulative effect keeps the value of those
accumulator cell which are associated with such cor-
respondences significantly lower. In the absence of
large positional uncertainties outliers are immediately
revealed having confidences an order of magnitude
smaller.

Large positional uncertainties level off all the con-
fidence values and therefore it is difficult to establish
a unique validation threshold. Data-dependent thresh-
olds, however, can be derived fromN randomcorre-
spondences between the two sets. The above described
confidence computation procedure is performed with
these random pairings of points. To compensate for
accidental proximity, the summation limits in (25) are
increased tom1 = 3, andm2 modified accordingly. For
large number of pointsm1 = 2 can also be used.

All the “random” confidence values belong to the
same (unknown) distribution. The mean and the stan-
dard deviation of the distribution are computed and the
validation threshold is set as the mean plus three stan-
dard deviations. The accuracy of this threshold does
not seem to improve if the distribution is based on more
than one random shuffling of the correspondences. The
method employed to derive the data-dependent thresh-
old belongs to the family of resampling techniques,
more precisely to bootstrapping (Efron and Tibshirani,
1993).

A correspondence established by the algorithm is
declared valid if the associated confidence value ex-
ceeds the threshold. The validated point correspon-
dences can be used to compute by least squares (or
if additional safeguards are to be taken, by the robust
least median of squares) the transformation between
the two point-sets. Any practical algorithm should be
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able to diagnose its own failure. The validation method
declares complete breakdown whenever less than four
point correspondences are declared valid. In such cases
context-dependent information must be used.

4.6. Algorithm Summary

The processing steps are reviewed below:

1. For each nondegenerate five-tuple in the reference
set itsp2-invariant representation together with the
bounds (forε = 0.4) are computed.

2. The p2-invariant representation forK randomly
chosen nondegenerate five-tuples from the trans-
formed set are derived, and the matching candidates
established.

3. The best candidates (if any) are retained after prun-
ing with the convex hull constraints.

4. The obtained point correspondences vote into the
contingency table, from where the correspondence
between the two point-sets is extracted.

5. The output of the algorithm is validated through
backprojection.

Note that context-dependent (task-specific) informa-
tion is not used at any stage of the algorithm. Should
such information be available, it can provide additional
safeguards against erroneous decisions.

4.7. Experimental Results

The sensitivity of thep2-invariant representations was
studied through the performance of the correspondence
algorithm for synthetic data and real images. In case
of the synthetic data both the reference and the trans-
formed sets contained the same number of points,
N = 15. The projective camera model had a focal dis-
tance 50. The points to be used for thereference set
were assumed to be in a plane perpendicular to the opti-
cal axisOzat distance 300. Their coordinates were ran-
domly chosen between(−127, −127) and(128, 128)
and projected into the image plane. The optical axis
pierced the reference scene and image planes at(0, 0).
The image was then rescaled independently along the
x andy coordinates to extend over a 256× 256 pixel
array, and the point coordinates were quantized to the
closest pixel center.

To obtain thetransformed set, the reference scene
plane was rotated around the three axes in a random
order. The closeness of the image plane put limitations
on the range of allowed rotations. The maximum range

of rotations aroundOx andOy axes was(−57◦, 57◦),
and full rotations were allowed around the optical axis.
In the few cases when points in the transformed scene
plane moved behind the image plane, the artifact was
eliminated by iteratively reducing the amount of rota-
tion that caused it. The transformed scene plane was
then projected into the image plane and rescaled to a
256× 256 array.

The positional uncertaintywas introduced into the
transformed set by independently perturbing thex1 and
x2 coordinates of the points with uniformly distributed
random variables having half-rangeu, and thus a max-
imum shift in location of

√
2u could be introduced by

the noise. Outliers were obtained by replacing one to
three transformed set points with points at a randomly
chosen location. After the perturbation, the point co-
ordinates were quantized to the closest pixel center.
Note that when deriving performance statistics no con-
straints on minimum interpoint distances or collinearity
(beside that in Section 4.1) are used.

The performance of the correspondence algorithm
mirrors the sensitivity of thep2-invariant representa-
tions to perturbations. For every experimental condi-
tion the performance was assessed based on 100 trials.
The number of five-tuples chosen from the transformed
set wasK = 2000. The output of interest are the val-
idated point correspondences, since these are the ones
used in further processing, either to compute the trans-
formation between the reference and transformed set,
or to recover 3D information. Four probabilities were
measured from the trials.

• Pbv(k): The cumulative probability that before val-
idation there areat most kerroneous correspon-
dences among the extracted 15 pairs. Thus, even
if an outlier was put into correspondence with an
outlier, this is considered as an error since such cor-
respondence cannot be used to recover the transfor-
mation between the sets. The cumulative probability
Pbv(k) characterizes the input into the validation
module.

• pF : The probability of a trial being declared “fail-
ure”, i.e., less than four correspondences are val-
idated. The probabilitypF characterizes the self-
diagnosis capability of the algorithm.

• Pav(k): The cumulative probability that there areat
most kerroneous correspondences retained after val-
idation of the trials not classified as failure. The cu-
mulative probabilityPav(k) characterizes the error
detection performance of the validation module.
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Figure 1. Experimental results for 15 points synthetic data. See text.

• pf r (k): The probability that there arek correct corre-
spondences rejected during the validation of the tri-
als not classified as failure. The probabilitypf r (k)

characterizes the false alarm performance of the val-
idation module.

The mixed use of cumulative and individual proba-
bilities was found to be the most informative way for
characterizing the performance of the correspondence
algorithm. These probabilities are related

12∑
k=1

pf r (k) = max
k

Pav(k) = 1 − pF . (26)

In Fig. 1 the results obtained for several experimen-
tal conditions are tabulated. The number of outliers
was between zero and three, and positional uncertainty
of 2 to 4 pixels were introduced for both coordinates.
As expected, the performance decreases with the in-
crease of the perturbation, either through positional
uncertainty or outliers. Once the value of a cumulative
probability reaches its maximum it is no longer shown.
The validation module succeeds to recover most of the
correct point correspondences while keeping a rela-
tive low failure rate (recall that the uncorrupted in-
put has almost all the points in correspondence). The
failure rate,pF can easily be determined from Fig. 1
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using (26). For example, if the original data contained
two outliers and was corrupted with positional uncer-
tainty of 3 pixels, pF = 0.1. In (Meer et al., 1994)
and (Ramakrishna, 1994) additional experimental data,
characterized by a different interpretation ofPbv(k), as
well as detailed analysis of a single trial, can be found.
To measure the simulated probabilities with high ac-
curacy an unfeasible large number of trials would be
required. We have found, however, that even with 100
trials the statistical variations of the measured proba-
bilities are satisfactorily low.

Morin (1993; Morin et al., 1994), performed a large
comparative study on the noise sensitivity for sev-
eralp2-type invariant representations of a five-tuple of
collinear points. The two sets contained 50 points de-
fined on a 512× 512 image, from which 12 five-tuples
were chosen in the reference set as model candidates.
The allowed configurations were selected for mini-
mum interpoint distance (40 pixels) and noncollinearity
(at least 17 degrees deviations). The introduced posi-
tional uncertainty was zero-mean Gaussian with 1 pixel
standard deviation. All the invariant representations
showed high sensitivity (measured through matching
tasks), which probably can be attributed to the pres-
ence of many outliers.

Morin has concluded that invariant representations
based on symmetric polynomials (the class to which
J[·] also belongs) are less effective than a convex hull
based representation. As was discussed in Section 4.3
it is very important to use the information provided
by the convex hull for validation and not for deriv-
ing invariant representations. The performance of our
correspondence algorithm (tolerating more severe po-
sitional uncertainty for unconstrained configurations)
seems to confirm this observation.

Thep2-invariant vectorJ has only two independent
components, and for matching the componentsJ [1]

and J [2] should suffice. The effect of using nonredun-
dant representations in the correspondence algorithm
was somewhat unexpected, underlining the complex
probabilistic processes on which the correspondence
algorithm is based. The amount of required compu-
tations instead of decreasing it increased significantly
due to the larger number of selected candidates. For
moderate perturbations the performance of the algo-
rithm remained practically unchanged, otherwise it
declined. For example, with three outliers and a half-
range of the noise 2 pixels,pF = 0.26 (instead of 0.14),
Pav(0) = 0.44 (instead of 0.54), andpf r (0) = 0.70
(instead of 0.84). We conclude, similar to Morin (1993)

and Rothwell et al. (1995), that using redundant invari-
ant representations is necessary to compensate for the
noise sensitivity of these representations.

In Fig. 2 the performance of the point correspon-
dence algorithm for a real image is shown. The refer-
ence and the transformed sets containN = 20 points
each, extracted from the images Fig. 2(a) and (b)
respectively. The integer coordinates of the points were
extracted manually with a cursor and thus positional
errors are certainly present. Note that the copla-
narity condition of the points is only approximately
satisfied, and many quasicollinear configurations can
be defined. The last four points (labeled 17 through
20) are outliers being taken as different in the two
images.

The algorithm was run on the data withK = 10000.
Only nine of the extracted correspondences are cor-
rect. The correct correspondences are associated with
the largest confidences, and they are all validated
(Fig. 2(c)). Note the relative small range of the con-
fidence values, and the effectiveness of the validation
threshold derived from the data. The transformation
between the images can now be computed and the two
images aligned. The registration of the same pair of
images using an algorithm which requires a priori in-
formation (Zheng and Chellappa, 1992), is described
in (Chellappa et al., 1993).

5. P2-Invariant Representation in P3

In P3, six points with homogeneous coordinatesxi ,

i = 1, . . . , 6, no four of them coplanar, have three
independent invariants which can be taken as

λ1 = I3(x3, x2, x1, x4, x5, x6)

λ2 = I3(x1, x3, x2, x4, x5, x6) (27)

λ3 = I3(x1, x2, x3, x4, x5, x6).

The definition is arbitrary, any three arrangement sat-
isfying (16) can be used. Thep2-invariant vectorJ has
fifteen components which must be sorted in ascending
order.

J(1) = J[λ1] J(2) = J[λ2]

J(3) = J

[
λ1

λ2

]
J(4) = J

[
λ2 − 1

λ1 − 1

]
J(5) = J

[
λ1(λ2 − 1)

λ2(λ1 − 1)

]
J(6) = J[λ3]
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(a) (b)

R 3 18 11 6 15 20 4 10 9 19
T 10 3 18 20 4 9 11 15 17 6

Conf. 2.006 2.025 2.040 2.042 2.056 2.113 2.167 2.213 2.509 2.535
Valid n n n n n n n n n n

R 17 7 2 14 5 16 8 1 13 12
T 19 7 2 14 5 16 8 1 13 12

Conf. 2.600 3.747 4.292 4.455 5.132 5.154 5.233 5.285 5.373 5.527
Valid n y y y y y y y y y

(c)

Figure 2. Correspondence for real data: (a) Reference image. (b) Transformed image. The points labeled 17 to 20 are outliers. (c) Extracted
correspondences and confidence validation.

J(7) = J

[
λ1

λ3

]
J(8) = J

[
λ3 − 1

λ1 − 1

]
J(9) = J

[
λ1(λ3 − 1)

λ3(λ1 − 1)

]
J(10) = J

[
λ2

λ3

]
J(11) = J

[
λ3 − 1

λ2 − 1

]
J(12) = J

[
λ2(λ3 − 1)

λ3(λ2 − 1)

]
J(13) = J

[
λ2 − λ1

λ3 − λ1

]
J(14) = J

[
λ3(λ2 − λ1)

λ2(λ3 − λ1)

]
J(15) = J

[
(λ3 − 1)(λ2 − λ1)

(λ2 − 1)(λ3 − λ1)

]
(28)

The fifteen arguments are identical (up to a permutation
of the point labels) with the invariants derived indepen-
dently in (Rothwell et al., 1995) fora givenlabeling of
the point set. Our result eliminates all dependencies on
the ordering of the six points.

Carlsson (1995) has shown recently that the three-
dimensional invariant defined by five points inP3 to-
gether with the center of perspective, is the same as the
two-dimensional invariant of their projection onto an
arbitrary plane. The result is a generalization of the re-
ducibility of an invariant defined in a higher dimension
to one in a lower dimension (see Section 3), and can be
used to interpret (28).
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From (27) results thatJ(1) to J(5) in (28) correspond
to the two-dimensionalp2-invariant representation (18)
of the projections of the five points{x2, x3, x4, x5, x6}.
Similarly, using (16),J(6) to J(9) correspond to the
p2-invariant representation of the five-tuple obtained
with the pointx2 being left out (J[λ1] being already
generated). The componentsJ(10) to J(12) are obtained
with the pointx3 discarded (J[λ1] andJ[λ3] are already
available). The last three components,J(13) to J(15)

capture the intrinsic three-dimensional structure of the
six points, and depend on all three invariants.

To build a contingency table when the projective
space has dimensionn > 2, the intrinsic structure of
the p2-invariant vector has to be exploited. InP2

the components of the vector are in one-to-one cor-
respondence with the points in the five-tuple. InP3

pairs of points correspond to the vector components.
Thus J(1) is associated with the pair(x1, x2), J(2)

with the pair(x1, x3), J(3) with the pair(x1, x4), and
so on, J(15) being associated with the pair(x5, x6).
After two fifteen-dimensional vectors are matched,
the correspondence between the six point pairs can
be extracted with a “local” 6× 6 table. The re-
dundancy of thep2-invariant representation some-
what compensates for matching errors. A confidence
measure in the correspondence is also obtained and
weighted votes can be accumulated in the contingency
table.

The problem of six points inP3 is central to projec-
tive reconstruction, i.e., using uncalibrated cameras. In
this case, the projective coordinates of the six points
have to be recovered from two (or more) images of
the configuration. When the epipolar geometry (the
fundamental matrix) of a pair of uncalibrated cam-
eras is known, the invariantsλ1, λ2, λ3 can be com-
puted after performing simple geometric constructions
with the images of the six points (Carlsson, 1994;
Rothwell et al., 1995). If three images are available,
the projective coordinates can be recovered without
knowing the epipolar geometry (Quan, 1995).

The estimated projective coordinates are sensitive to
positional uncertainty (Rothwell et al., 1995). A pro-
jective transformation inP3 has 15 degrees of free-
dom, and therefore it is expected that usingp2-invariant
representations to index into data bases of 3D mod-
els (or seeking correspondence between point sets)
will require additional safeguards, similar to those de-
scribed in Section 4. How such, context-independent
constraints (like the convex hull preservation inP2)
can be built, is an open question not addressed here.

6. Discussion

Two new concepts were introduced in this paper.
The class ofp2-invariant representations are eco-
nomical representations of a point-set (or its dual
configuration), even when the recommended redun-
dant representations are employed. Permutation invari-
ants were derived for other transformation groups in
(Lenz and Meer, 1994). For simple groups the effect
of label permutations can also be eliminated by exploit-
ing metric properties, e.g., volumes are invariant under
rigid motion.

The second new concept introduced is the use of
consensus-based techniques to increase the noise tol-
erance of an algorithm. From mostly erroneous point
correspondence hypotheses, reliable decisions were
derived since the errors were distributed across the
space of all possible correspondences, while the sought
evidence was accumulated in a single cell. The tech-
nique was successfully applied twice, for the contin-
gency table and for the final validation. Consensus
seeking provides robust behavior (see the real image
experiment where the validation removed all the wrong
correspondences, i.e., outliers). This is not unexpected
since the consensus technique is based on the same
principle as the robust estimators using elemental sub-
sets, e.g., least median of squares.

We have shown that if additional constraints are used
to eliminate false matches, thep2-invariant representa-
tions can be used to build practical algorithms either for
the correspondence or the indexing problem. It is im-
portant that these constraints are context-independent,
i.e., are not based on information restricted to the input
image. Such information should provide only an ad-
ditional layer of task-specific safeguards to enhance
performance.

It is probably not very difficult to adapt an ex-
isting, invariance-based object recognition system to
usep2-invariants, but this was never attempted in the
paper. Such a system, should first break theglobal
correspondence problem into several (possibly over-
lapping) subproblems, to keep the number of outliers
relatively low. Possible approaches to delineate sub-
regions can use salient convex groups (Jacobs, 1996),
or class-driven grouping (Mundy et al., 1994b). How-
ever, the grouping has to be chosen to only minimally
interfere with the definition ofp2-invariants. Based
on our experimental results, the performance should
improve, but it is safe to assume that thep2-invariants
will not be able to provide the ultimate solution for
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object recognition, which definitely needs a top-down
component.

To conclude, it is important to recognize a funda-
mental question raised by the paper. For superior per-
formance in a practical object recognition system an
optimal balance must be achieved between the informa-
tion used in deriving invariant representations, and the
information used in validating the hypotheses derived
from these (inherently) unreliable representations.
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