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Hierarchical Image Analysis
Using Irregular Tessellations
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Abstract—We present a novel multiresolution image analysis technique
based on hierarchies of irregular tessellations generated in parallel by
independent stochastic processes. Like the “traditional” image pyramids
these hierarchies are constructed in on the order of log(image_size) steps.
However, the structure of a hierarchy is adapted to the image content
and artifacts of rigid resolution reduction are avoided. We give two
applications of our technique: connected component analysis of labeled
images, and segmentation of gray level images. In labeled images, every
connected component is reduced to a separate root, with the adjacency
relations among the components also extracted. In gray level images the
output is a segmentation of the image into a small number of classes as
well as the adjacency graph of the classes.
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I. INTRODUCTION

CELLULAR pyramid is an exponentially tapering stack of

arrays of processors (“cells”). Communication between cells
on successive levels of the stack allows global analysis of data
input to the base of the stack in log(base_size) steps. Cellular
pyramids support fast parallel algorithms for multiresolution im-
age analysis. See the books edited by Rosenfeld [31], Cantoni and
Levialdi [8], and Uhr [37]; for solving computational geometry
problems [25], with the image input to level 0, the base of the
pyramid.

Usually the cells on each level are connected to form a square
lattice but triangular or hexagonal grids have also been used
[2], [6], [14]. A cell on level I + 1 (the parent) is connected
to a K x K neighborhood of cells on level [ (its children).
Neighborhoods associated with adjacent parents overlap by K2
cells along both directions, yielding a fourfold reduction in
number of processors (twofold along each side of the square);
however, twofold reductions can also be achieved using modified
architectures [11], [18].

We restrict ourselves here to pyramids defined on a square grid
with fourfold reduction between successive levels. If an image
is input to the base of the pyramid, we can generate reduced-
resolution versions of the image at higher levels. Usually the
value of the parent is a weighted average of the values of its
children and the same set of weights is employed at every level.
Burt [7] defined rules for which the set of weights converges to
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sampled Gaussians with increasing standard deviations. Optimal
weights have also been proposed [24].

Let the base of the pyramid be of size N2 = 2" x 2". Then the
Ith level has size 2"~/ x 2"~/ so that the total number of cells
is less than $N2. The height of the pyramid, i.e., the number of
levels, is n = log N. Many image analysis tasks which require
O(N?) operations on a single processor can be accomplished in
O(log N) on a cellular pyramid.

When a pyramid is used to reduce the resolution of an image,
features of the input image become smaller and move closer
together as one proceeds from the bottom level of the pyramid
to its apex. Thus at the appropriate level, local operations are
sufficient to detect and analyze global features (see [31] for
numerous examples). Reduced resolution representations are also
useful in image compression applications (e.g., [1]).

The case of K = 2, i.e., nonoverlapping 2 x 2 neighborhoods,
is related to the quadtree description of an image [34]. The
reduced resolution representations can be severely distorted when
the input is shifted [36]. This problem is known in the quadtree
literature as the shift-dependence of the description [20]. In the
worst case a one pixel shift of the input image can lead to a
significantly modified quadtree structure [35].

The dependence of the low resolution representations on
the position of the sampling grid and the input image is also
important in image pyramid applications. The shift-dependence
phenomenon is not restricted to the case of nonoverlapping
neighborhoods. Bister [5] shows many examples of such artifacts.

The rigidity of the pyramid structure may give rise to ar-
tifacts when pyramids are used for tasks such as analysis of
line-drawings [19], object-background discrimination [10], or
compact object extraction [13], [16]. To compensate for these
artifacts, in many of these algorithms the parent—child links (or
link weights) are iteratively changed after the initial resolution
reduction stage. Recently Baronti ez al. [4] proposed a modifica-
tion of this concept by increasing the size of the neighborhoods
associated with parents once an initial segmentation of the image
is obtained.

Another approach to compensating for the artifacts of pyramid
structure is to adapt this structure to the content of the input
image. In custom-made pyramids [28] weights are defined based
on a local “busyness” measure during the construction of the
reduced resolution representations. Rom and Peleg [29] and
Chassery and Montanvert [9] employed the Voronoi tessellation
defined by a set of randomly chosen lattice points to build the
coarsest representation of the image, which was then adaptively
refined. Note that the method computes the representations top-
to-bottom.

In this paper we also use irregular tessellations to generate
an adaptive multiresolution representation of the input image.
In our approach, however, the hierarchy of representations is
built bottom-up and is adapted to the content of the input image;
thus most of the properties of “classical” image pyramids are
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Fig. 1. Example of an irregular tessellation hierarchy which does not satisfy

our constraints. See text for discussion. (a) The eight-connected square lattice
as a graph. (b) An arbitrary partition of the graph. Filled circles: survivors
retained for the next level. Hashed circles: nonsurvivors. (c) The graph of the
next level. (d) An arbitrary partition of (c).

preserved. We employ a local stochastic process to build the
lower resolution representations.

In Section II we introduce the graph formulation of irregular
tessellations and the concept of a stochastic image pyramid.
In Sections III and IV we give two applications of stochastic
pyramids: connected component analysis of labeled images and
segmentation of gray-scale images. Further issues are discussed
in Section V.

II. IRREGULAR SAMPLING AND STOCHASTIC PYRAMIDS

In image pyramids based on regular sampling, e.g., at points
on a square grid, artifacts caused by the rigidity of the sampling
structure are always present. On the other hand, an image
pyramid defined by an irregular sampling hierarchy can be
molded to the structure of the input image. Note, however, that in
such a pyramid the metrical relations among cells are no longer
carried implicitly by the sampling structure. A cell at level / + 1
cannot know a priori where its neighbors on level [ + 1 or its
children on level / are located relative to the original sampling
grid. To describe the structure of such an image pyramid it is
more appropriate to use the formalism of graphs.

A. Graph Representation of Irregular Sampling Hierarchies

The cells on level [ of the pyramid are taken as the vertices of
an undirected graph G[!]. The edges of the graph describe the ad-
jacency relations between cells at level I. Thus G[!] = (V[I],E[I])
where V[I] is the set of vertices and E[!] is the set of edges. The
graph G[0] defined by the 8-connected square sampling grid on
level 0 is shown in Fig. 1(a). An example of a graph G[1] that
might represent level 1 is shown in Fig. 1(c).

We construct the pyramid by a sampling or decimation process.
Each level is constructed from the level below it by selecting a
subset of the vertices. Thus a vertex on any level can be regarded
as a vertex of G[0], the sampling grid of the original image. In
addition, when we decimate level ! to construct level [ + 1, we
associate each nonsurviving vertex with one of the surviving
vertices. Thus each vertex on level / + 1 is associated with a
set of vertices on level / (itself and the nonsurviving vertices
associated with it). Each of these vertices is in turn associated
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with a set of vertices on level / — 1, and so on; thus a vertex on
any level is associated with a set of vertices, called its “region,”
in the original image. These regions define a tessellation of the
image.

If the pyramid is to be build recursively bottom-up we must
define a procedure for deriving G[/ + 1] from G[I/]. Since the
number of vertices in G[! + 1] must be less than in G[/] we are
dealing with a graph contraction problem. We must design rules
for:

* choosing from the set of vertices V[/] the new set V[I+1] C
V1], i.e., the survivors of the decimation process;
allocating each nonsurviving vertex of level / to a survivor,
i.e., generating the parent—children links;

* creating the edges E[/ + 1], i.e., defining the adjacency

relations among the surviving vertices of level /.

In order to have any vertex (i.e., cell) in the hierarchy
correspond to a connected region of the image, the cell ¢[l +
1] € V[l + 1] must represent a connected subset of cells
{eoll], er{l], -+, cu[l]} C V[I]. We shall use the convention
cll] = ¢[l + 1], i.e., the surviving vertex of the subset is first
on the list. In pyramid terminology, {¢o[l], c1[l],--,c.[l]} are
the children of c[/ + 1]. Note that the location of the parent on
the sampling grid of the original image always coincides with
the location of one of its children.

In pyramid construction based on Voronoi tessellations [9],
[29] the parents are initially chosen by a random process. The
edges are given by the Delaunay diagram of the tessellation and
the children are grid sites inside the tiles associated with the
parents. The process can then be repeated for individual tiles
(by randomly choosing grid sites inside each tile) to obtain a
finer description. Note that such a pyramid is built top-down and
the definitions of parents and parent—children links are based on
nonlocal processes.

When we use graph contraction to construct a pyramid, two
constraints must be satisfied if we want to employ only parallel
local processes:

Vi=1,2,u
Y eoll] € VI, dofl] € V]

(cill] o)) € EI] @)
(coll] dol]) € B[] (2)

where ¢, d, are survivors on level /. Constraint (1) assures that
any nonsurvivor on cell at level / has at least one survivor in its
neighborhood and thus can be allocated to a parent by a local
decision. In the example shown in Fig. 1(b) this constraint is
satisfied. Constraint (2) assures that two adjacent cells on level
| cannot both survive and thus the number of vertices must
decrease rapidly from level to level. In Fig. 1(b) this constraint
is not satisfied since the survivors dy, e, and ¢y, g, are adjacent.
The construction of G[I + 1] can also be regarded as finding
a maximal collection of vertices of G[!] no two of which are
adjacent. This is the maximal independent set problem for graphs
(e.g., [21]); we will return to it in Section V.

A possible alternative method of constructing G[! + 1] from
G[!] is to partition G[!] into connected subgraphs and then
select one cell in each subgraph as a survivor. However, if
we do so, the first constraint no longer assures locality of the
processing. In Fig. 1(b) cell b, has survivor ¢, adjacent to it,
but must be allocated to survivor by two sites away. Choosing
the survivor independently for each region may also violate the
second constraint since two adjacent regions can both have their
survivors at the border [Fig. 1(b)]. Thus the set of children should
be defined in G[!] only after the vertices of G[I + 1] (their
parents) have been chosen.
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The last step in constructing G[/ + 1] is to define the edges
E[l +1]. Let the connected subsets {coll],cil], -, c.[l]} C
V(1] and {do[l], di[l],---,d.[{]} C V[I] be the children of two
different parents. Our condition for an edge between vertices
el + 1] = ¢fl] and d[l + 1] = dy[l] in G[I + 1] is

J0<i<u, 0<j<v ([, d[)eEl @)

In other words, two vertices are joined by an edge in G[/ + 1]
if there exists a path between them in G[/] of length at most
three edges. (Note that by (2), the path cannot be of length 1.)
G[! + 1] is now completely defined. Fig. 1(c) shows, the graph
corresponding to the partition in Fig. 1(b).

The irregular sampling hierarchy is thus built recursively from
G[0] (the original sampling grid). The apex of the hierarchy G[m]
has only one vertex. Constraint (2) assures that the apex is always
reached.

In the next section we describe a probabilistic parallel algo-
rithm that constructs graph contractions satisfying (1) and (2).
The algorithm is analyzed in more detail in [22], [23].

B. Stochastic, Data-Dependent Decimation

We have seen that the derivation of G[/ + 1] from G[/] must
start by defining the vertices of the new graph. Since V[l + 1] C
V[l] we are dealing with a decimation process, i.e., only a subset
of the vertices V[/] are retained. We want the decimation to be
performed in parallel on G[/].

We will define a decimation process that is dependent on the
image data. We assume that every cell ¢; (a vertex of G[!]) carries
a value g; characterizing its region of the image—for example,
the average gray level of the region. Without loss of generality
we can assume that g; is a scalar value; the treatment of feature
vectors is identical. From now on the explicit indication of the
level I will be dropped to simplify the notation.

Let cell ¢, on level [ have r neighbors on level /, i.e., let its
degree as a vertex of G[!] be r. (Note that for the moment ¢ is not
necessarily a survivor and the set of its neighbors has no relation
with the connected subset allocated to a parent.) We examine
every neighbor ¢;, ¢ = 1,---,r of ¢y and decide whether or not
it belongs to the same “class” as c,. This decision can depend in
any desired way on the values g;,i = 0,---,r. We associate a
binary number A,, ¢ = 0, - - -, r with each neighbor, where \; = 1
if ¢; belongs to the same class as ¢y, and A; = 0 otherwise; note
that Ay = 1.

The decimation algorithm employs three variables for every
cell: two binary state variables p and ¢, and a random variable
uniformly distributed between [0, 1] with outcomes x. The sur-
vivors are chosen by an iterative local process. Let £k = 0,1, -
be the iteration index. Initially all p;(0) = 0. A cell survives if at
the end of the algorithm its py(k) state variable has the value 1.

Every iteration has two steps. First go(k) is updated based on
the states p;(k — 1) of neighboring cells in the same class:

Qpk)=1 ifApi(k-1)=0 Vi =0,---,7
(k) =0 otherwise.
In other words, go(k) becomes 1 if and only if there is no survivor
among the cells belonging to the same class in the neighborhood
of co. Note that the neighborhood includes the cell itself. The

initial conditions always yield g;(1) = 1. Then py(k) is computed
on the updated values of g;(k):

po(k)=1 if go(k)zo(k) = max (Xig,(k)a:(k)) >0
po(k) = po(k — 1) otherwise. )

@
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To become a survivor the outcome of the random variable
x drawn by the cell must be the local maximum among the
outcomes drawn by the neighbors in the same class. Note
that only those neighbors are taken into account which do not
already have a survivor adjacent to them (g;(k) =1). This
condition extends the region of influence of a cell beyond its
immediate neighborhood and yields faster convergence of the
algorithm. The local maximum property assures that (2) is always
satisfied. The state of a survivor is not reversible. Once a cell
is labeled po(k — 1) = 1, at subsequent iterations the product
qo(k)zo(k) (5) is always O by the definition of go(k) (4). Thus
in (5) the second condition, preserving the current state is used.
It can be shown [22], [23] that after a finite number of iterations
(at most five, in the experiments reported there) the algorithm
reaches a final global configuration in which the survivors satisfy
(1) as well.

The algorithm is entirely local, every cell computing its states
based only on the states of its immediate neighbors. Except at the
highest levels of the hierarchy, where due to the small number
of vertices artifacts may occur, the decimation ratio between two
consecutive levels exceeds four. This lower bound results from
the fact that two adjacent cells never survive. On the random
graph structure of higher pyramid levels the average degree of
a vertex is around 6 [23]. To satisfy the nonadjacency condition
(2) the number of vertices must be reduced by about the same
order relative to the previous level.

By employing the algorithm an irregular sampling hierarchy
can be built in parallel in log(class_size) steps. (The distinction
between class_size and image_size becomes clear in the next
section.) The stochastic decimation is performed independently
within classes. In the next two sections we describe two appli-
cations of the process, one to connected component analysis of
labeled images, the other to segmentation of gray level images.

III. CoNNECTED COMPONENT ANALYSIS OF LABELED IMAGES

In a labeled image the pixels are classified into a small
number of classes distinguished by different labels. A connected
component is a maximal set of connected pixels sharing the same
label. For simplicity we will restrict ourselves to the case where
there are only two labels, i.e., to the case of a binary image,
but images with multiple labels can be handled in essentially the
same fashion.

Sequential algorithms for analyzing the connected components
in a binary image usually employ a row-by-row scan [30]. An
alternative approach makes use of the quadtree representation of
the image [34]. In this section we apply the techniques described
in Section II to obtain in log(class_size) steps a description of the
connected components in a binary image. The description takes
the form of a graph whose vertices represent the components
and whose edges represent the adjacency relations among the
components.

The fact that the pixels are labeled makes classification of the
neighbors of a cell immediate. Let the label of cell ¢; be g;.
In the binary case the label can have only two values. Thus in

the neighborhood of cell ¢, we have for ¢ = 0,---,r the class
membership variables

=1 if g; = go

Ai=0 if ¢; # go- (6)

Note that (6) is symmetrical; ¢, gets the same value of A in the
neighborhood of ¢; as ¢; gets in ¢;’s neighborhood. Since the
definition of A; is symmetrical it can be regarded as the weight
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Fig. 2. Example of extracting connected components from a binary image.
(@) G[I]. (b) G'[1]. (c) Survivor cells (filled circles) and the allocation of
children (hashed circles) at level I. (d) G[l + 1]. (e) G'[l + 1]. (f) G[m)] for
m = [ + 2, the root level.

of the edge (cy, ¢;). The case A = 0 is equivalent to removing
the edge from E[I]. Let E'[!] be the set of edges having A = 1,
and let G'[I] = (V[l], E'{l}). The connected components in the
labeled image are represented by connected components in the
graph G'[l], for all [ > 0.

The subgraphs of G’ are processed independently, each sub-
graph being recursively contracted into one vertex, the root of the
connected component. The contraction process is based on the
technique described in the previous section: first the survivor
vertices are designated and then the nonsurvivor vertices are
locally allocated to survivors. If a nonsurvivor has more than
one survivor neighbor it chooses the one carrying the largest
outcome of the random variable x from the last iteration of
the decimation process. Because the neighbors are neighbors
in G', the survivors can only have children belonging to their
own class. Thus from each connected component of the input
image a pyramidal hierarchy of irregular tessellations is built in
O(log(component_size)) steps.

The different hierarchies may have different heights, but in
log[max(component_size)] steps the entire image is reduced to
roots. This situation is detected at the level m when E'[m]
becomes empty. Evidently component_size can differ from im-
age_size. For example, a connected linear pattern passing through
every second row of the image has length N(V + 1)/2 pixels.
Since the hierarchy is built over the pattern the number of levels
depends on its intrinsic diameter.

At each level, the graph G[I] includes edges between cells
that arise from different labels; it preserves the spatial relations
among the connected components. At the root level, G[m] is
the adjacency graph of the original labeled image; it has one
vertex for each connected component and its edges represent the
adjacencies between these components.

Fig. 2.(a) shows an example of a graph G[/] superposed
on the binary image from which it was derived. The induced
graph G'[I] is shown in Fig. 2(b). Note that in G'[l] each
connected component corresponds to a connected subgraph. The
cells surviving level / and the allocation of the nonsurvivors are
shown in Fig. 2(c). The graph G[! + 1] of the next level is shown
in Fig. 2(d) and the corresponding graph G’[! + 1] in Fig. 2(e).
Level [+ 2 is the root level and its graph G[m] is shown in
Fig. 2(f). It correctly represents the adjacency relations among
the three connected components of the image: the background
and the two blobs.

Fig. 3. The checkerboard image with the adjacency graph of the root level
superposed.

@ (b)

Fig. 4. The connectedness puzzle of Minsky and Papert. (a) Two white and
three black bands. (b) One white and two black bands. The adjacency graph
of the root level is superposed.

In Fig. 3 a checkerboard image and the adjacency graph of its
root level are shown. The checkerboard is a “worst-case” image,
the two connected components (both defined by the relation of
eight-connectedness) being distributed across the entire input.
Cibulskis and Dyer [10] employed a regular pyramid structure
to segment this image. In their results the “white” component
was allocated to one root at the apex, but the representation of
the black squares had to be spread over several levels. The size
of the image is 64 x 64 and the two roots were obtained at
the eight level of the hierarchy. Recall that the height of the
hierarchy depends on component_size. Since random processes
are involved in the construction of the irregular tessellations the
location of the roots depends on the outcomes of local processes.
Nevertheless, the same root level adjacency graph is always
obtained at the top of the hierarchy.

The famous connectedness puzzle of Minsky and Pa-
pert [27, Fig. 5.1] can be solved by our technique in
O(log(component_size)) steps. The pattern in Fig. 4(a) contains
three black and two white bands, while in the pattern in Fig. 4(b)
the two white bands are connected, leaving only two black bands,
The adjacency graphs obtained at the root level clearly show the
different topologies.

The irregular tessellations that arise in the hierarchies defined
by the connected components do not convey meaningful rep-
resentations at intermediate levels. Let us define the receptive
field of a cell on level / as the set of all the pixels at level 0
(input) associated with it. This field is always a connected set
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Fig. 5. Receptive fields of a hierarchy derived from a simple binary image.
The fields are randomly colored. Top-left: First level. Top-right: Third level.
Bottom-left: Fourth level. Bottom-right: Seventh (root) level. The fields
correspond to the connected components.

and the image is the disjoint union of the fields. Also, each field
is a subset of a connected component of the image. In Fig. 5 the
receptive fields of four levels of a hierarchy derived from a simple
image are shown. The different fields are randomly colored to
emphasize their shapes. At intermediate levels the shapes of the
fields are arbitrary, since they depend on the outcomes of random
variables. At the root level each field is a complete connected
component.

Our multiresolution representation consists of several inde-
pendent hierarchies, each built independently over a connected
component. The shape, size, position, and orientation of the
connected component have no influence on the final result.
The individual hierarchies can be used for the fast recovery of
geometrical properties such as area or perimeter [32]. It should
be mentioned that Miller and Stout [26] also proposed a data
structure in which a separate “essential” regular pyramid is built
over every object.

All the discussion in this section was restricted to binary
images. If more than two labels are used the discussion is
essentially identical. In particular, our method can be used to
label the connected components of constant gray level in an
arbitrary digital image. In the next section we study the less well-
defined problem of segmenting a gray level image into “natural”
regions.

IV. SEGMENTATION OF GRAY LEVEL IMAGES

In gray level images the difference between the values of
two adjacent pixels is bounded below only by the size of the
quantization step. In our technique, to build the hierarchies
the pixels in a neighborhood must be assigned to classes. The
class membership induces the graph on which the stochastic
decimation takes place. For labeled images the classes correspond
to the labels and the hierarchy always converges to the same final
representation: the adjacency graph of the connected components
defined by the labels. For gray level images it is no longer
obvious how to define the classes (unless our goal is to segment
the image into connected components of constant gray level). In
the first part of this section we discuss this problem.
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(¢) (d)

Fig. 6. Hierarchy derived from a gray level image. (a) G[4]). (b) G'[h].
(©) G'[12], Iy > . (d) G'|l,] obtained for a different hierarchy structure.

The simplest approach is to define class membership by
thresholding the gray level differences between the center cell

¢o and its neighbors ¢;, 4 = 1,---,r. The class membership
variables \; are thus defined by

/\,:1 lf&:'g,—gngT

A =0 if 6, =|g;i—go| >T. @)

As in the labeled case, (7) based on an absolute threshold T is
symmetrical. This symmetry, however, can create artifacts when
we attempt to segment gray level images, as we show in the next
example.

Fig. 6 shows an object having four gray levels on a white
background. The graph G[/;] of an intermediate level is shown
superposed on the image in Fig. 6(a). Let the differences between
the gray levels be less than T and let the two lighter gray
levels be within T of the background. The resulting graph G'{/,]
is shown in Fig. 6(b). Note the edges connecting regions that
have different colors. The stochastic decimation algorithm selects
survivor cells and the nonsurvivors are allocated to their most
similar surviving neighbors. The survivors (parents) compute new
gray level values based on their children. After a few more levels
of the hierarchy we might arrive at the graph G'[ly], l. > [,
shown in Fig. 6(c). The difference between the gray levels of
the two cells located in colored regions now exceeds T and in
G'[,] these regions are no longer connected. If a different set
of outcomes of the random variables had been employed in the
stochastic decimation process, a different set of surviving vertices
might be obtained, and the new parents might have different gray
level values, yielding a new graph at level /, [Fig. 6(d)]. We
conclude that using a symmetric class membership criterion for
gray level image segmentation strongly influences the structure of
the hierarchy and therefore the final representation of the image.

Our next example, a ramp image, shows the severity of
the resulting artifacts. In Fig. 7 (top-left) the image of a ramp
going from level O (black) to level 255 (white) is shown. The
difference between adjacent rows of pixels is either four or
five gray levels, depending on the quantization error. The pixel
values are the same along each row. The receptive fields of the
root level obtained for T = 33 are shown in Fig. 7 (top-right).
The color of a region is the gray level value computed by its
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Fig. 7. The influence of stochastic decimation on the receptive fields of the
root level derived from the ramp image. Top-left: Original image. Top-right:
Using a symmetric class membership criterion. Bottom-left: Using a sym-
metric class membership criterion and reallocation of children. Bottom-right:
Using a nonsymmetric membership criterion.

root, i.e., its average gray level in the original image. These
receptive fields define a possible segmentation of the image,
but the segmentation is not esthetically satisfactory; the different
local configurations generated by the stochastic decimation yield
ragged boundaries between the region. When at each level the
children can be reallocated to adjacent parents having similar
gray levels, the shapes of the segmented regions improve (Fig. 7,
bottom-left). The procedure is essentially the same as the linking
processes employed in traditional pyramid structures (e.g., [13],
[16]). The receptive fields, however, may now be fragmented,
and connectivity may not preserved, because of inconsistent
exchanges of children.

To achieve satisfactory results, a nonsymmetric class member-
ship criterion must be used. We now describe such a criterion.
Let cell ¢y have r neighbors. In this neighborhood we will define
a local threshold S[co] such that 0 < S[¢y] < T. Methods
for computing S[cy] will be discussed later in this section. The
definition of the class membership variables A, then becomes

Ai=1 if §; = ‘gz - 90‘ < S{Co]
A =0 if &; = |gi — go| > Sleo] (8

for ¢+ = 0,1,---,7. If the number of neighbors having A, = 1
is s and the number of neighbors for which |g; — go| < T is ¢,
then 0 < s < ¢t < r. The threshold S[co] used in (8) is specific
to the neighborhood of cell ¢, and therefore the criterion is not
symmetric: in general,

l9: — gol < Sle.] ©
does not imply

lgo — gi| < S[ei] (10)

since the two thresholds are computed based on neighborhoods
that only partially overlap. As a consequence of the nonsymmetry
the graphs G'[/] become directed. An arc from ¢; to ¢;, meaning
that in the neighborhood of ¢; the two cells belong to the same
class, may not be reciprocated by an arc from ¢; to c;.

The receptive fields of the ramp image’s root level for a hier-
archy built with nonsymmetric class memberships (as described
below) are shown in Fig. 7 (bottom-right). The same absolute
threshold T = 33 was used. The boundaries between regions
are now correctly delineated along the rows of the image. The
neighborhood-dependent local threshold S[c,] ensures that every
cell connects first to its neighbors that have the most similar gray
level. Thus the individual rows in the image are reduced to single
cells before two cells belonging to adjacent rows can become
neighbors in the graph G'[!]. The effect of the random processes
used in building the hierarchy is reflected by the different widths
of the regions. However, this artifact can also be eliminated as
we shall see at the end of the section.

We now discuss how the value of the local threshold S[co] is
computed. Note that the extreme case S[c,] = O corresponds to
extracting connected components of constant gray level. Several
approaches are available to determine the S[c,] value that best
dichotomizes the neighborhood into two classes. A wide class
of thresholding methods (e.g., [33]) can be considered. Another
approach is to use the neighbor dichotomization techniques
employed in nonlinear image smoothing techniques (e.g., [15]).
Since the neighborhoods are defined on the graphs, the spatial
relations among the neighbors will not be used; we will employ
only gray level information in computing S[co].

Let 6, ¢ = 0,1,---,r be the ordered sequence of absolute
gray level differences 6; = |g; — go|. Thus

o =0 <6 <8 S Se] <o by ST <28y
11

The simplest way of defining S[c,] is the most similar neighbor
method. In this case S[cg] = & and s = max arg(&l,-] = 6[1]).
This is the method that we used for the ramp image (Fig. 7,
bottom-right). In gray level images of real scenes with less
regular structure this method could yield “tall” hierarchies,
because the neighborhood sizes in the G'[/] graphs are small,
and therefore the decimation ratio between consecutive levels is
too low. Generalizations of this method such as k most similar
neighbors [12] S[cy] = b}, or fixed fraction of good neighbors,
S[eo] = .6y, have the disadvantage that the constants k or «
must be defined arbitrarily.

We have obtained good results using the maximum averaged
contrast method in which S[co] is set by detecting the most
significant step in the sequence of 4j;;. For all the ¢ neighbors
within the absolute threshold gray level difference we compute

J t
> by 2315[11
Uy ==, == <j<t-1 12
J J J t— 1<5<t ( )

Let v = min arg(max;(V; — U;)) and s = maxarg(d}; = &))-
The threshold S{cy| = &1s) is the first occurrence of the maximum
averaged contrast. For example, the sequence épy; = &y = b5 =
0,614 = b5 = bg = 1 yields S|cy] = 83y = 0. On the other hand,
the sequence 5[1] = 0,(5[2] = 1,6[3] =2, (5[4} = 3,(5[5] = 5,6[(;] =35
yields S[e)] = 6y = 3.

The gray level value of a parent go[/ + 1] is computed as the
weighted average of its children’s gray levels g;[/]:

> gl A
ol +1)= %—

2 Al

(13)
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Fig. 8. Example of segmentation of the aerial image. All the images are
magnified to 128 x 128. Top-left: Original image. Top-right: Receptive fields
of the root level with the root locations superposed. The regions have the
root’s gray level; the color of the roots is for illustration only. Bottom-left:
The randomly colored receptive fields. Bottom-right: Adjacency graph of the
root level.

where to bias the segmentation toward larger regions, the recep-
tive field area A,[/] (the number of pixels in the region) is used
as the weight; z is the number of children.

To see how this method works on a real image, in Fig. 8 (top-
left) a 64 x 64 aerial image magnified to 128 x 128 is shown.
The receptive fields for the root level and the locations of the
roots are shown at top-right. Since the gray levels of the roots
are used to color the regions, adjacent fields may appear fused. A
random coloring is shown in Fig. 8 (bottom-left). The root level’s
adjacency graph, describing the adjacencies among the regions,
is shown at bottom-right. In this example the root level is at
m = 8. We have found that hierarchies built for this image with
different random variable outcomes can have m as high as 10,
significantly larger than n = 6, the number of levels in a regular
pyramid structure for a 64 x 64 image. The use of stochastic
decimation adapted to the local structure of the image slows
down the convergence of the process. As mentioned before, the
most similar neighbor method yields the slowest convergence;
in one hierarchy built using this method we obtained m = 15.
On the other hand, using an absolute threshold (T = 33) usually
generates hierarchies with m = n = 6 because the neighborhood
sizes used in the decimation are much larger.

Different outcomes of the random variables cause changes
in the hierarchy structure. For labeled pictures the final result
of the analysis, i.e., the connected component description at
the root level, is always the same; but this is not the case
for segmentation of gray level images. By changing the set
of survivor cells the values attributed to these cells may also
change slightly, yielding changes in the graphs on subsequent
levels. Four different segmentation results for the aerial image
are shown in Fig. 9. In each example different random variable
outcomes were employed, and the absolute threshold was always
T = 33. All the figures but the top-right have m = 10, while the
top-right has m = 8. The two-level height difference is mainly
caused by the relative inefficiency of the stochastic decimation
process when the similarity graph has only a small number of
vertices. The number of roots is 11 for the top-left image, 12

313

Fig. 9 The influence of hierarchy structure on the segmentation of the aerial
image. Root locations superposed. Top-left: n = 10, 11 roots. Top-right: n = 8,
14 roots. Bottom-left: n = 10, 12 roots. Bottom-right: n = 10, 14 roots.

for the bottom-left, and 14 for the two images on the right.
As expected, regions with sharp boundaries in the input image
(Fig. 8, top-left) achieve very similar representations. The effect
of the stochastic processes is more significant in the segmentation
of smoothly changing regions.

Our method provides the adjacency graph of the segmented
image and a separate hierarchy (“pyramid”) for every region.
These tools can be used by model driven vision modules to
analyze properties of the regions and correct the segmentation
in a logarithmic number of processing steps.

The value of the absolute threshold T influences the result
of the segmentation by defining the “good” neighbors of a cell
that are taken into account in defining class membership (8).
Modifying T thus changes the structure of the hierarchies. In
Fig. 10 a medical image and its segmentation for three different
values of T are shown. We chose this image since many of the
features are less well delineated than those in the aerial image.
The height of the root level and the number of roots in each case
are given in the legend of the figure. The larger 7, the smaller
the number of roots since the fusion of adjacent classes is more
probable. The correlation between T and the height of the root
level m is less immediate. At higher levels the decimation process
may slow down because of the smallness of the graphs. The effect
depends on the structure of the hierarchy, and therefore also on 7.
Note that the medical image is noisy (Fig. 10, top-left) but only
a few noisy pixels remain at the root level. These single pixel
roots are easy to identify and remove from the segmented image.

Another example is shown in Fig. 11. The house image (left)
was analyzed with T = 26. The height of the root level in this
example is m = 12 and 100 roots were extracted (right). Note
the accurate delineation of shadows and of the small feature
over the garage door. Segmentation of such complex images
is sensitive to the value of 7. When we used T = 33 the sky
and the roof fused in some of the hierarchies. However, once
the image representation is obtained, individual analysis of the
segmented objects can be performed to correct any undesired
fusion by lowering the threshold.

In gray level image analysis, the problem of root detection
also requires careful treatment. In labeled pictures a root (an
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Fig. 10. The influence of the absolute threshold on the segmentation of the medical image magnified from 64 x 64 to 128 x 128. Top-left: Original image.
Top-right: T = 29, m = 13, 67 roots. Bottom-left: T = 39, m = 12, 30 roots. Bottom-right: 7 = 48, m = 15, 13 roots.

Fig. 11. The house image magnified from 64 x 64 to 256 x 256. Left: Original image. Right: Segmented image, T = 26, m = 12, 100 roots.

isolated vertex in the graph G'[/]) remains a root at higher levels,
while other (larger) connected components of the image are being
extracted. In gray level images this is not true. The value of an
already extracted root may become within threshold of some
neighbor’s value at a higher level. The root cell then becomes
connected in the graph G’[/] of that level and must be taken into
account in the stochastic decimation process. Thus a root may
disappear at subsequent levels, its receptive field being fused
into a larger region. Nevertheless, we found this approach more
desirable than the following alternatives:

* An already detected root always survives decimation, but
vertices of the upper levels’ graphs may become its children.
In this case at the beginning of the decimation process the
root already has p = 1, ie., it is already a survivor. The
nonuniform initial condition for decimation, however, could
result in a connected object being represented by several
roots on the root level.

* An already detected root is never taken into consideration in
later G'[1] graphs. This approach tends to retain too many
roots and oversegments the image.

Additional control over the result of segmentation is gained if
changes in the local thresholds computed by a cell on successive
levels are taken into account. Let Si[co] be the local threshold
of a cell surviving the decimation of level /. Assume that on
level  + 1 the cell computes the new threshold S,,[c;]. A more
detailed segmentation is obtained if we declare the cell to be a
root when

\S,“[co] = Si[co]
SH][CO]

where A is a constant. For example, by using a small A in
the ramp image (Fig. 7, bottom-right) we can stop the fusion of
adjacent rows. At the root level the adjacency graph becomes
linear, with every vertex now representing an entire row of the

> A 14)



MONTANVERT et al.: HIERARCHICAL IMAGE ANALYSIS

image. We can now apply the stochastic decimation algorithm
to this one-dimensional structure to allocate to every vertex its
address in the corresponding linked list. This operation is also
achieved in O(list_size) steps [22]. Thus the adjacency graph can
be contracted into a graph in which the vertices correspond to
collections of rows; the new graph defines the segmentation of
the ramp into constant width bands.

V. DiscussioN

In this paper we have presented an image analysis technique in
which a stochastic decimation algorithm constructs a tessellation
hierarchy that reflects the structure of the image. For labeled
images the final tessellation is into connected components, and
is unique. For gray level images the tessellation is not unique,
but it constitutes a reasonable segmentation of the image.

If our methods can be implemented on suitable parallel hard-
ware, every root can recover information about its region in a
logarithmic number of processing steps, and the adjacency graph
can become the foundation for a relational model of the scene.
On appropriate hardware our technique should be useful in real-
time analysis of the visual environment. We intend to implement
our methods on the Connection Machine where the architecture
allows communication among any two processors in a few steps.
This is essential since on a graph any two processors can become
neighbors.

Any definition of the classes can be used when building the
hierarchy. For example, the definition of the classes can take
into account the properties of the corrupting noise if they are
available, or positional information derived from the previous
level. In the latter case, however, the data driven component of
the method is weakened. The decimation process can be modified
to be biased toward cells with high informational value. Jolion
and Montanvert [17] have proposed an adaptive pyramid in which
cells belonging to the most homogeneous regions have priority to
become survivors. Such an approach, however, is not useful for
labeled images in which many cells carry identical descriptions.

The evolution of the local connections within the hierarchy,
driven by both the image data and the stochastic processes, is
itself of interest, and might serve as a neural model for early
visual perception. Appropriate class membership criteria might
transform the hierarchy in a connectionist model for extraction
of perceptual invariants [3].

The graph contraction used to build the hierarchy satisfies
two constraints: 1) a removed vertex always has a retained
neighbor; 2) two adjacent vertices cannot both survive. In graph
theory, finding a surviving subset of vertices is known as the
maximal independent set problem (e.g., [21]). The stochastic
decimation process that we employed provides such a subset
and therefore solves the problem. Our algorithm is different
from other solutions proposed in the literature. In these methods
vertices are first chosen at random and then some of them are
discarded in order to have the constraints satisfied. Such trial-
and-error approaches are considerably slower than our algorithm,
which has the constraints embedded within the selection process.
Simulations have shown a fourfold speed-up for the stochastic
decimation procedure relative to other algorithms.
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