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Robust Adaptive Segmentation
of Range Images
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and Rae-Hong Park, Member, IEEE

Abstract —We propose a novel image segmentation technique using
the robust, adaptive least kth order squares (ALKS) estimator which
minimizes the kth order statistics of the squared of residuals. The
optimal value of kis determined from the data, and the procedure
detects the homogeneous surface patch representing the relative
majority of the pixels. The ALKS shows a better tolerance to structured
outliers than other recently proposed similar techniques: Minimize the
Probability of Randomness (MINPRAN) and Residual Consensus
(RESC). The performance of the new, fully autonomous, range image
segmentation algorithm is compared to several other methods.

Index Terms —Robust methods, least kth order squares, range image
segmentation, surface fitting, autonomous image analysis.
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1 INTRODUCTION

A range image provides geometric information about the object
independent of the position, direction, and intensity of light
sources illuminating the scene, or of the reflectance properties of
that object. Many object recognition algorithms using range im-
ages as input were proposed [1]. To recognize a 3D object, first its
range image has to be segmented into homogeneous regions. Un-
corrupted range images can be approximated reasonably well by a
piecewise polynomial surface, and, thus, a homogeneous region
corresponds to a polynomial surface patch.

There are two “traditional” approaches toward segmentation of
piecewise polynomial data. In the region-based range image seg-
mentation methods, first the pixels having similar properties are
grouped together, e.g., Besl [2]. In the edge-based methods, on the
other hand, first the discontinuities are extracted and the segmen-
tation is then guided by the obtained contours, e.g., Fan et al. [5].
Significant effort is required to compare the performance of differ-
ent range segmentation methods. In [8], a rigorous framework was
developed (including ground truth based quantitative measures),
and four traditional techniques for segmentation into planar
patches were evaluated. None of the methods provided superior
performance under all the evaluation criteria.

Robust estimation techniques [12] can also be used to recover
the parameters of a surface patch. The percentage of tolerated out-
liers determines the breakdown point of the estimator. The two
most frequently used classes of robust estimators are the M-
estimators and the family of high breakdown point (close to 0.5)
techniques. The least median of squares (LMedS) estimator is the
best known from the latter class. See [17] for an introductory text
on robust estimators with an emphasis on LMedS.
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Koivunen and Pietikdinen [10] compared the performance of
M-estimators (the algorithm proposed in [3]) and least trimmed
squares estimator (a high breakdown point technique). Roth and
Levine [19] proposed a Hough transform type evidence accumu-
lation method, similar with the computation of LMedS. The idea of
using subsets of the data is also at the basis of the Residual Con-
sensus method proposed by Yu et al. [22]. Boyer et al. [4] devel-
oped a range segmentation system in which an M-estimator is
used as the main computational module. The error norm used in
[11] provides bounded sensitivity to outliers, i.e., the method can
also be regarded as a robust approach.

The breakdown point of any one-step robust estimator cannot
exceed 0.5. That is, the inliers must be the absolute majority in the
data in order to be able to recover for arbitrary outliers and without
additional assumptions, their underlying model. This condition can-
not be satisfied in a range image, and many segmentation algo-
rithms therefore start by detecting seed regions. The homogeneity
of the seed regions is established with high confidence, and the
final segmentation is obtained by extending these regions using
robust estimators and/or heuristics e.g., [4], [11].

However, it is possible to design multistep procedures which
can recover, in the lack of any a priori information, the model pa-
rameters representing the relative majority of homogeneous pixels
in the window of analysis. These procedures tolerate more than
half of the data being outliers, i.e., the apparent breakdown point
exceeds 0.5. It must be emphasized that this breakdown point does
not have the same meaning as that of a one-step robust estimator,
i.e., as it is used in statistics.

In Section 2, we propose a multistep procedure, the adaptive
least kth order squares (ALKS) estimator, and compare its per-
formance with two other procedures described in the literature:
Minimization of the Probability of Randomness (MINPRAN) [21],
and Residual Consensus (RESC) [22]. In Section 3, a range image
segmentation technique based on ALKS is described and its per-
formance compared with several other methods.

2 ADAPTIVE LEAST KTH ORDER SQUARE ESTIMATOR

Letr, i=1, ---, n be the residuals associated with the data points
in the window. (For convenience, we use a single index for the
data points.) The least median of squareszestimator (LMedS) finds
the model parameters which minimize (7)., where the subscript
means the kth largest residual in the ascendingly ordered list, and
k is close to half the number of points. The LMedS estimator will
always return a model representing at least 50 percent of the data
points.

Methods developed in computer vision try to exploit the a pri-
ori information about the structure of the data to define a model
carried by less than half the data points. The inliers have to be
close to the estimated fit, the outliers are uniformly distributed,
etc. The Random Sample Consensus (RANSAC) method [6], the
Minimize the Probability of Randomness (MINPRAN) technique
[21], and the Residual Consensus (RESC) method [22] belong to
this category.

Adaptively selecting the point set of the relative homogeneous
majority, however, can also be achieved with the help of a robust
estimator. The least kth order squares (LKS) uses an arbitrary p < k
< n in the minimization and belongs to the family of least quantile
of squares estimators [17, p. 124]. Taking into account both the
explosion and the implosion definitions of the breakdown point
[18], we obtain that the LKS estimator has the theoretical break-

down point of min(£, 1-£).
The computation of LKS is similar to the well-known technique
for LMedS (e.g., [12], [17]). A p-tuple is chosen randomly from the

data to define a model hypothesis. Using all the computed model
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parameters except the intercept, the residuals of this partial model,
u; are computed. The residuals are then sorted in ascending order
and the location of the shortest window containing at least k re-
siduals is found. Let

Wisk-1y(n-p) ~ Yin-p) O
2

be the half-width of the corresponding window. The procedure is
repeated for several p-tuples. Their number can be established
based on simple probabilistic considerations [17, p. 197]. The p-

dl,k =

tuple yielding the smallest d,, denoted tik , provides the LKS esti-

mate of the model.
The standard deviation of the noise corrupting the inliers, i.e.,
the robust estimate of the noise variance can be approximated as

A

A d

W @[0.5(1+k/n)]’ @

where the compensation factor in the denominator assumes Gaus-
sian distribution for the inlier noise, and @71[-] is the argument of

the normal cumulative density function having the value inside
the bracket. The normality of the inlier distribution is not a neces-
sary condition, a rough estimate of how the compensation factor
depends on k suffices. Because of the finite sample size 7, the com-
pensation factor is not valid for very small, or very large (close to
n) values of k. Once §, is determined, the inliers are discriminated

as having residuals I7;,1<2.5 5, .
The optimum value of k must be derived from the data. For any

. . . 2 .
given k the variance of the normalized error, €_, is computed
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where only the residuals of the g, points declared inliers by the
LKS estimator are used. The optimum value of k is chosen as the

one yielding the smallest e,f. Note that the inliers are selected

based on §k, and, therefore, the distribution of 6,3 is difficult to
determine even for the ideal case, homogeneous data corrupted
with Gaussian noise. The adaptive procedure using LKS with k
chosen by minimizing (3), will be referred to in the sequel as
ALKS.

For homogeneous data, all the n data points belong to the same
homogeneous patch corrupted with i.i.d. zero-mean noise having
standard deviation o, 6‘i is the unbiased sample variance of the

noise (3), and, therefore, it is close to o7 once k is large enough.

Thus, the criterion (3) compares a nonrobust and a robust estimate
of the noise variance. The robust estimate §, is an underestimate

of o for all values of k ([17, p. 202]). The underestimation decreases
monotonically with increasing k, and the criterion (3) has its
minimum for larger ks, yielding almost all data points being classi-
fied as inliers. Given the stochastic nature of the processes, all the
properties should be regarded as true with high probability.

In nonhomogeneous data, the n — m inliers are corrupted with
iid. zero-mean noise having standard deviation o, and the re-
maining m points are outliers. The inliers provide the largest ho-
mogeneous region, but can represent only a relative majority in
the data, and the outliers can be structured as well.

First, k <n — m. Assume that the LKS estimator returns an unbi-

ased estimate of the model for the inliers. The residuals of the n — m

inliers, however, are distributed over the entire range of the noise,

and, thus, as k increases (but remains less or equal than n — m), the
estimate §k increases monotonically, since residuals significantly

larger than o are used in (1). The phenomenon, an artifact of the
data nonhomogeneity, was analyzed in details in [15]. Thus, it is
expected that for k < n — m the criterion (3) decreases monotoni-
cally as k increases. The observation was verified by extensive
simulations.

Once k > n — m, at least one data point in the window is an out-
lier, and the estimated model is never correct. The residuals in-
crease significantly. The increase of §; is much less than that of
6, since only the difference of two residuals and not their
squared sum is used, yielding an increase of the criterion (3).

The above qualitative analysis also shows the limitations of the
criterion (3). If several extreme outliers are present in the data, §,

can become so large that the minimum of the criterion is produced
at an incorrect k. However, for real data, the pixel domain is
bounded and such a situation cannot happen.

Similarly, if for values of k just exceeding n — m the change in
the structure of the residuals is not very abrupt, the criterion may
not yield the minimum at the correct k. More complex piecewise
surfaces (like a roof edge, or a double step) are more prone to er-
rors, since there are more data points close to an erroneous fit. The
“bridging fits problem” of the robust estimators [20], [21] is an-
other aspect of the same phenomenon. As will be shown below,
the ALKS procedure is less sensitive but not immune to adverse
conditions.

To compare the performance of ALKS with that of other esti-
mators, least squares (LS), LMedS, MINPRAN, and RESC, four
piecewise linear one-dimensional synthetic signals of increasing
complexity were generated. Each signal contained 100 data points
corrupted with zero-mean, i.i.d. Gaussian noise having standard
deviation o. A percentage o of the data points was also corrupted
with impulse noise uniformly distributed in the range of (0, 100).

Line. Points (1-100): y=x-1. c=5. «=0.5.

Step. Points (1-55): y = 30; (56-100): y = 60. c=3. or = 0.2.

Roof. Points (1-55): y = x — 1; (56-100): y =109 —x. c0=2. ¢ =0.2.

Double-step. Points (1-40): y = 20; (41-65): y = 40; (66-100): y =

60.0=1. a=0.1.

In Fig. 1 the four signals are shown. The ALKS procedure used
500 p-tuples for each value of k. This number can be reduced sig-
nificantly without performance deterioration. Also, similar to [9],
the same samples can be used for different ks. Only the multistep
procedures RESC and ALKS show correct results across all the
cases. However, RESC requires user tuned parameters for optimal
performance, while ALKS is entirely data driven.

The behavior of the ALKS estimator is shown in Fig. 2. Nine-
teen uniformly spaced values of the index n = k/n were defined
between 0.05 and 0.95. The four signals were generated 1,000 times
and the ALKS procedure was applied to recover the largest homo-

geneous region. In Fig. 2a the dependence of 6,3 on the index 7,

averaged over the 1,000 trials, is shown. The minimum of e,% is
always close to the percentage of the largest homogeneous region
in the signals. Note how the steepness of the change depends on
the structure of the signal. The change is least abrupt for the roof
signal where the transition between the two regions is continuous.
The probabilities of detection are shown in Fig. 2b. The spread of
the significant probability values is small and, thus, the recovery
of the largest homogeneous region is robust.
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Fig. 2. Performance analysis of the adaptive LKS. (a) Dependence of the optimality criterion on the index. (b) Probabilities of detection.

3 RANGE IMAGE SEGMENTATION WITH ALKS

The ALKS procedure can be used as the computational module for
a robust range image segmentation algorithm. Since the ALKS
estimator detects the relative majority, the algorithm can start by
defining the first processing window as the entire image. This
eliminates the need for heuristic procedures often involved in
finding the seed regions.

The order of the polynomial surface used as model is an im-
portant consideration in range image analysis: planar, quadratic,
or cubic [4]. We have found that higher-order surfaces can be ac-
curately approximated when the segmentation is based only on
planar surfaces, but uses high breakdown point estimators. If nec-
essary, the planar patches then can be fused using the adequate
model order. The increased number of degrees of freedoms of a

higher-order model often can yield undersegmentation artifacts.
For example, a spatial roof edge (a crease) will be fused under a
quadratic surface model. The only systematic study of the per-
formance of range image segmenters [8] also used planar patches.

The ALKS based range image segmentation algorithm can be
summarized as follows:

1) Define the region to be processed as the largest connected
component of unlabeled pixels. At the start, this means the
entire image. The connected component algorithm from [7,
vol. 1, sec. 2.3.5] was used.

2) Apply the ALKS procedure to the selected region and dis-
criminate the inliers.

3) Label the largest connected component of inliers as the de-
lineated homogeneous patch.
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Fig. 3. Segmentation of three real range images corrupted with impulse noise.

4) Refine the model parameter estimates by a least-squares fit
to the inliers.

5) Repeat steps 1-5 until the size of the largest connected com-
ponent is less than a threshold (100 pixels was used in the
implementation).

6) Eliminate the isolated outliers surrounded by inliers. An
unlabeled pixel is allocated to the class of the majority of its
labeled four-connected neighbors.

The range image segmentation algorithm was tested on both
synthetic and real 256 x 256 range images. The real images were
captured by a range finder of the Seoul National University. The
range finder uses the active triangulation method [16], and a
resolution is 0.Imm both for the interpixel distances and depth
values. The raw images were interpolated with cubic surfaces to
compensate for information loss due to shadow effects and non-
linear sampling along the row direction. The background and the
objects have significantly different dynamic ranges, the former
being automatically set to zero. In Fig. 3, the segmentation of three
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Fig. 4. Comparison of the segmentation results for the ABW image from the USF database. (a) Range image. (b) Segmentation ground truth. (c) Re-
sult of the UB algorithm. (d) Result of the USF algorithm. (e) Result of the ALKS algorithm. (f) Label allocation in the ALKS result.

different range images are shown. To emphasize the tolerance of
the algorithm to missing data (outliers), the images were also cor-
rupted with 10 percent impulse noise bounded only by the ma-
chine precision. Slightly distorted boundaries appear near the
junction of surfaces, and the higher-order surfaces are split into a
number of planar patches. Note, however, that the main bounda-
ries of these objects are correct, and, thus, if needed, the quadratic
surfaces can be recovered by further processing. The segmenta-

tions (using 500 three-tuples per LKS iteration, and 19 steps for the
index 7) took less than two minutes on an Indigo 2 Silicon Graph-
ics workstation.

It is of importance to compare the performance of the algorithm
with that of other robust range image segmentation methods. For
lack of space, we do not describe here the comparison with the
robust region growing algorithm of Meer et al. [13]; the robust
clustering technique described in [9]; and the already mentioned
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RESC technique [22]. The results can be seen in the extended ver-
sion of the paper at site http://www.caip.rutgers.edu/ ~meer/RIUL/projects.
html. The ALKS based algorithm provides the most satisfactory
segmentation results at a somewhat lower computational cost.

The performance evaluation work for range image segmenta-
tion algorithms [8] provides a large set of standard data together
with the ground truth. We have used an image from the ABW
family (Fig. 4a) whose segmentation ground truth is Fig. 4b. The
results of two methods analyzed in [8], the UB and USF algorithms
with the parameters as described in the paper, are shown in Figs. 4c
and 4d. They were taken from their web sites. The result for the
ALKS segmenter is shown in Fig. 4e. There is one clear mistake in
the segmentation, several faces of the right object are fused. How-
ever, this error can be recovered by further processing. The labels
associated with the delineated regions are given in Fig. 4f. The
mean square error of all the fits, except labels 5 and 8, were be-
tween 0.299 (label 10) and 0.914 (label 4). The remaining two labels
had much larger fitting errors, 3.344 (label 5) and 5.298 (label 8).
The latter is a region poorly captured by the sensor as the ground
truth (Fig. 4b) also illustrates. The regions with high fitting errors
can now be separated and, thus, analyzed with increased sensitiv-
ity. Since the goal of the comparison was to contrast the raw ALKS
method with more traditional techniques, this processing step was
not implemented. It must be emphasized, that the ALKS result is
obtained without any user set tuning parameter (beside minimum
region size) while the traditional methods require a search for the
optimal set of thresholds [8].

4 DISCUSSION

The adaptive least kth order squares procedure described in this
paper is designed to handle piecewise structured data, a case fre-
quently met in computer vision. Its advantage relative to traditional
techniques or similar multistep robust procedures (like MINIPRAN
or RESC) is its lack of embedded a priori assumptions. There are no
parameters to be tuned for optimal performance, and the outliers
can have arbitrary structure. While the inliers are assumed to be
corrupted by normal noise, this hypothesis has practically no influ-
ence on the results as examples with real images have shown.

Inspired by an earlier version of the ALKS procedure, Stewart
developed the MUSE (minimum unbiased scale estimator) tech-
nique [14]. The MUSE operator detects the homogeneous patch
corresponding to a relative majority in the processing window, by
seeking the value of k for which the kth ordered residual
(normalized by the expected value of the corresponding order
statistic of the standard residual distribution) is minimum. The
MUSE technique puts the emphasis on the nature of the inlier dis-
tribution, and requires a lookup table for the scale estimator cor-
rection. In the ALKS approach, the optimal region size is deter-
mined by comparing a robust and a nonrobust estimate of the
noise variance and not based on a single residual. Extensive theo-
retical analysis and simulations have shown [14] that MUSE will
fail around signal-to-noise ratios at which the performance of
MINIPRAN, ALKS, or RESC also decline. For a step signal, this
will appear close to a step height of 8c.

Range image segmentation in particular, and robust analysis of
image structures under the piecewise polynomial surface model in
general, are difficult problems with the currently available solutions
being not general enough to be able to handle arbitrary data. A pos-
sible way toward further progress is to overcome some of the inher-
ent limitations of high breakdown point robust estimation techniques.
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