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Abstract 
Robust high-breakdown-point location estimators are employed to analyze image stacks under 
the piecewise constant image structure model. To reduce the effect of bias along the Z-axis, the 
class parameters are extracted using three consecutive slices. The segmentation algorithm first 
determines the most reliable seed regions, which are then used in a region-growing procedure 
supported by local evidence. The robustness and stability of the proposed technique is shown 
with both synthetic and real data, the latter consisting of one MRI and one confocal microscopy 
set. The performance of the algorithm is consistent with the ground truth obtained with manual 
segmentation by physicians. 
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1. INTRODUCTION 

The sequences of two-dimensional (2-D) cross-sectional 
slices produced by X-ray computed tomography and 
magnetic resonance (MR) provide information about anatom- 
ically significant features which can be used to generate two- 
and three-dimensional (3-D) renditions of internal structures 
(Herman and Liu, 1979; Robb and Barillot, 1989; Tiede 
et al., 1990). Through the years, the possible use of 
medical imaging as a powerful quantitative tool in surgery 
and diagnosis has become evident (Cho et al., 1993). Many 
surgical procedures require highly precise 3-D location of 
a target tissue, and reliable volumetric analysis techniques 
are needed to evaluate the extent of diseases and monitor 
treatment. A full description of the potential of an end-to- 
end system for 3-D image-guided surgery can be found in 
Grimson (1995). 
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The segmentation of medical images into 3-D anatom- 
ically significant structures is essential for further registration, 
atlas mapping, volume quantization and 3-D spatial location, 
and has always been a challenging task. The bottleneck is 
the lack of highly accurate and reproducible segmentation 
methods for isolating 3-D structures from the stack (Udupa, 
1991), and manual slice editing is still performed in most clin- 
ical applications (Mclnerney and Terzopoulos, 1996). MR 
images are well suited for automatic analysis because they 
are produced with unique contrast and high spatial resolution. 
However, processing MR images is not straightforward due 
to several factors: the large amount of data contained in a set; 
the unknown number of tissues at different levels of the stack; 
and the noise produced by the scanner (Smith and Ranallo, 
1989), which may vary from set to set, from image to image, 
and even within an image (Wells et al., 1996). The partial 
volume effect, anatomic structures smaller in size than the 
voxels, can also produce artifacts. All the above-mentioned 
problems should be taken into account when designing an 
automatic segmentation algorithm. 
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Edge/surface detection methods are often proposed in 
the literature (Kennedy et  aL,  1989; Bomans et  al.,  1990; 
Deklerck et  al.,  1993), although they all encounter the 
problem of how to obtain closed and connected boundaries 
(Udupa, 1994). Graph theory (Raman et  al.,  1993; Wu and 
Leahy, 1993; Robinson et  al. ,  1994) and differential geometry 
(Sander and Zucker, 1990) were employed to correctly select 
and delineate the significant boundaries. Active contours and 
surfaces have been adapted to the extraction of anatomical 
structures (Davatzikos and Prince, 1995; Snell et  al. ,  1995; 
Szrkely et  aL, 1996) yielding promising results, although 
they are time consuming and their output is highly dependent 
on the accuracy of the initial contour or surface model; 
see Mclnerney and Terzopoulos (1996), for a complete 
description of the development and application of deformable 
models in medical image analysis. 

A second approach is region/volume delineation, where 
direct segmentation of 3-D objects is achieved through the 
extension of conventional region-growing techniques to vol- 
ume growing, supported by statistical modeling of the image 
content (Liou and Jain, 1993). These methods often assume 
that the noise in the images is ergodic and uncorrelated with 
the signal (Soltanian-Zadeh et  al.,  1992). To obtain accurate 
results with such techniques it is necessary that three basic 
procedures: estimation of the number of classes, estimation 
of their parameters and the labeling (classification) of the 
pixels are reliably performed. Although a general solution 
requiring the total automation of each step is desirable, it is 
not an easy task and most authors propose algorithms that rely 
either on user interaction or on a p r i o r i  knowledge. 

Automatic estimation of the number of classes is rarely 
done (Liang et  al. ,  1994), and usually this number is supplied 
by the user. In medical image analysis, the number of 
classes depends on the application, and most systems use a 
predefined number of classes (Cline et  al.,  1990; Li et  al.,  
1993; Arata et  al. ,  1995; Tsai et  al.,  1995; Johnston et  al.,  
1996). While in some cases only soft-tissue and non-soft- 
tissue discrimination is needed (Brummer et  al. ,  1993), in 
others discrimination between different soft tissues is also 
required (Joliot and Mazoyer, 1993; Taxt and Lundervold, 
1994; Cheng ei  al.,  1996). 

Automatic estimation of class parameters is done more 
frequently, although intervention of the user may still be 
required. Estimation of the parameters from the gray- 
level histogram of a region of interest (ROI) (Cline et  al.,  
1990; Joliot and Mazoyer, 1993; Johnston et  al.,  1996), or 
by supervised clustering (Taxt and Lundervold, 1994), will 
inevitably depend on the accuracy of the user-supplied data. 
Employing the mixture of Gaussians model for gray-level 
histogram analysis (Brummer et  al.,  1993; Tsai et  al. ,  1995) 
relies on the existence of well-defined peaks and valleys in the 

histograms, which cannot be guaranteed in the general case. 
Clustering algorithms such as K-means (Arata et  al. ,  1995) 
or iterative pixel classification such as relaxation or using 
Markov random fields (MRF) (Cheng et  al.,  1996), require 
good initialization in order to converge to a satisfactory 
solution. 

The labeling procedure should take into account local 
spatial information to remove isolated pixels or small regions. 
This is usually achieved by using mathematical morphology 
operations (Brummer et  al.,  1993; Tsai et  al. ,  1995; Kapur 
et  al.,  1996), filtering (Cline et  al.,  1990) or heuristic local 
analysis (Joliot and Mazoyer, 1993). 

Sequential processing, i.e. executing all three procedures 
sequentially for one class at a time (Brummer et  al.,  1993; 
Arata et  al.,  1995; Tsai et  al. ,  1995) can introduce artifacts 
since the hard decision thresholds do not take into account 
the overlap between the gray-level value distributions of the 
neighboring classes. Very few proposed methods (Li et  al.,  
1993; Taxt and Lundervold, 1994) consider and solve this 
issue. Labeling produced by MRF implementations (Liang et  
al.,  1994; Johnston et  al.,  1996) gives better results, although 
the algorithms are time consuming. 

Regardless of the technique chosen, satisfactory image 
segmentation, like most low-level computer vision tasks, 
cannot be achieved by an exclusively bottom-up (data- 
driven) approach. In a practical segmentation method 
several trade-offs must be satisfied. The most important 
one is between over- and under-segmentation. In over- 
segmentation, the amount of erroneously delineated regions 
is kept low at the expense of the image being broken into too 
many parts. Over-segmentation is recommended whenever 
sufficient a p r i o r i  information is available, and the parts can 
be assembled together with a top-down process. This is often 
the case with MR images, since the anatomical constraints 
are well understood. The dual of over-segmentation is 
under-segmentation, where the number of delineated regions 
is kept low at the expense of erroneous fusions. It is a 
frequent artifact of techniques which estimate the decision 
thresholds exclusively from global statistics derived from the 
data. 

The segmentation of a sequence of 2-D images in the 
search for 3-D structures raises another trade-off. In the slice- 
by-slice approach, the 2-D slices are analyzed individually 
and the 3-D structure recovered from these results. Discon- 
tinuities of the volumes between slices, however, are highly 
probable and should be accounted for. On the other hand, 
the volume-oriented approach is based on sets of consecutive 
slices, from where the 3-D elements are delineated. The 
trade-off is between the amount of computation and the use 
at the earliest stages of the processing of all the available 
information. 
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A final trade-off is between choosing a local or a global 
solution. A purely local approach may lead to the delineation 
of insignificant features from a global point of view. On the 
other hand, a purely global solution may lead to loss of detail, 
This, local-global duality, appears under different guises in 
almost every low-level image understanding task. 

The 3-D structure extraction method proposed in this paper 
was designed to optimize all the above-mentioned issues. 

• The bottom-up stage uses robust image analysis tech- 
niques (Meer et al., 1991), and the number of classes, 
the parameters of the classes and the labels of the pixels 
are produced automatically. 

• The quality of segmentation (under/over) is controlled 
only by context-independent thresholds, resulting in 
a weak dependence of the performance on user-set 
parameters. 

• The volume-oriented approach employed is restricted to 
local 3-D neighborhoods defined by three consecutive 
slices, and it is able to deal with a possible bias in the 
Z-axis due to the equipment. 

• The parallel region-growing algorithm takes into ac- 
count that the gray-level distribution of different tissues 
can overlap, starts with the highest confidence pixels 
and solves ambiguous cases with the aid of local 
information. 

• The method is highly modular, having three main 
processing steps: (i) robust estimation of the parameters 
of the significant 3-D regions; (ii) computation of 
significant classes; (iii) volume segmentation by 3-D 
region growing, which are completely separated and 
allow integration of a pr ior i  information (if available) 
or performance improvement through consensus (if 
increased computational burden is acceptable). 

The paper is organized as follows. In Section 2 the 
fundamental computational module, the robust location and 
scale estimation is analyzed. In Section 3 the segmentation 
algorithm is presented using a synthetic set of images as an 
example, and validated with numerical data. Experimental 
results with one set of MR images, an application to 
confocal microscopy, as well as comparison with manual 
segmentations are shown in Section 4. Conclusions are 
included in Section 5, where the method is discussed, and 
its potential and limitations are presented. 

2. ROBUST LOCATION AND SCALE ESTIMATION 

Two estimates are of interest when segmenting a gray-level 
image into constant patches. For convenience assume the 
data, i.e. the pixel values, are accessed by a single index. 
The data are modeled as additively corrupted with zero-mean 

identically and independently distributed (liD) noise Ei, X i  : 

0 + el; i = 1 . . . . .  n; where xi are integers between 0 and 
(say) 255. Using terminology from statistics, the value of 
the constant characterizing the patch is obtained with a (one- 
dimensional, I-D) location estimator 0, while the spread of 
the values from this constant by a (I-D) scale estimator g. 
The residuals are defined as ri : x i  - -  0; i = 1 . . . . .  n; and 
the value of the estimate is obtained by minimizing a function 
of them. The traditional, least-squares method, uses min~s r 2 
and the location estimator is the mean 

OLS --  Z i n l  xi (1) 
/7 

while the scale estimator is the standard deviation 

/ ~ 7 - 1  (Xi -- 0LS) 2 
gLS V n - 1 (2) 

Both these estimators are non-robust. Assume that a single 
data point has an arbitrarily large value disregarding for the 
moment that the range of xi is limited. This single outlier 
corrupts both estimates (1) and (2). The least-squares esti- 
mators of location and scale have zero asymptotic breakdown 
point [see Rousseeuw and Leroy (1987), Subsection 1.2, for 
a rigorous definition of the breakdown point of an estimator]. 

A robust location estimator is the mode. For a continuous 
probability density function (PDF) the mode is the most 
probable value of the variable, i.e. the maximum of the PDF. 
In practice the PDF is not known and the mode must be 
estimated from discrete data. Maximum of the PDF means 
that the values around the mode have a higher probability 
of occurence and the mode can be detected by locating the 
highest-density region in the ascendingly ordered sequence 
of the data points. Often the window used in measuring the 
local density contains half data points. The mode-detection 
algorithm can be summarized as follows. 

Mode detection algorithm 
1. Order the data in ascending order, xi: n. 

2. Define a sliding window containing half the data points. 
Let half the size of the window be 

~i = (Xi+h-I  -- xi)/2 h = [n/2] + 1. 

3. Find im such that 

im = arg min ~i. 
1 

This is the location of the densest region, and the mode 
is computed as 

OM = (Ximq-h-1 + xim)/2. 
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Figure 1. An example of the failure of the mode detection algorithm: 
(a) The 1-D test data; (b) histogram of the samples. 

Thus, the mode is detected with a shortest-half algorithm 
[Rousseeuw and Leroy (1987) Subsection 4.2]. If im is non- 
unique, the final value is obtained by averaging the 0M. When 
xi is a histogram, with i = 0 . . . . .  255, the histogram has first 

~--',255 to be reshaped into a sequence of length z..,i=0 xi.  
It can be shown [Rousseeuw and Leroy (1987) Subsec- 

tion 4.2] that the mode, computed as above, is the least- 
median-of-squares location estimate, mingM medi r 2. The use 
of squares instead of absolute values assures the uniqueness 
of the solution if n is an even number. The presence of the 
median makes the mode a robust high-breakdown estimator. 
Indeed, if up to half the data points do not belong to the 
distribution of inliers, the mode is still detected correctly. The 
least-median-of-squares scale estimator is obtained from the 
mode detection algorithm as SM -~- C~im, where the constant c 
is chosen to obtain consistent results for the assumed PDF of 
the inliers in the data. For example, if the inliers are normally 
distributed, c = 1.4826. The data can now be dichotomized 
into inliers and outliers by comparing Ixi - ~MI with (say) 
2XgM. 

The mode detection algorithm, however, may fail when the 
data is almost bimodal. For example, the noisy piecewise 
constant data in Figure la was generated using two normal 
distributions: 100 samples from (100, 252) and 80 samples 
from (175, 252). The number of inliers thus only slightly 
exceeds the number of outliers. The mode estimator should 
return a value "q00.  While the separation of the two constant 
regions can be seen clearly, the histogram (Figure lb) shows 
that the input into the mode detection algorithm is not 
helpful. The highest density region is not well defined and 
the algorithm returns 0M = 118.5 with a scale estimate 

gM = 53.37. A detailed analysis of the causes for the 
estimator's failure can be found in Mintz et aL (1992). 

The above example is typical of noisy step discontinuities 
in images. Thus, in spite of using a robust high-breakdown- 
point location estimator, such noisy data cannot be segmented 
reliably into two homogeneous parts. The performance of 
the mode detection algorithm can be improved significantly 
if the spatial structure of the outliers is exploited. Under the 
piecewise constant model, both the inliers and the outliers 
are constants corrupted by zero-mean noise. In the data 
window (which in this example is all the data) without 
loss of generality, the noise can be assumed IID; that is, 
the scale estimate (standard deviation) derived from pixels 
in a homogeneous neighborhood should be similar. The 
standard deviation computed in small analysis windows, 
however, increases significantly if the neighborhood contains 
the discontinuity between the two homogeneous regions. 
This property, which is valid only for the piecewise constant 
model (Mintz et aL, 1992), can be used to design a two- 
step mode detection procedure. It should be noted that the 
reliability of the technique is obtained at the expense of being 
restricted to noisy piecewise constant data. 

1. 

. 

Enhanced mode detection (EMD) procedure 
Tessellate the data by overlapping analysis windows of 
length w (w an odd number) with centers separated by 
m locations. 

In every window, compute the mean 0LS,i Equation (1) 
and standard deviation gLS,i Equation (2). These values 
are associated with the ith pixel, the center of the 
window. 

3. Form the distribution of all the gLS,i values associated to 
all windows. Find the mode of this distribution. It is the 
robust scale estimate gEM derived from the data. Mark 
the outliers of the sLS,i distribution. 

4. Remove from the ~gLS,i distribution those points which 
are associated with an outlier in the gLS,i distribution. 
With high probability the discontinuity is in the neigh- 
borhood of these points. 

5. Find the mode of the 'censored' 0LS,i distribution. It is 
the robust location estimate ~EM derived from the data. 

The enhanced mode detection procedure performs sig- 
nificantly better for noisy piecewise constant data than the 
original mode detection algorithm. The technique can be 
extended to piecewise polynomial data. If the data is close to 
unimodal the EMD defaults into the original mode detection 
algorithm. See Mintz et al. (1992) for details. The example 
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Figure 2. 3-D rendering of the uncorrupted synthetic objects. 

in Figure la processed with EMD (the 1-D analysis windows 
contained w = 15 samples, located at every m = 3 samples), 
yields 0EM = 92.13 and gEM = 28.84, much closer to the 
correct values. 

The application of this technique in MRI is justified by the 
fact that the assumption of constant intensity plus additive 
noise within a given anatomical structure is reasonable in 
regions with low texture (Ayache, 1995). Furthermore, the 
assumption of slowly varying intensities is a good estimate 
to model MR data, where a specific intensity level can be 
assumed to be approximately constant over the image plane 
if the MR scanner is optimally tuned and if non-linearity 
artifacts are precorrected (Gerig et al., 1992). In order to 
take into account discontinuities in the z-direction, the EMD 
procedure can be extended to consider 3-D data windows. 
This is suitable for MRI stacks, where hundreds of slices must 
be segmented. 

3. ROBUST ANALYSIS OF IMAGE STACKS 

The proposed 3-D segmentation method will be described and 
validated using a stack of synthetic data. Four geometrical 
3-D objects, one solid sphere and three hollow half-spheres 
in a dark background, were defined with a set containing 
100 slices (Figure 2). The 3-D volumes were rendered 
with the system 3DViewnix developed by the Medical Image 
Processing Group at the University of Pennsylvania. Both 
objects and background were corrupted by white, zero-mean, 
Gaussian noise with the same standard deviation (8.0), and 
the mean gray value of the distribution of each object was 
slightly changed across the stack (see Figure 5a). This exam- 
ple was designed to simulate the intensity inhomogeneities 
between slices produced by an MR scanner. Besides, not all 
objects appear in all slices, as happens in medical images: 

significant anatomical features may extend only over a subset 
of slices. [We refer the reader to Garza-Jinich et al. (1996) 
for another validation example, where the data contains no 
inhomogeneities between slices.] 

One slice of the noisy stack is shown in Figure 3a. Note 
that in the gray-level histogram of the slice (Figure 3b) the 
five classes cannot be distinguished. 

3.1. Estimation of robust parameters 0j and gj 
The j th  delineated region in the lth slice of the stack 
is characterized by an estimated gray-level value 0j and 
standard deviation g j, j ----- 1 . . . . .  J.  (The second index 1 
is not used for ease of exposition.) To segment the slice, 
the 0j and gj corresponding to all J significant regions must 
be determined. Note that J is not known a pr ior i .  An 
optimal segmentation procedure should balance the use of 
global information (e.g. histograms derived from the image) 
and of local information (e.g. spatial constraints). 

To exploit the 3-D information contained in the image 
stack the analysis of the /th slice is based on a 3 × 9 x 
9 data window defined over three consecutive slices / - 
l, l, l + 1. The data windows tessellate the /th slice by 
being shifted 3 pixels along the two cardinal directions. 
Each data window is analyzed independently with the EMD 
procedure, employing a small, 3 × 3 × 3 analysis window. 
The analysis windows are offset with m = 2 along either 
cardinal direction, and can extend over the boundaries of the 
data window. Both windows are centered, i.e. the output of 
any processing is allocated to the pixel in the center. 

The size of these windows defines the minimum area a 
structure should have in order to make the recovery of its 
parameters possible. In other words, the algorithm will 
recover the parameters of a region if its area is big enough to 
contain >50% of the analysis windows in one data window. If 
this condition does not hold, it will not be possible to detect 
a region. Thus, to achieve maximum sensitivity to small 3- 
D structures only three consecutive slices are chosen for a 
data window. The experimental results, with synthetic and 
real data (to be described in the following section) support 
the adequacy of this approach. The size of both windows 
(data/analysis) in any of the three axis may be changed by the 
user by choosing from pre-set options. 

For the kth data window, k = 1 . . . .  , K; the EMD 
procedure provides a robust estimate of the gray-level value 
of the majority of the pixels, 0k (the mode 0EM), and the 
robust estimate of the standard deviation of those pixels, gk 
(the scale estimate gEM). The former characterizes the local 
structure according to the piecewise constant model, the latter 
the deviations from this model. The histogram of the local 
mode values, 0k (rounded to the closest integer) is the global 
information employed. Three consecutive slices from the 
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Figure 3. Synthetic data. (a) An example of a noisy slice from the stack shown in Figure 2. (b) Gray-level histogram of the slice. 
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Figure 4. Robust estimates of the local structure derived from three slices. (a) Histogram of the local modes. (b) The most probable standard 
deviation of the local mode values. 

stack, with the one in Figure 3a (center), yield the histogram 
of local modes in Figures 4a; cf Figure 3b. Note that the 
peaks corresponding to the objects and the background are 
now clearly distinguishable. 

In order to guarantee that the local modes indeed represent 
only homogeneous windows, and avoid the case when a 
non-homogeneous window produces accidentally the same 
gray-level value as a homogeneous one, the histogram of 
all standard deviations is produced. The value in the 70- 
percentile is used to censor the 0k values and the histogram 
of local modes is updated. 

The mode of the standard deviations mapped into a bin (i.e. 
associated with similar Ok values) is the robust, most probable 

standard deviation for the local structures mapped into that 
bin. It is denoted ri, i = 0 . . . . .  255; and in Figure 4b these 
values are shown. 

3.2. Computation of significant classes 
The significant classes in the lth slice are extracted from the 
histogram of local modes by a robust, multilevel thresholding 
algorithm which is a 1-D application of a robust clustering 
technique (Jolion et al., 1991). 

3.2.1. Analysis of the histogram of local modes 
1. Stretch the histogram into an ordered list of length n. Set 

j = l .  
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Table 1. True parameters versus estimated parameters for slice 
l = 62 (Figure 3a). 

Background #1 = 37 ty 1 ----- 8 . 0  01 = 37 s1 = 6.9 
Object 1 /x 2 = 71 ~2 = 8.0 02 = 70 ~2 = 7.2 
Object2 /z 3 = 9 3  ty 3 = 8 . 0  0 3 = 9 3  ~3=6.4  
Object 3 /~4 = 135 e4 = 8.0 04 = 135 ~4 = 7.5 
Object4 /x 5 = 1 5 3  ~r 5 = 8 . 0  05=153  }5=7 .9  

2. Set b = 0.5.  Set c = 0.2.  

3. Apply the mode detection algorithm using a window 
containing h --- [b x n] + 1 points. The mode corresponds 
to index im,h. The class candidate is defined by OM,h and 
rm,h, where m = im,h q- [0.5 x b x n]. Note that the most 
probable standard deviation is associated with the class. 

4. Compute the mass Wh contained in the bins which con- 
tributed to the im,hth window. Define the compactness 
m e a s u r e  

Ogh 
0 h - -  

2~im,h 

5. b +-- b - 0.1. If  b > c return to 3. 

6. The class extracted at this iteration corresponds to hc -- 
arg minh Oh, i.e. 0j = OM,hc, and gj = rm,hc. 

7. Remove from the histogram, all the bins falling within 
2gj from 0j. 

8. If  the number of  remaining points in the histogram is 
larger than c x n, j +-- j + 1, return to 2; 
else STOP. 

The algorithm stops if the number of  points in the 
histogram becomes <100c% of the original number. The 
parameter c affects the number of  classes identified, and by 
modifying it the user can increase or decrease the number of  
classes, i.e. the resolution of the segmentation. 

In Table 1 the values used in generating the synthetic 
data, ],zj and o'j (for slice l = 62), are compared with their 

estimates from the three slices used in Figure 4, 0 j  a n d  gj. 
Note the accuracy of the estimation. 

In order to find the changing parameters of  the classes 
through all the stack, the estimation of significant classes was 
done iteratively as described above, for all possible sets of 
three consecutive slices in the stack. Figure 5a represents 
the true mean gray value of the background and objects, as 
they change slightly through the stack of images. The x-axis 
corresponds to the gray-level value, the y-axis corresponds to 

i i i 

~' i i l  

i F ~, 

! i ~ 
i 

i j, i 

i ~ ,, : ~ i 

i ~  ~ 

a b 

Figure 5. Variation of the mean gray-level value across the stack. 
(a) Original; (b) recovered. 

the number of  slices in the stack. The leftmost continuous line 
represents the background. From left to right the next lines 
represent respectively the large hollow half-sphere, the small 
solid sphere, and the two small hollow half-spheres. As can 
be seen from Figure 5b, the number of existing objects and 
the local changes in the mean gray-level values are recovered 
correctly for each slice across the stack. 

3.3.  S e g m e n t a t i o n  of  3 -D reg ions  
The 3-D structures are extracted by classification, i.e. each 
pixel is allocated to a class j = 1 . . . . .  J .  As the 
classification becomes more ambiguous, the role of  local 
spatial information is increased by iteratively relaxing the 
decision parameter a. Each iteration comprises two traversals 
of the image stack of L slices. First, the seed regions 
containing those pixels that have the highest probability of  
belonging to a class are determined (they are the pixels far 
from class boundaries). These seed regions are then used in a 
region-growing algorithm. Both algorithms are based on the 
3-D neighborhood of a pixel. 

3.3.1. Segmentation algorithm 
1. Set the value of a, set the value of a*, N = 15 and 

M = I .  

2. Run 'seed-planting algorithm' with parameter a. 

3. Run 'region-growing algorithm' with parameter a. 

4. If  there remained unlabeled pixels in the stack, or a < 
a*, 

a +-- a + 0.5, return to 2; 
else, STOP. 
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Figure 6. The role of the decision threshold a. (a) a = 1.0; (b) 
a = 1.5 (see text). 

3.3.2. Seed-planting algorithm 
1. Set slice index l = 1. 

2. A pixel in slice l is labeled as class j / =  1 . . . . .  JI, 
if its gray level lies in the interval (Oj - a s j ,  Oj + aJj);  
and at least N of its 3-D neighbors have gray levels in 
the same interval 
or were already labeled as class j .  

3. 1 + - - l + l .  I f l  _< L return to 2; 
else STOE 

3.3.3. Region-growing algorithm 
1. Set slice index l ----- 1. 

2. An unlabeled pixel in slice l is labeled as class j = 
1 . . . . .  Jl, 
if its gray level lies in the interval (Oj - agj, Oj + a s  j ) ;  

and at least M of its 3-D-neighbors was already labeled 
as class j .  

3. If no more labeling is possible, proceed to 4; 
else return to 2. 

4. l + - - l + l .  I f l < L r e t u m t o 2 ;  
else STOR 

The parameter a controls the flow of global information 
(class definitioris). This parameter, combined with parameter 
N, is of basic importance in MR images, where the existence 
of a possible bias in the intensities may produce overlapping 
of the distributions of different tissues. Choosing one global 
threshold to separate two distributions (Brummer et al., 1993) 
leads to substantial misclassification. When the value of 
the parameter a is small the pixels are allocated based on 
narrow intervals around 0j, and only the pixels in that interval 
are candidates (Figure 6a). As the algorithm proceeds, the 
value of a is increased, a pixel may become a candidate 
in more than one class (Figure 6b). Such a pixel will be 

allocated to the class to which the majority of its classified 
neighbors belong. Thus the problem of the appearance of new 
isolated seed regions, a problem simple thresholding methods 
invariably produce, is avoided. In practice, the proposed 
algorithm results in an adaptive thresholding, where the value 
that separates two distributions depends on the values of the 
pixels in the neighborhood. The parameter N _< 26 influences 
the amount of under- or over-segmentation. For example, 
if N is close to the upper limit, the classification is based 
on very strict conditions and the slice will be broken into 
many small pieces. Note that N depends implicitly on a. 
The implementation of the algorithm used N = 15. More 
complicated rules, like 'N  increases linearly with a '  did not 
seem to have a significant influence for real (MRI) data. 

The number of already classified neighbors (M) required 
in the region-growing algorithm controls the speed of aggre- 
gation and affects the shape of the delineated regions. A 
small M (close to 1) allows the delineation of long elongated 
features, while a large M (close to N) makes the algorithm 
strict, and the regions grow slowly. If  there is a tie in the local 
majority rule, the pixel is allocated to the class which yields 
the smallest Mahalanobis distance (computed with 0j and g j). 

Note that N = M = 0 corresponds to a simple thresh- 
olding operation, while non-zero values for these parameters 
impose local spatial constraints in the segmentation process. 
Such constraints have a regularization effect and similar rules 
are employed in any practical segmentation algorithm, e.g. 
Beveridge et al. 0989). 

The increase of the parameter a can be stopped at a* = 2.5 
or 3, in which case a few pixels will not be classified. These 
pixels can then be allocated based on the already delineated 
local structure or used to define new features. Experiments 
with the MRI data have shown that for a* = 3.0 the 
delineation is very close to final. Note that parameters a*, 
N and M are context independent, i.e. they do not depend on 
the processed image stack. 

The classes determined from all possible three consecutive 
slices (Figure 5b) were used to analyze the stack of noisy 
synthetic data derived from Figure 2. The results are shown in 
Figure 7. The volume recovery algorithm extracts volumes- 
of-interest (VOI) from all labeled slices. The user specifies 
the VOI by pointing to any pixel inside of it in any labeled 
slice where part of the volume is visible. The system marks 
the whole volume in all slices through a 3-D-filling algorithm 
(Foley et al., 1990). It is possible to recover several VOIs 
simultaneously. Given the open design of the algorithm, 
additional modules to delete false links using mathematical 
morphology (Brummer et al., 1993; Kapur et al., 1996), 
or to integrate a priori knowledge concerning the location 
and shape of the VOIs already at the level of decision 
making, may be incorporated (Raya, 1990; Li et al., 1993; 
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Figure 7. 3-D rendering of segmented objects from the synthetic 
image stack. 

Sonka et al., 1996). The four objects were segmented and 
displayed separately, keeping the same orientation they have 
in Figure 2. 

4. E X P E R I M E N T A L  RESULTS 

4.1. Magnetic resonance images 
We have performed experiments with three brain sets: axial, 
sagittal and coronal. Here only the sagittal brain set is 
described. There is no information available about the 
acquisition protocol parameters used. Furthermore, the set 
was neither filtered nor preprocessed before being segmented. 

The sagittal set contains 109 slices, where each slice is 
a 256 × 256 image with 4096 gray levels, rescaled (using 
the same function) to 256 gray levels. To investigate the 
sensitivity of the algorithm to the size of  the data windows 
the set was processed using different data window sizes (the 
analysis window size was always 3 × 3 x 3) and the class 
parameters were obtained for each triplet. The results are 
shown in Figure 8. The classes plotted, from left to right, 
are: class 1 corresponds to background, class 2 corresponds to 
cerebrospinal fluid (CSF), class 3 corresponds to gray matter 
and class 4 corresponds to white matter. 

In Figure 9 the segmentation of the brain from the sagittal 
set is shown. The operational parameters of  the system were 
data window size 3 x 9 x 9, analysis window size 3 x 3 × 3, 
c ---- 0.1, a = 1.0, a* = 3.0, N = 15 and M = 1. Figure 9a, c 

a b c 

Figure 8. Variation of the mean gray-level value of the estimated 
classes across the sagittal set. (a) Results with data window size 
3 × 7 x 7. (b) Results with data window size 3 x 9 × 9. (c) Results 
with data window size 3 x 11 z 11. 

and e show examples of the original slices. Figure 9b, d and f 
show the labeling of those slices. All  pixels not belonging to 
any of the four classes were assigned to an 'unknown'  class 
(white) which corresponds to fat tissue. 

Two 3-D views of  the brain are shown in Figure 10. Fig- 
ure 10a shows the largest component with pixels labeled as 
classes 3 and 4. Figure 10b shows only the largest connected 
component with pixels labeled as class 4. Figure 10c shows 
the volume occupied by CSF (pixels labeled as class 2) in the 
lateral ventricles displayed at a larger scale. The procedure 
of  segmenting 109 images size 256 × 256 in five classes took 
13 min on a Sun Sparc 20. 

Finer structures contained in a subset of slices can also 
be identified by tuning the parameters of the system to 
a predefined subset of slices. In this case, however, a 
semiautomatic procedure is recommended. A triplet of  slices 
containing the structure of  interest is chosen and its class 
definition is extracted. The subset of slices in which the 
substructure appears is then defined. While  this step can be 
performed automatically, we did it manually in the example. 
The extracted class parameters are used across the whole 
subset of slices to delineate the structure of  interest. 

The result shown in Figure 11 was produced by setting the 
data window size to 3 x 7 x 7, analysis window size 3 x 3 x 3, 
c = 0.02, a = 1.0, a* = 5.0, N = 15 and M = 1, 
and centering the estimation on slice l = 38, where this 
substructure of interest is visible. Only those images where 
the substructures can be identified (l = 35 . . . . .  74) were 
labeled. Six classes were obtained in this case: in addition 
to the five classes of the previous example, a sixth class in the 
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Figure 10. Segmentation of the brain in the sagittal set. (a) Volume 
rendering of the gray and white matter. (b) Volume rendering of 
the white matter only. (c) Volume rendering of CSF in the lateral 
ventricles. 

e f 

Figure 9. Segmentation of the brain from the sagittal set. (a) Slice 
l = 48. (b) Labeling of slice l = 48. (c) Slice I = 38. (d) Labeling 
of slice l = 38. (e) Slice I = 25. (f) Labeling of slice 1 = 25. 

white matter area was obtained due to the fact that 98% of 
the histogram of local modes was now analyzed. The sixth 
class corresponds to the putamen, which although it is very 
faintly delineated in the original image, the algorithm is able 
to detect it as a different homogeneous region. Figure 1 la 
shows the contour of  the sixth class in the central area of  
the brain in slice l = 38, Figure 1 lb shows the contours of  
the sixth class in the central area of  the brain in slice l = 
45. These borders correspond to the putamen, the pulvinar 
nuclear complex and the caudate nucleus. Figure 1 lc is the 
volume rendering of the connected component corresponding 
to the substructures. 

The above example shows the advantage of  using the pro- 
posed method as a preprocessing technique for deformable 
models algorithms (Davatzikos and Prince, 1995; Snell et al., 
1995; Staib and Duncan, 1996; Sz6kely et al., 1996). Given 

a b 

Figure 11. Segmentation of the sagittal set into substructures. (a) 
Central slice (l = 38) used for parameter estimation. (b) Labeling 
of the central slice. (c) Volume rendering of connected component 
corresponding to pulvinar nuclear complex, caudate nucleus and 
putamen. 
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Figure 12. Segmentation of the cell from the neuron set. (a) Central 
slice (l = 100) used for parameter estimation. (b) Labeling of slice 
l = 100. (c) Slice 1 = 80. (d) Labeling of slice l = 80. (e) 3-D 
rendering of the segmented neuron viewed from the top of the stack. 
(f) 3-D rendering of the segmented neuron viewed from the bottom 
of the stack. 

the robustness of the estimation and the quality of the region- 
growing algorithm, it is a suitable method for producing 
accurate initial contour or surface models. 

4.2. Confocai microscope images 
Since the method proposed is designed to work on any stack 
of 2-D slices, we applied the technique to an image stack 
obtained with a confocal microscope. 

Confocal systems offer the chance to image thick bio- 
logical tissue in three dimensions. They operate in the 
bright-field and fluorescence modes, allowing the formation 
of high-resolution images with a depth of focus sufficiently 

small that all the detail which is imaged appears in focus 
and the out-of-focus information is rejected (Wilson, 1990). 
Some of the current applications in biological studies are 
in neuron research (Cameron et  al., 1997). In materials 
science or semiconductor device technology, this technique 
allows the measurement of surface topography (Sheppard and 
Cogswell, 1990). As there is a lack of good equipment for 
3-D visualization in this area (Forsgren et al., 1990), we 
propose our algorithm as a suitable technique for the confocal 
community. 

In Figure 12 the segmentation of a neuron is shown. 
The set contains 150 images, and as there are no intensity 
inhomogeneities between slices, the estimation of parameters 
was made from three consecutive images: l = 99, 100, 101, 
using the default parameters of the system. Figure 12a shows 
the central slice (1 = 100) of the triplet used to estimate the 
parameters. Figure 12b shows the labeling of the central slice 
in eight classes: four corresponding to different intensities of 
the background and four to different intensities of the cell. 
Figure 12c shows another slice (l = 80). Figure 12d is the 
labeling of slice 1 = 80. The 3-D view of the neuron as seen 
from the top of the stack is shown in Figure 12e. The view 
from the bottom of the stack is shown in Figure 12f. 

4.3. Comparison with manual segmentation 
A set of seven randomly chosen images from the sagittal set 
were segmented manually by two physicians with expertise 
in the analysis of MR images (see Acknowledgements). One 
of the chosen images is shown in Figure 13a. Figure 13b 
and c show the automatic and manual segmentation of gray 
matter respectively. Figure 13d and e show the automatic and 
manual segmentation of white matter. In order to validate the 
results of the proposed method, two different comparisons 
were made between automatic and manual segmentations. 
Table 2 shows the average confusion in the seven images. The 
rows in the confusion matrix indicate each tissue segmented 
manually. For example, of all the white matter identified 
by the experts, 92.4% was correctly labeled as white matter 
by our method, 7.6% was labeled as gray matter and the 
rest (0.1%) was labeled as CSE The comparison of manual 
versus automatic gray matter segmentation shows more 
confusion, mainly between gray matter and CSE Further 
experiments comparing the confusion among several manual 
segmentations should be performed, in order to conclude 
whether the differences are within tolerance. 

A quantitative comparison of statistics between manual 
and automatic segmentation was also carded out. In Tables 3 
and 4, the second column (left to right) shows the mean and 
standard deviation for the manual segmentation of white and 
gray matter respectively, for each of the seven images. The re- 
maining columns show the parameters of the classes obtained 



32  M .  G a r z a - J i n i c h  et  aL 

b c 

d e 

F i g u r e  13. Compar i son  o f  automat ic  versus  manua l  segmenta t ion .  

(a) Original  image.  (b) Au tomat i c  segmenta t ion  o f  gray matter.  (e) 

Manua l  segmenta t ion  o f  gray matter.  (d) Au tomat i c  segmenta t ion  

o f  white  matter. (e) Manua l  segmenta t ion  o f  white  matter. 

Tab le  2. C o m p a r i s o n  o f  manua l  segmenta t ion  versus  au tomat ic  

segmenta t ion .  

Manua l  versus  au tomat ic  Whi t e  mat ter  Gray mat ter  CSF  

Whi te  mat te r  92 .4% 7.6% 0.1% 
Gray mat ter  5 .4% 84.5% 10.1% 

a u t o m a t i c a l l y  w h e n  u s i n g  d i f f e r e n t  d a t a  w i n d o w  s i zes :  3 x 

7 x 7, 3 x 9 x 9 a n d  3 x 11 × 11. A s  w a s  s h o w n  p r e v i o u s l y  in  

F i g u r e  8, t h e  n u m e r i c a l  d i f f e r e n c e s  b e t w e e n  t h e  p a r a m e t e r s  

e s t i m a t e d  a u t o m a t i c a l l y  u s i n g  d i f f e r e n t  d a t a  w i n d o w  s i z e s  

is  a c c e p t a b l e .  T h e  d i f f e r e n c e  w i t h  t h e  c o m p u t e d  m e a n  a n d  

s t a n d a r d  d e v i a t i o n  o f  t h e  a r e a  d e l i n e a t e d  b y  t h e  e x p e r t  is  in  

Tab le  3. C o m p a r i s o n  o f  manua l  segmenta t ion  versus  automat ic  

segmenta t ion  for white  matter.  

Image  Manua l  3 x 7 x 7  3 x 9 x 9  3 x  l l x  11 

1 # = 123.85 0 = 126.5 g = 126.5 0 = 128.5 

cr = 9.16 g = 8.37 g = 9.06 g = 12.93 

2 /x = 122.41 0 = 125.5 0 = 125.5 0 = 125.0 

cr = 12.53 g = 8.5 g = 8.7 g = 6.7 

3 # = 121.72 0 = 132.0 0 = 132.5 0 = 132.5 

~r = 16.15 g = 10.6 g = 13.4 g = 13.8 

4 /z = 119.69 0 = 117.5 0 = 119.0 0 = 114.5 

~r = 16.76 g = 12.15 g = 15.52 g = 16.3 

5 /z = 128.71 0 = 131.0 O = 132.0 0 = 132.0 

cr = 14.23 ~ = 11.75 g = 7.58 g = 13.64 

6 /x = 133.54 t} = 131.0 0 = 130.5 0 = 130.0 

cr = 13.65 g = 8.27 g = 12.23 g = 11.61 

7 # = 132.49 0 = 128.0 0 = 130.5 0 = 129.5 

tr = 12.85 g = 6.63 g = 6.59 g = 11.85 

Tab le  4. Compar i son  o f  manua l  segmenta t ion  versus  automat ic  

segmenta t ion  for gray  matter.  

Image  Manua l  3 x 7 x 7  3 x 9 x 9  3 x  11 x 11 

1 # = 87.83 0 = 83.5 0 = 83.5 0 = 83.0 

~r = 8.98 ~ = 10.39 g = 11.94 g = 14.93 

2 / z = 8 6 . 5 9  0 = 8 8 . 0  0 = 8 5 . 0  0 = 8 4 . 0  

cr = 15.56 g = 10.3 g = 11.9 g = 12.8 

3 # = 8 9 . 6 7  0 = 8 7 . 0  0 = 8 8 . 5  0 = 9 2 . 0  

~r = 16.42 g = 13.9 g = 14.16 g = 16.1 

4 /z = 86.27 0 = 81.0 0 = 84.0 0 = 82.5 

cr = 12.26 g = 14.06 ~ = 15.9 g = 13.12 

5 # = 92.61 0 = 95.0 0 = 90.5 0 = 90.0 

cr = 10.05 g = 11.90 g = 13.19 :~ = 14.67 

6 # = 79.97 0 = 81.0 0 = 83.0 0 = 82.5 

~r --  11.19 g = 10.07 g = 13.35 g = 13.91 

7 / z = 7 8 . 0 4  0 = 7 7 . 0  0 = 7 7 . 5  0 = 8 4 . 0  

= 7 . 7 1  g = 6 . 1 2  g = 10.10 g = 11.96 

s o m e  c a s e s  m o r e  s i g n i f i c a n t ,  a l t h o u g h  fo r  p r a c t i c a l  p u r p o s e s ,  

a s  t h e  c o n f u s i o n  m a t r i x  s h o w s ,  it  c a n  b e  c o n s i d e r e d  w i t h i n  

t o l e r a n c e .  T h e  f ac t  t h a t  t h e  s t a n d a r d  d e v i a t i o n  o f  t h e  m a n u a l  

s e g m e n t a t i o n  is  in  s o m e  c a s e s  g r e a t e r  t h a n  t ha t  o b t a i n e d  

a u t o m a t i c a l l y  is  d u e  to  t h e  m e t h o d  f o c u s i n g  o n  t he  m o s t  

h o m o g e n e o u s  r e g i o n s ,  a n d  t h e  p h y s i c i a n s  i n c l u d i n g  v o x e l s  in  

t he  b o r d e r s  c o n t a i n i n g  pa r t i a l  v o l u m e s .  T h e  a r t i f ac t  c r e a t e d  

b y  pa r t i a l  v o l u m e s  w e r e  d i s c u s s e d  r e c e n t l y  in  N i e s s e n  et  al. 

( 1 9 9 8 ) .  
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5. CONCLUSIONS ACKNOWLEDGEMENTS 

We have described a new method for extracting 3-D informa- 
tion from MR images. The method makes extensive use of 
robust statistical techniques, and it is an automatic, bottom- 
up procedure. 

The algorithm uses the assumption of piecewise constancy. 
By using all the triplets for 'local' estimation of the class 
parameters, as in the full set MRI example, smooth changes 
in the class parameters as one moves along the stack are 
automatically compensated. The intensity bias within an 
image is a harder problem. Most often it is equipment- 
dependent and can be characterized and eliminated through 
adequate calibration procedures. Image processing tech- 
niques to eliminate the artifacts introduced by equipment 
are also available (Gerig et al., 1992; Wells et al., 1996). 
If a more complex model is to be employed, the EMD 
procedure described in the paper can be generalized to 
piecewise polynomial data (Mintz et al., 1992) or methods 
based on random fields can be used (Marroquin, 1992). 
However, substituting the piecewise constant image structure 
model with a (say) piecewise planar model introduces the 
problem of choosing locally the adequate model order. Even 
robust methods will yield different results if the underlying 
assumptions are different. A safer procedure is to use the 
traditional piecewise constant model and then by analyzing 
the residuals assess the significance of the bias present. 

The desired resolution of analysis is controlled by a few 
parameters whose effect is straightforward and totally data 
independent. The main characteristic of the method is a 
local/global equilibrium: only significant local homogeneous 
regions become representative global classes. The modular 
design also allows the recovery of correct class definitions 
when intensity inhomogeneities between slices exist, as well 
as the identification of different number of classes at different 
levels of the stack. Further improvements are also allowed 
by the modular design, such as increasing the resolution of 
object delineation by multiple and/or hierarchical estimation 
of the classes. The technique described can serve as the main 
module of a complete MR data analysis system (incorporating 
a priori  knowledge about the anatomy), a system in which 
the constraints on the user-machine interface can be relaxed 
due to the robustness of the image analysis. The delineated 
volumes can provide an excellent initial guess for the 
deformable surface techniques whose performance is strongly 
dependent on a reliable starting point in the minimization 
(Davatzikos and Prince, 1995; Snell et al., 1995; Staib and 
Duncan, 1996; Sz6kely et al., 1996). Such techniques can 
also be used to further refine the segmentation. 

We thank the anonymous reviewers for their constructive 
comments which contributed to a significant improvement in 
the presentation of the paper. The sagittal set was provided 
courtesy of Siemens Medical Systems, Inc., Iselin, NJ, and 
is contained in the Chapel Hill Volume Rendering Test Data 
Site. These images were taken on the Siemens Magne- 
tom. The neuron set was provided courtesy of Dr Martin 
Wessendorf, Department of Cell Biology and Neuroanatomy, 
School of Medicine, University of Minnesota. The authors 
would also like to thank Dr Ramon Gutierrez Alvarado 
and Dr Bernardo Escutia, Instituto Nacional de Neurologia 
y Neurocirugia, Mexico City, who segmented the images 
manually. Peter Meer was partially supported by the the 
National Science Foundation under the grant IRI-9530546. 
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