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Robust Clustering
with Applications in Computer Vision

Jean-Michel Jolion, Peter Meer, and Samira Bataouche

Abstract—A novel clustering algorithm based on the minimum
volume ellipsoid (MVE) robust estimator recently introduced in
statistics is proposed. The MVE estimator identifies the least
volume region containing k& percent of the data points. The
clustering algorithm iteratively partitions the space into clusters
without a priori information about their number. At each itera-
tion, the MVE estimator is applied several times with values of A
decreasing from 0.5. A cluster is hypothesised for each ellipsoid.
The shapes of these clusters are compared with shapes corre-
sponding to a known unimodal distribution by the Kolmogorov-
Smirnov test. The best fitting cluster is then removed from the
space, and a new iteration starts. Constrained random sampling
keeps the amount of computation low. The clustering algorithm
was successfully applied to several computer vision problems
formulated in the feature space paradigm: multithresholding of
gray level images, analysis of the Hough space, range image
segmentation.

Index Terms— Clustering, feature space, Hough transform,
multithresholding, range image segmentation, robust estimation.

1. INTRODUCTION

Several computer-vision tasks can be formulated as the
following pattern-recognition problem: Given a set of points
in a p-dimensional space, find the best partition of the space
into significant clusters. The points in the space correspond
to feature vectors extracted from the image, and the space
is called feature space. Each of the delineated clusters then
represents a subset of the image. Different transformations
of the input image yield different feature spaces and allow
discrimination of different image subsets.

The simplest feature is the gray level of a pixel. The
corresponding feature space is the histogram of the image
p = 1. Clustering in this space yields a decomposition of the
histogram into a few nonoverlapping intervals, and labeling
of the clusters results in multithresholding of the image. A
different feature vector is defined by the parameters of a line
connecting two significant edge pixels. The feature space is
a variant of Hough space (p = 2) and the delineated clusters
correspond to the most significant lines in the image. Color
images can be characterized by three-dimensional histograms,
and thus, we have a three-dimensional feature space in which
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clusters correspond to pixels with similar color. To impose
spatial contiguity, the coordinates must also be mapped into the
feature space, thus increasing its dimension to five. Haralick
and Watson [8] introduced the facet model describing images
by a piecewise polynomial surface structure. When the locally
estimated facet parameters are mapped into a feature space,
the space is three-dimensional for planar and six-dimensional
for biquadratic surfaces.

The books of Duda and Hart [4] and Jain and Dubes
[13] give complete treatments of clustering techniques with
applications in pattern recognition and computer vision. Most
of the techniques are iterative and sensitive to the choice of
k, which is the number of clusters in the feature space. If this
choice is very incorrect, the final partition of the space may be
incorrect as well. This sensitivity is an important limitation in
computer vision, where only rarely is the number of significant
feature properties known a priori.

Computational considerations often limit the resolution of
the feature space, that is, the feature space is represented
as a discrete array, and whenever the distance between two
feature vectors is less than the quantization step, the points
are allocated to the same bin. A discrete feature space can
represent the image without loss only if the components of
the feature vector are discrete variables. Histograms are an
example. However, when the feature vector components can
take any value, i.e., they are continuous variables, coarse
quantization of the feature space can yield artifacts. For
example, spurious lines may be derived from the Hough space
if the size of the accumulator bins is too large.

Nevertheless, approaching computer vision problems as
feature space clustering has numerous advantages. The feature
space can integrate multiple sources of information about
the same image region, allowing a more complete analysis.
Feature vectors corrupted with nonGaussian and/or correlated
noise can be handled as long as they give rise to clusters.

In this paper, we propose a novel approach to clustering in
feature space based on a recently introduced robust statistical
technique. The robust method reduces the interference between
adjacent clusters and allows their reliable discrimination with-
out any a priori knowledge of their number. The algorithm
does not require quantization of the continuous feature vectors
and therefore eliminates the above-mentioned artifacts.

The algorithm is described in Section IL In Section III, we
apply it to multithresholding of gray images and in Section
IV to analysis of the continuous Hough space. Range image
segmentation by clustering in the facet space is presented in
Section V. Mapping into and from the feature space is specific
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for an application and, therefore, is described in the respective
sections. The place of our method among other clustering
procedures is discussed in Section VI.

II. THE CLUSTERING ALGORITHM

Let X be a set of n distinct data points (feature vectors) in
a p-dimensional feature space:

X={x3i=1,...,n} x;=1| ¢ |. (1)

Every point has associated with it a scalar positive weight
¢;- The weights describe the importance of the points in X;
their definition is application dependent. In general, ¢; should
not be an integer; however, for the applications discussed in
this paper, we can restrict ourselves to integer-valued weights.
In particular, g; can represent the multiplicity of z;, i.e.,
how many local regions in the image are mapped into the
same point in the feature space. The quantity Q@ = "7, g;,
representing the number of feature vectors extracted from the
input image, will be of importance. It can be regarded as a
measure of the “mass” present in the feature space.

Significant subsets are extracted from the image by parti-
tioning the feature space into k p-dimensional clusters. The
number of these clusters k is not known a priori. The clus-
tering algorithm proposed in this paper is based on the robust
minimum volume ellipsoid estimator (MVE) of Rousseeuw
and Leroy [24].

The algorithm has an iterative nature. Denote by X the
set of data points contained in the feature space at the I-th
iteration. From this set, the best cluster (to be characterized
below) is delineated and removed yielding the new set X, ;.
The process stops whenever the number of remaining points
becomes less than the assumed minimum cluster size or the
number of detected clusters exceeds an upper bound. To extract
a cluster, the space X is analyzed at different “resolutions”
characterized by a step size h, h < 0.5. For a given value of
h, we seek the minimum volume ellipsoid containing fraction
h of the mass of X, Q1 = Xy, 4+ A cluster is delineated
based on this ellipsoid, and its shape is compared with the
shape of an ideal cluster generated by a Gaussian density. This
assumption is not crucial and can be relaxed to any unimodal
elliptical distribution [25]. The Kolmogorov-Smirnov test of fit
is employed for the comparison, and the returned significance
level characterizes the cluster delineated at resolution h. The
cluster yielding the smallest significance level over all A
values is the best cluster in X;. We call the algorithm the
generalized minimum volume ellipsoid (GMVE) clustering
since it employs several values of h, whereas the original MVE
estimator has A = 0.5 and all ¢; = 1. We now describe the
algorithm in detail.

A. Finding the Minimum Volume Ellipsoid for a Given h

The number of data points n is usually very large. To
keep the amount of computation at a feasible level, a random
sampling procedure must be applied. Let J = {i1,...tp1+1}

define a sample of p + 1 points drawn from X;. These points
must not lie in the same (p — 1)-dimensional hyperplane. We
return to the problem of random sampling in Section II-C.
For this sample, the mean vector X; and the covariance
matrix C; are computed by using the least squares estimates

o 1
Xp=— Y g%
ATy

C;= 1__ 1 Z‘Ii()(i - i]) (Xi - f_])t )

q1 s
where the superscript ¢ means transpose, and ¢; = 3, ; ¢i.
The quantities (2) define a cluster centered on X; with its

shape determined by C;. The quadratic forms
a2 = (%, -%5)'C7 (% = %y) i=1,..,n ©)

(which is also known as squared Mahalanobis distances)
characterize the distance of a point x; from the cluster center.
A constant squared Mahalanobis distance mi,h defines an
ellipsoid in the p-dimensional space centered on X;. The
volume of the ellipsoid is proportional to the quantity

Yon = (myp)P - |Cy|/? )

where |C| is the determinant of the covariance matrix. We
are interested in the value m,;, for which hQ;(h < 0.5) of the
mass in X; is contained inside the ellipsoid. If the distances
d; (3) are ordered in ascending order, we have

myh = d[j] (5)

where dj; is the j-th element in the ordered list, and j is
defined as the largest integer for which

J
z 4 < hQr. ©)
im1

The minimum volume ellipsoid containing h(Q); mass is then
found by minimizing over the different samples J:

Yo = WYz h. @)

The number of samples necessary to obtain a 4 close to the
global minimum will be discussed in Section II-C. Let Jj, be
the sample yielding the minimum in (7) and define

_ 1
T?m =X Cg = T'mgh,h : C-]h (8)

p,;h
where the superscript 0 indicates that the quantities are only
initial estimates. The covariance matrix is weighted in (8) by
the chi-square correction factor for consistency at multivariate
normal data and by the Mahalanobis distance (5) for scaling.
Rousseeuw and van Zomeren [25] recommend an additional
correction factor for small data sizes, but in our applications,
the factor’s value is close to one. On-line computation of the
values of the x? distribution uses numerical approximation of
the incomplete Gamma function [21]. Note that we made use
of the usual assumption that the core of the cluster can be
approximated by a p-dimensional Gaussian cluster. Clusters
generated by other unimodal densities can also be considered.
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In the latter case, however, the validity of chi-square values as
thresholds and correction factors should be carefully examined.
The quality of our experimental results based on real data does
not justify the use of nonGaussian cluster models.

The effect of severe contaminations on the detected cluster
from data belonging to adjacent clusters can be reduced if

weights are defined for every data point ¢ = 1,...,n:
. t -1
— it (i = TH)(C5) ™ (xi = TR) < X307
0 otherwise.

©
The parameters of the minimum volume ellipsoid are then
recomputed using the weighted estimators

n
2 WwigiXi

S wigs(x; — Tw) (% — )"
C _ =1
h=

: (10)
> wig — 1
i=1

Note that the estimators in (10) are optimum in least squares

sense and thus improve the efficiency of the algorithm. The

number of points in the cluster is N = Z:’zl w;, which in

general will differ from j (6).

B. Finding the Best Cluster

The minimum volume ellipsoid locates the region with the
highest density of points in X;. We next allocate to these
points a cluster quality measure. We compare the shape of the
cluster inside the ellipsoid with the shape of the equivalent
multivariate normal cluster using the Kolmogorov-Smirnov
test. Let the number of points contained inside the ellipsoid

Qn s (xi — Th)tch_l(xi - Th) < X§,0‘975 (11)

be imax. The Mahalanobis distances of these points from the
center (10) are then computed and put in ascending order

dips = 1,0 tmax. The measured (empirical) cumulative
distribution function is defined as
0 if i=0
i
o
Fops(i) = { = if 1<% < imax (12)
> 9
Jj=1
1 if 42> tmax

Under the Gaussian cluster assumption, we can calculate the
theoretical cumulative distribution values Fy.(¢) from the
relation

13)

The Kolmogorov-Smirnov test compares the two cumulative
distribution functions. The quantity

D, = m?xlFobs(i) = For (1)

d[zll = X?’yFthv‘(i) 1=1,...,imax-

(14)

is used as a test criterion. The test is available in several
program packages (e.g., p. 474 of [21]) and will not be
described here. We denote the significance level returned
by the program as Ij. This is our cluster quality measure,
i.e., a scalar description of the compactness of the cluster
delineated by the ellipsoid. Thus, compactness is measured by
similarity to the multivariate normal cluster having the same
covariance matrix. Note that the Kolmogorov-Smirnov test is
more sensitive to deviations at the tails of the distributions
than a x2-type test.

The value of h defining the mass of the minimum volume
ellipsoid hQ; was considered up to now as given. However,
to find the best cluster at iteration ! of the algorithm, several
values of h are used in a decreasing order. The range of h
is defined by

maxg;
1
Qi

hmax = min [0.5, max_size]

hmin = Max [ , rnin_size}

(15)

where min_size and max_size are a priori given numbers
limiting the size of any cluster in X. If the value of h is
smaller, the “resolution” we analyze the feature space X will
be higher. Note that hmax = 0.5 does not imply that clusters
larger than half the data size are not detected. In such a case,
the covariance matrix will yield unit weights (9) for most of
the cluster. The value of h was decreased by a factor of 2 at
each step:

hO = hmax, he = hmin-
(16)
By using a geometric series, we ensured that the number of
steps per iteration was always less than 10.
When, for a value of h, the significance level of the
delineated cluster satisfies

1 .
hj=5h1;1 i=1...,a

I, <0.1 a7

and the analysis at higher resolutions (lower ) is no longer

required. The shape of the cluster inside the ellipsoid is close
to a multivariate normal one. The points x; belonging to Qn
are removed from X, yielding the new set X1, and the
(I 4 1)th iteration starts again from h = hmax. If (17) is not
satisfied for any h defined by (16), the cluster corresponding
to step size

j=arg m}gn I (18)
is the one removed from X, that is, the most compact cluster
found in the current iteration.

The iterations stop when either (;1 or the number of points
remaining in X1 is less than a threshold or when the number
of extracted clusters exceeds an a priori established upper
bound. The number of clusters k£ detected in the feature space
is equal to the index of the last iteration.

C. Implementational Issues

To reduce the amount of computation in an iteration of the
algorithm (index [), for every value of k, we employed the
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same set of samples J. Thus, at every value of h, the same
Mahalanobis distances (3) are used, which can be computed
and ordered at the beginning of the iteration.

The proposed clustering algorithm first detects the larger
clusters present in the feature space. The parameter Ay,
which is the minimum step size of the analysis (highest
resolution), is application dependent. When histograms are
decomposed into clusters, h.,;, = O since all the data should
be accounted for. In other applications, such as analysis of
the Hough space, only the most significant clusters should be
discriminated, and A, = 0.05.

In our experiments, the feature spaces are contained around
1000 data points. The number of possible (p + 1)-tuples of
points is extremely large, and a complete scanning of the
feature space is not possible. Random sampling is used to
avoid excessive computation. An additional decrease in the
number of samples is achieved if the random sampling is
restricted to bounded subregions of the space, that is, after
the first point is chosen at random, the remaining p points
are chosen from a box centered on it. Since the clusters are
compact regions in the feature space, under this restriction, we
can expect similar performance of the algorithm using fewer
samples. Indeed, for the examples discussed in this paper, the
constrained random-sampling technique allowed us to decrease
the number of samples per iteration to 25.

Since, usually, no information about the bounding distances
is available, they must be determined adaptively from an
analysis of the feature space. For every iteration, the global
covariance matrix C; is computed using (2) for the entire
feature space X;. The squared Mahalanobis distance between
the point chosen first xo and another point x; is

df ;= (xi — %) C; L (xi — xq). 19)
The point is accepted in the sample J if the distance (19)
is smaller than a threshold. The x2-type threshold does not
depend on the application; it depends only on the dimension
of the feature space p. A larger p requires a smaller allowed
region in the constrained random sampling to avoid the
artifacts of the higher dimensional spaces. For p < 3, we
choose the threshold to be 0.25, whereas for p > 3, we choose
it to be 0.05. It must be emphasized that the performance of
the algorithm is not sensitive to the precise threshold values.
Whenever a priori information about cluster sizes is available,
it can be used instead the generic threshold values.

In some applications, closely located clusters should be
fused before other clusters are detected. Let (T, C;, N;) and
(T',C1, Ni) be the parameters of two clusters. The Maha-
lanobis distances of each cluster center from the other cluster
can be computed as

diy = (Ti = T)'C;(Ti ~ Ty)
df, = (T, - T))'C; Y (T, - Ty). (20)
Note that the values of these distances differ since the two
clusters have different covariance matrices. The clusters are
fused if

max [d}}, d};] < X2 975 (21)

but other application-dependent fusion thresholds can also be
employed. When, instead of the distance between a point and
a cluster, a measure of the offset between two clusters is
required, the Bhattacharyya distance [6] should be used.

In the next sections, we describe several applications of
the GMVE clustering algorithm. All the examples are taken
from real image data. The quality of the results shows the
insensitivity of the algorithm to the Gaussian assumption
employed in the cluster delineation process. The following
computer vision problems are described: multithresholding of
gray level images, analysis of the Hough space, and a facet
model-based range image segmentation. It must be emphasized
that no a priori information about the number of clusters is
employed in the algorithm.

III. HISTOGRAM BASED MULTITHRESHOLDING OF IMAGES

A histogram is a discrete feature space representation of a
digital image. The value of every pixel is an integer (gray
level image) or a p-tuple of integers (colored image). The
set of possible (p-tuples of) integers is the feature space X.
The weight ¢; is the number of pixels mapped into the i-
th point in the feature space, i.e., the content of the 4-th
bin in the histogram. In multithresholding, the histogram is
decomposed into a few nonoverlapping clusters characterized
by their centers T;. Each pixel in the image is then mapped
into the value of the center of the cluster to-which the pixel
belongs. The result is a global segmentation of the image.
Note that the number of thresholds used (i.e., the number
of clusters) is not known a priori since different histograms
require different decompositions.

We are concerned here only with gray-level images. In
Jolion et al. [15], the case of color images is also treated.
For gray-level images, the feature space has p = 1. Several
methods are available to decompose a gray-level histogram
into clusters (see [26] for a recent review). Most of these
methods attempt either to maximize a criterion describing
the separation between two adjacent clusters or to minimize
the error relative to an assumed (usually Gaussian) mixture
population.

Our gray-level histogram decomposition results are com-
pared with the thresholding method proposed by Otsu [20].
In this method, the thresholds are chosen to maximize the
between-cluster variances. The number of clusters, i.e., the
desired decomposition of the histogram, must be known a
priori. The Otsu method tries to partition the histogram into the
most uniform clusters (small within-cluster variances) yielding
the largest distance (large between-cluster variances) between
those clusters. We prefer the Otsu method since it does not
employ the assumption where the histogram is a Gaussian
mixture. It must be emphasized that the employed images are
not especially well suited for multithresholding. Nevertheless,
they supply nonsynthetic histograms and allow comparison of
different approaches to range image segmentation.

In Fig. 1(a), a range image of a coffee cup is shown. Most
of the surfaces in the image are of second degree, and thus,
this example is a difficult one for any segmentation algorithm
seeking to delineate uniform regions. In Section V, the subject
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(®)

Fig. 1. Coffee-cup range image: (a) Original; (b) segmented. Top left: Otsu’s
method, three clusters. Top right: GMVE algorithm, three clusters. Bottom
left: Otsu’s method, six clusters. Bottom right: GMVE algorithm, six clusters.

of range image processing is discussed in more detail, and a
more appropriate segmentation approach will be given. Our
clustering algorithm detected six clusters having the following
percentages of the image size: 60.87, 25.35, 8.2, 1.33, 0.67,
and 0.48. The last three clusters are very small; therefore,
we should also consider segmentation into three clusters only
and allocate the remaining 2.5% of the pixels to the closest
clusters. The images segmented by our algorithm into three
and six clusters are shown in the top-right and bottom-right of
Fig. 1(b), respectively. The regions are displayed with arbitrary
gray levels to emphasize their shapes. Note that the small
clusters lie on the borders of the large regions.

The results of applying Otsu’s method to the same image are
shown on the left in Fig. 1(b), where the three-cluster result is
at the top, and the six-cluster result is at the bottom. None of
the clusters is very small, and a completely different partition
of the feature space is obtained when six clusters are assumed
instead of three.

In Fig. 2(a), an outdoor scenc is shown. Our algorithm
extracted eight clusters, with the smallest one containing 4%
of the image. The image segmented by our algorithm is shown

©

Fig. 2 Outdoor scene: (a) Original; (b) segmented with GMVE algorithm,
eight clusters; (c) segmented with Otsu’s method, eight clusters.

in Fig. 2(b) and by Otsu’s method (eight clusters) in Fig. 2(c).
Our algorithm is clearly superior in preserving the details of
the image (see, for example, the roof of the house).

In the clustering algorithm, the feature space is analyzed by
random sampling, and therefore, a small probability of error is
always incorporated into a decision. We have investigated the
sensitivity of the algorithm to random sampling by running
it ten times on the histogram of the outdoor image. The his-
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togram has 223 bins, i.c., the feature space contains 223 points.
The constrained random sampling technique was employed
with a threshold of 0.25 since p < 3. Twenty five samples per
iteration were used.

The algorithm found between eight and 14 clusters. How-
ever, if we consider a cluster significant only if its size exceeds
1% of the data, the following results were obtained: eight
clusters were detected six times, nine clusters once, and ten
clusters three times. The coordinate of the centers and standard
deviations of that coordinate over the ten trials, for the six
clusters that were always detected, were (205.96, 1.25), (98.29,
5.32), (143.82, 4.76), (16.31, 1.1), (70.45, 7.22), and (31.6,
2.92). Almost the same clusters were extracted with a previous
and different version of the random sampling program. Thus,
in spite of the constrained random sampling, the analysis of the
feature space is robust and yields unique results. The complete
multithresholding algorithm took less than 30 s to run.

IV. ANALYSIS OF THE HOUGH SPACE

The Hough transform is a versatile method of detecting line
segments in digital images (see [12] for a recent survey). In

the original Hough transform, a point in the image generates a

curve in the feature space. The feature space is quantized, and
the value of each bin lying along the curve is incremented by
L. This discrete feature space is also known as the Hough accu-
mulator array. The significant features (lines) then correspond
to maxima in the accumulator.

Quantization of the Hough space yields serious problems
ranging from loss of accuracy to detection of artifacts due to
false alignments in the image. Not all the accumulator array
can be accessed by the transform. Risse [22] has shown that
for the parametrizations that are usually used, at most, 52% of
the storage space in the array will be used. Risse also defined
the concept of hi-fi quantization as the coarsest uniform
rectangular Hough accumulator array in which all realizable
lines are discriminable. To achieve hi-fi quantization, an N x
N image requires an accumulator array size of O(N®). In
practice, however, the array size is usually chosen equal to
the size of the image N2, and thus, similar lines may remain
undiscriminated. The quantization effects can be reduced but
not completely eliminated through dynamic quantization of the
parameter space [23]. Kiryati and Bruckstein [16] treated the
tradeoff between the resolution achievable in the image and in
the accumulator as a nonbandlimited signal sampling problem.

Our clustering algorithm identifies the regions of highest
density in the feature space by locating minimum volume ellip-
soids that contain h% of the mass in the space. The algorithm
does not require generation of a quantized version of the space
as an intermediate step; the Hough space is thus analyzed in
the continuous domain. The accuracy of the coordinates of a
feature point is limited only by the finite word length of the
computer. There is no redundancy in the memory since the
feature vectors in the space are stored as an ordered list.

To isolate the pixels of interest in the input image, edge
detection was first performed. We have used a 5 x 5 Canny
operator (¢ = 0.5) that returns the gradient magnitude and
orientation at every pixel. Pixels having magnitudes less than

Fig. 3. Hough transform example: Top left—indoor scene; top right—corre-
sponding edge image; bottom left—maxima-based Hough accumulator anal-
ysis; bottom right—GMVE clustering-based Hough space analysis.

0.2 of the maximum magnitude in the edge image were
discarded. Nonmaximum suppression was then performed
orthogonal to the gradient orientation.

For every retained edge pixel, the parameters of the most
probable lines containing that pixel were then determined. A
line is parametrized by the slope angle of the normal # and
the distance to the origin p. In every 5 x 5 neighborhood
centered on an edge pixel, the parameters were computed for
the lines containing the center and two edge pixels located
on the border of the neighborhood. In most cases, only one
such line is detected. The two-dimensional Hough space is the
ordered (but not quantized) set of (p, ) pairs.

In Fig. 3 (top left), a 256 x 256 indoor scene is shown.
The edge image (top right) has been processed using nonover-
lapping windows of 32 x 32 pixels. The constrained random
sampling procedure again used the threshold 0.25. Note that
special care must be taken to avoid the artifacts created by the
cyclic # coordinate. Fig. 3 (bottom right) shows the output of
the algorithm superposed on the input image. For comparison,
an ordinary Hough accumulator technique was also applied.
The accumulators were of the same size as the windows.
The line segments detected as local maxima (with minimum
bin amplitude 5) are shown in Fig. 3 (bottom left). Note the
spurious lines at the lower edge of the computer terminal and
around the desk. These artifacts are due to quantization of two
nearly parallel lines.

Several issues should be emphasized in connection with
the application of our algorithm to the Hough space. All
the available data is made use of, and no artifacts can be
introduced by the quantization of the space. There is no need
for thresholding for detection of local maxima; the clusters
are extracted based on the local density of the continuous
feature space. The analysis of the space is by random sam-
pling, i.e., a reduced subset of points suffices to arrive at
the correct decisions. Recently, Bergen and Shvaytser [1]
proved theoretically that the Hough accumulator can indeed
be analyzed by probabilistic algorithms. Kiryati et al. [17]
have shown that points can be randomly selected in the image
domain without significant decrease in the performance of the
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Hough transform. Xu et al. [27] also used random sampling to
build the feature space in a method similar to the well-known
RANSAC procedure of Fischler and Bolles [5]. Thus, a Hough
transform technique incorporating random sampling to reduce
the computational burden is a realistic approach.

V. RANGE IMAGE SEGMENTATION

In range images, the distance from the observer (depth
information) is mapped into pixel values. Range images are
important in computer vision, especially in industrial applica-
tions. Since range images represent depth, planar and higher
order surfaces that cannot be approximated locally by constant
patches are more frequent in range images than in images that
represent reflectance information. Transitions between surfaces
are often smooth, i.e., step edges are less common. Our range
images are defined on a regular lattice, that is, if the data from
the sensor were obtained in a nonCartesian coordinate system
and/or are sparse, preprocessing is assumed to have already
taken place. The interpolation of sparse data can make use of
robust techniques described elsewhere [19].

Haralick and Watson [8] introduced the facet model in which
images are described by a piecewise polynomial structure. Besl
and Jain [2] employed, for segmentation of range images, eight
fundamental surface types defined in differential geometry
by combinations of the signs of the mean and Gaussian
curvatures. Each delineated surface in the image was then
reduced to a seed region by applying a morphological (erosion)
operation. The seed regions were grown by iterative poly-
nomial surface fitting with increasing model order. Yokoya
and Levine [28] proposed a similar hybrid method in which
surface identification is integrated with edge detection. Note
that use of the curvatures requires local computations of partial
derivatives and thus limits the tolerance of the method to noise.
Intermediate and high-level processing of range images are
described in [9] and [14].

A. Robust Facet Estimation

In noisy images, surfaces more complex than biquadratic
are not very useful. If the degree of the surface is higher,
more noise will be incorporated into the estimated param-
eters and the estimation procedure will be less sensitive to
discontinuities. We use the biquadratic facet model

Zuw = Po + Pru+ Bov + Bau® + Bauv + Bsv?. (22)

At location (u,v) in the lattice, the value of the pixel should
obey relation (22). The parameters Gy are estimated from the
data in a small (2L + 1) x (2L + 1) neighborhood centered on
(u,v). The estimates are denoted B, and the resulting pixel
value 2, ,. For the planar facet model 83 = 84 = 85 = 0.
The parameters /3'1 can be computed by least squares esti-
mation in the neighborhood. Least squares, however, is very
sensitive to the presence of outliers, i.e., to sample values with
large deviations from the uncorrupted surface. Note that if the
window falls on a discontinuity, the data arises from more
than one surface, several outliers result, and the estimates are
erroneous. In recent years, new methods were proposed in
statistics for reducing the effect of outliers on the estimates.

They are known as robust estimators; in Meer et al. [19], we
give a detailed analysis of these methods in the context of
computer vision.

The facet parameters B, are obtained by minimizing a
penalty function of the residuals 7, ., i.e., of the difference
between the data and the value of the estimated fit. An
important class is that of the continuous, symmetric, positive
valued penalty functions p(r,.) with a unique minimum at
Tu» = 0. For this class, the estimation is equivalent to the
minimization problem

L L
ST > plrun)-

u=—Lv=-L

min (23)
2]

The particular case p(Tup) = r?w yields least squares

estimation. The robust M-estimators use more complex p(r. )
functions to limit the influence of outliers on the estimates. The
books of Huber [11] and Hampel et al. [7] offer a complete
treatment of the subject. The M-estimators were applied to
several computer vision problems, but for us, only local
facet parameter estimation is of significance. Besl and Jain
[2] proposed an M-estimator-based surface fitting algorithm,
where the model order was also a variable. The optimal model
structure is established by minimizing a fit quality measure
over the sequential increase of the model order. For our
purposes, a simple M-estimation procedure suffices.

The minimization problem (23) is solved for M-estimators
as iteratively reweighted least squares with the definition of
the weights depending on p(ry ). We have used the weight
function (also known as Tukey’s biweight)

272
Tu v ~
| == | <
Wy = I:l (Ca'u,nv) :l |ru7L* S COyw (24)

0 otherwise

where &, is the locally estimated standard deviation of
the fit, and ¢ is a tuning constant taken equal to 4.685 to
assure superior performance for Gaussian noise [10]. Note that
Wy» < 1, and samples yielding large residuals receive small
weights. The local standard deviation is robustly estimated by
the expression

Gup = 1.4826 med|ry v — med ryv]. (25)
where med denotes the median taken over the entire (2L + 1) x
(2L + 1) neighborhood, and the factor 1.4826 compensates for
the bias of the median estimator in Gaussian noise.

The estimation procedure starts with an unweighted least
squares (all w,, , = 1) to obtain the initial parameter estimates
A,(CO). The residuals, the standard deviation (25), and the
weights (24) can now be computed. In the next iteration,
the new set of parameters B,(cl are obtained by weighted
least squares. The standard deviation estimate &, should
not be updated during the iterations [10]. At consecutive
iterations, samples yielding large residuals (outliers) have their
weights reduced, and the estimates are computed mostly from
values distributed around the true surface. Often, for the latter
samples, a Gaussian distribution is assumed.
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The following quality measure was used by us as a stopping
criterion for the iterations:

L L L L
W= 3 D waer2/ 33wy (26)

u=—Lv=—L u=—Lv=-L

where the index [ denotes the current iteration. Convergence
i$ achieved if

le® —el-Y] <0001 (=1,2.... 27
The number of allowed iterations was bounded to ten. The
estimates obtained in the final iteration are the facet parameters
B, recovered in the window. They are allocated to the window
center (u,v). The parameters are not estimated at every
pixel but at locations situated L pixels apart along either
coordinate axes. Thus, the input range image is tessellated with
(2L+1) x (2L +1) windows with almost a 50% overlap. Note
that the M-estimators are window based, and this step of the
segmentation algorithm can be performed in parallel.

The reliability of the initial guess used in the iterative
process is extremely important, and optimum convergence
is not assured when the biweights (24) are used. To reject
the erroneous facet parameters, the global standard deviation
estimate & is computed as the mode (maximum value) of the
Gy, distribution. The distribution is obtained by ordering the
window estimates &, . The mode is a robust, degree-0 least
median of squares estimator and as long as the majority of the
windows return an unbiased &, ,, estimate, the correct value of
& is recovered. For a mode computation algorithm, see Meer
et al. [19]. Note that we assume a homogeneously corrupted
image, i.e., the signal-dependent noise component of the range
acquisition process is considered negligible.

A p-tuple of facet parameters is mapped into the feature
space only if the last iteration error satisfies

e® < 2.55. (28)
In spite of the sensitivity of M estimators to the initial
estimates, there is no reason to use robust (least median
of squares) estimators for the computation of initial facet
parameters. The least median of squares technique tolerates
discontinuities, but it requires more computations [19]. Since
most of the M-estimate feature vectors (parameter p-tuples)
that satisfy (28) are unbiased, the extracted cluster centers are
satisfactory for any purpose.

B. Mapping Clusters into the Image

At the end of the clustering algorithm, not all the feature
points were allocated to clusters, and the number of unlabeled
feature points can exceed the minimum accepted cluster size.
This is often the case when the image contains surfaces of
degrees higher than the degree of the facet model being used.
Clustering in the feature space does not take into account the
spatial information available about the feature points, i.e., the
coordinates (u, ) of the window center from which the point
z; was estimated. Consistency in the spatial domain thus can
be used to post-process the segmentation.

The overlapping window tessellation used to estimate the
feature vectors makes a straightforward feature space-image
mapping unwieldy. Instead, first ‘seed regions’ are delineated
containing the pixels that can unequivocally be mapped. These
pixel values f(u,v) must satisfy

'f(ua U) - f(u7 U, Tl)' < 2.56 (29)
for only one label [, that is, the absolute valued residual must
be less than 2.5 times the global standard deviation estimate
of the noise. Connected component analysis then retains the
larger seed regions. Note that by their definition, the seed
regions are always good local fits and do not contain outliers.
The final surface parameters are obtained by applying least
squares.

The remaining pixels are incorporated through region
growth. At every expansion step, a one-pixel-wide ring along
the perimeter of each region is examined. If the difference
between the estimated fit and the pixel value is less than
2.56, the pixel is incorporated into the expanding region. To
avoid biasing the fit, the parameters of the initial surface are
not updated during expansion. The expansion process stops
at the collision of two regions or when no more pixels can
be conquered. If two or more regions simultaneously reach
a pixel, the one yielding the smallest residual wins. Note
that at roof edges (discontinuities in the derivatives only), the
threshold on the residual size introduces an ambiguous region.

Most of the pixels that did not yield feature points belonging
to labeled clusters remain unlabeled after region growth. Some
pixels are not labeled because of noise and appear isolated in
the image. They are removed by giving them the majority label
in their centered 3 x 3 neighborhood.

C. Experimental Results

The algorithm described in the previous sections was ap-
plied to several 128 x 128 range images. The synthetic cube
image was used to study the behavior of the method under
increasing noise levels. The planar facet model was employed,
i.e., the dimension of the feature space is three. The window
size was 7 x 7, L = 3.

In Fig. 4(a), the cube is corrupted with zero mean Gaussian
noise o = 2.34 (measured from the image). The feature space
contained 1342 points and had the configuration shown in Fig.
4(b). The four clusters extracted by the algorithm are well
defined. The clusters correctly delineate the faces of the cube
and the background. The labeled image, which is the output of
the segmentation algorithm, is shown in Fig. 4(c). When the
labeling gray level is lighter, the cluster was extracted later.
Pixels not belonging to any cluster are black. Note that the
small dark regions inside the holes are allocated to the same
cluster as the background. Larger regions within the holes were
not extracted since the planar facet model could not cope with
nonplanar surfaces. The reconstructed input with the value of
a labeled pixel computed from the surface to which it belongs
is shown in Fig. 4(d).

In Fig. 5(a), the cube is corrupted with zero-mean Gaussian
noise ¢ = 13.09. The 1572-point feature space is shown
in Fig. 5(b). The clusters are less well defined, and the
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Fig. 4. Noisy cube image ¢ = 2.34: (a) Input; (b) feature space; (c) labeled
image. Black pixels do not have a label. (d) Reconstructed image.

TABLE I
ESTIMATED CLUSTER CENTERS FOR THE CUBE IMAGES (30. 31..32)
oc=0 o =234
background (0,0,0) (8.19, 0, 0)
top face 0,4,1) (-19.26, 4.01, 0.997)
left face (200, -1.6, 3) (196.86, -1.718, 2.968)
right face (400, -0.6, -1.7) (369.8, -0.583, -1.658)
o =13.09 o = 6, 20% impulse
background (8.52, 0.004, 0.008) (7.28,0,0)
top face (-20.13, 3.968, 0.981) (-11.17, 3.75, 0.91)
left face (196.37, -1.701, 2.896) (192.25, -1.68, 2.9)
right face (368.98, -0.603, -1.652) (368.52, -0.584, -1.655)

importance of the mapping from the feature space to the
image increases. The labeled image had four extracted clusters
(Fig. 5(c)). Note the more ragged edges between the faces
of the cube and the integration of hole boundaries into the
faces. The reconstructed input is shown in Fig. 5(d). The
background is extracted as a slightly slanted plane since the
presence of significant half-wave Gaussian noise introduces
bias.

In Fig. 6(a), the cube is corrupted with zero-mean Gaussian
noise ¢ = 6. After that, about 20% of pixels chosen at random
have their values subtracted from 255 to simulate a second,
impulse-type noise process. Note that the impulse noise is not
zero mean. The feature space had 1483 points (Fig. 6(b)).
The robust M-estimator succeeds in filtering out some of the

(c) (d

Fig. 5 Noisy cube image ¢ = 13.09: (a) Input; (b) feature space; (c) labeled
image. Black pixels do not have a label. (d) Reconstructed image.

© (@

Fig. 6 Noisy cube image o = 6 and 20% of the pixel shave their values
inverted modulo 255: (a) Input; (b) feature space; (c) labeled image. Black
pixels do not have a label. (d) Reconstructed image.

impulse noise (although least median squares would have been
more effective), and the feature space appears less distorted
than the one in Fig. 6(c) corresponding to a high Gaussian
noise level. The labeled image with four clusters is shown in
Fig. 6(c) and the reconstructed input in Fig. 6(d).
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©

Fig. 7 The ring image: (a) Input; (b) labeled image. Black pixels do not have
a label. (c) Reconstructed image.

The experimental results are summarized in Table 1. The
slopes of the facets are correctly estimated in all cases, as
a comparison with the ideal values (¢ = 0) shows. The
variations of the estimated intercept Bo are of lesser importance
for large regions like the ones delineated in the cube images.

The ring image is a real range image taken with an ERIM
sensor (Fig. 7(a)). From the 889-point feature space obtained
with the planar facet model, five clusters were extracted (Fig.
7(b)). Nonplanar surfaces, and the region around the roof edge
at the bottom, were not labeled. The reconstructed image is
shown in Fig. 7(c).

The coffee cup is also a real range image (Fig. 1(a)). We
have used the biquadratic facet model; thus, the dimension of
the feature space is six. For reliable facet parameter estimation
of the low-curvature biquadratic surface (body of the cup),
the window size had to be increased to 15 x 15, I = 7.
The larger window reduces the size of the feature space; we
had only 289 points. The three extracted clusters are shown
in the labeled image (Fig. 8(a)). The handle, which is an
elongated feature with a higher degree surface, cannot be
labeled since the facet parameter estimation is large-window
based. Note the discrimination of the hole in the cup. The
several small unlabeled regions in the background near the
cup were detected as outliers in the image. The reconstructed
image is shown in Fig. 8(b).

The segmentation algorithm does not require a large amount
of computation. On a HP9000 computer, the planar facets were
extracted in less than 30 s from a 128 x 128 image with
overlapping 7 x 7 windows. A feature space of about 1300
points was decomposed into clusters in less than 60 s and
mapped back into the image in less than 30 s.

@ ®

Fig. 8. Coffee cup image: (a) Labeled image. Black pixels do not have a
label. (b) Reconstructed image.

VI. DISCUSSION

We have presented a novel clustering method in which no
a priori knowledge is required about the number of clusters to
be extracted. The robustness of our clustering algorithm is due
to its tolerance at every stage of the procedure of half the data
being severely corrupted, i.e., not belonging to the extracted
cluster. The use of the equivalent multivariate normal cluster
to dichotomize the data (9) is a weak assumption. Rousseeuw
and van Zomeren [25] suggested that a unimodal elliptical
distribution assumption suffices for a cluster to be correctly
detected. Note also that all our examples made use of real
data in which normality was not assured. The algorithm also
tolerated the presence of impulse noise (Fig. 6).

The algorithm iteratively identifies the regions of maximum
density in the feature space. These regions correspond to
the modes of the continuous probability distribution. Mode-
seeking clustering methods are not new in the literature (see
{13]). In the proposed methods, the feature space is quantized
and the structure of the underlying probability density is
estimated by either locating the & nearest neighbors or by a
Parzen window approach. We do not use these techniques. By
extracting the clusters (identifying the modes) in the order of
decreasing size, we are also less prone to errors.

Small changes in the shapes of the large clusters extracted at
the beginning of the algorithm result in significantly different
numbers of small clusters extracted at later iterations. The
effect of small groups of points on the final decomposition of
the feature space can be reduced by assuming overlap between
adjacent clusters. Recall that in our algorithm, all the points
within a delineated cluster are removed from the feature space.
Far from the cluster center, however, we can also assume
that some of the points belong to the tail of an adjacent
cluster. Thus, removal of only a subset of points far from
the center (based on the assumed probability distribution) can
improve the definition of large clusters and therefore eliminate
discrimination of small groups of points.

The employment of random sampling in the analysis of
the feature space should introduce, at least theoretically, an
uncertainty in the decomposition of the space. For the relative
large data size of the feature space, the sensitivity of cluster-
ing to random sampling should be reduced [25]. If desired,
repeated application of the clustering algorithm on the same
data can provide a stable description of the most well-defined
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clusters against a background of small unstable ones. This
redundancy-based procedure belongs to the class consensus
vision techniques, described in Meer et al. [18].

The range image segmentation examples show a good
tolerance of the noise corrupting the images. The insensitivity
of global methods to noise is coupled, however, with an
insensitivity to relative small regions in the input image. The
proposed segmentation algorithm fails when applied to outdoor
scenes where the homogeneous regions have reduced sizes.
Cluster detection becomes unreliable. In industrial environ-
ments, where only a few well-defined objects are present in
the visual field, global methods should be superior.

Mapping of the extracted clusters into the image does
not necessarily preserve spatial coherence of uniform (under
the assumed feature measure) regions. Often, post processing
is required. Such a technique was discussed in Section V-
B. There are several ways of directly incorporating spatial
information into a feature space-based analysis. The spatial
coordinates can be added to the feature vector, increasing
the dimension of the space p by two or three. Then, the
extracted clusters must correspond to contiguous regions in
the image. In a different approach, clustering is implemented
hierarchically, i.e., on an image pyramid. The data is analyzed
in parallel within increasing sized windows (higher pyramid
levels). Clusters extracted in adjacent windows are fused. We
are currently investigating this method.

Combining spatial (image-based) and feature-space infor-
mation can help recover features that are not identified as
clusters. For example, the handle of the coffee cup is not
recovered by a biquadratic facet model. A connected com-
ponent analysis of the unlabeled pixels, however, reveals the
feature. Similarly, when separate regions in the image belong
to the same surface (i.e., are detected as one cluster), they are
separately delineated because of the spatial constraints. We
believe that a combined spatial/feature space method using
robust estimation techniques can overcome the limitations
of global methods while preserving most of their excellent
noise-resistant properties.
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