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Chapter 4

ROBUST TECHNIQUES FOR
COMPUTER VISION

4.1 Robustness in Visual Tasks

Visual information makes up about seventy five percent of all the sensorial information
received by a person during a lifetime. This information is processed not only efficiently
but also transparently. Our awe of visual perception was perhaps the best captured by the
seventeenth century british essayist Joseph Addison in an essay on imagination [1].

Our sight is the most perfect and most delightful of all our senses. It fills the
mind with the largest variety of ideas, converses with its objects at the greatest
distance, and continues the longest in action without being tired or satiated
with its proper enjoyments.

The ultimate goal of computer vision is to mimic human visual perception. Therefore,
in the broadest sense, robustness of a computer vision algorithm is judged against the per-
formance of a human observer performing an equivalent task. In this context, robustness is
the ability to extract the visual information of relevance for a specific task, even when this
information is carried only by a small subset of the data, and/or is significantly different
from an already stored representation.

To understand why the performance of generic computer vision algorithms is still far
away from that of human visual perception, we should consider the hierarchy of computer
vision tasks. They can be roughly classified into three large categories:

— low level, dealing with extraction from a single image of salient simple features, such
as edges, corners, homogeneous regions, curve fragments;
— intermediate level, dealing with extraction of semantically relevant characteristics
from one or more images, such as grouped features, depth, motion information;
— high level, dealing with the interpretation of the extracted information.
A similar hierarchy is difficult to distinguish in human visual perception, which appears as
a single integrated unit. In the visual tasks performed by a human observer an extensive top-
down information flow carrying representations derived at higher levels seems to control
the processing at lower levels. See [85] for a discussion on the nature of these interactions.

1



2 ROBUST TECHNIQUES FOR COMPUTER VISION  Chapter 4

A large amount of psychophysical evidence supports this “closed loop” model of hu-
man visual perception. Preattentive vision phenomena, in which salient information pops-
out from the image, e.g., [55], [110], or perceptual constancies, in which changes in the
appearance of a familiar object are attributed to external causes [36, Chap.9], are only
some of the examples. Similar behavior is yet to be achieved in generic computer vision
techniques. For example, preattentive vision type processing seems to imply that a region
of interest is delineated before extracting its salient features.

To approach the issue of robustness in computer vision, will start by mentioning one of
the simplest perceptual constancies, the shape constancy. Consider a door opening in front
of an observer. As the door opens, its image changes from a rectangle to a trapezoid but
the observer will report only the movement. That is, additional information not available
in the input data was also taken into account. We know that a door is a rigid structure,
and therefore it is very unlikely that its image changed due to a nonrigid transformation.
Since the perceptual constancies are based on rules embedded in the visual system, they
can be also deceived. A well known example is the Ames room in which the rules used for
perspective foreshortening compensation are violated [36, p.241].

The previous example does not seem to reveal much. Any computer vision algorithm
of rigid motion recovery is based on a similar approach. However, the example emphasizes
that the employed rigid motion model is only associated with the data and is not intrinsic
to it. We could use a completely different model, say of nonrigid doors, but the result
would not be satisfactory. Robustness thus is closely related to the availability of a model
adequate for the goal of the task.

In today’s computer vision algorithms the information flow is almost exclusively bottom-
up. Feature extraction is followed by grouping into semantical primitives, which in turn is
followed by a task specific interpretation of the ensemble of primitives. The lack of top-
down information flow is arguably the main reason why computer vision techniques cannot
yet autonomously handle visual data under a wide range of operating conditions. This fact
is well understood in the vision community and different approaches were proposed to
simulate the top-down information stream.

The increasingly popular Bayesian paradigm is such an attempt. By using a probabilis-
tic representation for the possible outcomes, multiple hypotheses are incorporated into the
processing, which in turn guide the information recovery. The dependence of the procedure
on the accuracy of the employed representation is relaxed in the semiparametric or nonpara-
metric Bayesian methods, such as particle filtering for motion problems [51]. Incorporating
a learning component into computer vision techniques, e.g., [3], [29], is another, somewhat
similar approach to use higher level information during the processing.

Comparison with human visual perception is not a practical way to arrive to a definition
of robustness for computer vision algorithms. For example, robustness in the context of the
human visual system extends to abstract concepts. We can recognize a chair independent
of its design, size or the period in which it was made. However, in a somewhat similar
experiment, when an object recognition system was programmed to decide if a simple
drawing represents a chair, the results were rather mixed [97].

We will not consider high level processes when examining the robustness of vision
algorithms, neither will discuss the role of top-down information flow. A computer vision
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algorithm will be called robust if it can tolerate outliers, i.e., data which does not obey the
assumed model. This definition is similar to the one used in statistics for robustness [40,

p-6]

In a broad informal sense, robust statistics is a body of knowledge, partly for-
malized into “theories of statistics,” relating to deviations from idealized as-
sumptions in statistics.

Robust techniques are used in computer vision for at least thirty years. In fact, those
most popular today are related to old methods proposed to solve specific image understand-
ing or pattern recognition problems. Some of them were rediscovered only in the last few
years.

The best known example is the Hough transform, a technique to extract multiple in-
stances of a low-dimensional manifold from a noisy background. The Hough transform is
a US Patent granted in 1962 [47] for the detection of linear trajectories of subatomic parti-
cles in a bubble chamber. In the rare cases when Hough transform is explicitly referenced
this patent is used, though an earlier publication also exists [46]. Similarly, the most pop-
ular robust regression methods today in computer vision belong to the family of random
sample consensus (RANSAC), proposed in 1980 to solve the perspective n-point problem
[25]. The usually employed reference is [26]. An old pattern recognition technique for den-
sity gradient estimation proposed in 1975 [32], the mean shift, recently became a widely
used methods for feature space analysis. See also [31, p.535].

In theoretical statistics, investigation of robustness started in the early 1960s, and the
first robust estimator, the M-estimator, was introduced by Huber in 1964. See [49] for
the relevant references. Another popular family of robust estimators, including the least
median of squares (LMedS), was introduced by Rousseeuw in 1984 [87]. By the end of
1980s these robust techniques became known in the computer vision community.

Application of robust methods to vision problems was restricted at the beginning to
replacing a nonrobust parameter estimation module with its robust counterpart, e.g., [4],
[41], [59], [103]. See also the review paper [75]. While this approach was successful in
most of the cases, soon also some failures were reported [78]. Today we know that these
failures are due to the inability of most robust estimators to handle data in which more
than one structure is present [9], [98], a situation frequently met in computer vision but
almost never in statistics. For example, a window operator often covers an image patch
which contains two homogeneous regions of almost equal sizes, or there can be several
independently moving objects in a visual scene.

Large part of today’s robust computer vision toolbox is indigenous. There are good
reasons for this. The techniques imported from statistics were designed for data with char-
acteristics significantly different from that of the data in computer vision. If the data does
not obey the assumptions implied by the method of analysis, the desired performance may
not be achieved. The development of robust techniques in the vision community (such as
RANSAC) were motivated by applications. In these techniques the user has more free-
dom to adjust the procedure to the specific data than in a similar technique taken from the
statistical literature (such as LMedS). Thus, some of the theoretical limitations of a robust
method can be alleviated by data specific tuning, which sometimes resulted in attributing
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better performance to a technique than is theoretically possible in the general case.

A decade ago, when a vision task was solved with a robust technique, the focus of
the research was on the methodology and not on the application. Today the emphasis has
changed, and often the employed robust techniques are barely mentioned. It is no longer of
interest to have an exhaustive survey of “robust computer vision”. For some representative
results see the review paper [99] or the special issue [95].

The goal of this chapter is to focus on the theoretical foundations of the robust methods
in the context of computer vision applications. We will provide a unified treatment for
most estimation problems, and put the emphasis on the underlying concepts and not on the
details of implementation of a specific technique. Will describe the assumptions embedded
in the different classes of robust methods, and clarify some misconceptions often arising in
the vision literature. Based on this theoretical analysis new robust methods, better suited
for the complexity of computer vision tasks, can be designed.

4.2 Models and Estimation Problems

In this section we examine the basic concepts involved in parameter estimation. We de-
scribe the different components of a model and show how to find the adequate model for
a given computer vision problem. Estimation is analyzed as a generic problem, and the
differences between nonrobust and robust methods are emphasized. We also discuss the
role of the optimization criterion in solving an estimation problem.

4.2.1 Elements of a Model

The goal of data analysis is to provide for data spanning a very high-dimensional space
an equivalent low-dimensional representation. A set of measurements consisting of n data
vectors y; € RY can be regarded as a point in R™?. If the data can be described by a model
with only p < nq parameters, we have a much more compact representation. Should new
data points become available, their relation to the initial data then can be established using
only the model. A model has two main components

— the constraint equation;
— the measurement equation.

The constraint describes our a priori knowledge about the nature of the process generating
the data, while the measurement equation describes the way the data was obtained.

In the general case a constraint has two levels. The first level is that of the quantities
providing the input into the estimation. These variables {y1, .. .,yq} can be obtained either
by direct measurement or can be the output of another process. The variables are grouped
together in the context of the process to be modeled. Each ensemble of values for the ¢
variables provides a single input data point, a g-dimensional vectory € RY.

At the second level of a constraint the variables are combined into carriers, also called
as basis functions

z; =i, Y) = 9i(y)  J=1....m. (4.2.1)
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A carrier is usually a simple nonlinear function in a subset of the variables. In computer
vision most carriers are monomials.

The constraint is a set of algebraic expressions in the carriers and the parameters
60,61,...,0,

¢k(m1,,wm,00,61,,0p):0 k:].,,K (422)

One of the goals of the estimation process is to find the values of these parameters, i.e., to
mold the constraint to the available measurements.

The constraint captures our a priori knowledge about the physical and/or geometrical
relations underlying the process in which the data was generated, Thus, the constraint is
valid only for the true (uncorrupted) values of the variables. In general these values are not
available. The estimation process replaces in the constraint the true values of the variables
with their corrected values, and the true values of the parameters with their estimates. We
will return to this issue in Section 4.2.2.

The expression of the constraint (4.2.2) is too general for our discussion and we will
only use a scalar (univariate) constraint, i.e., K = 1, which is linear in the carriers and the
parameters

a+x'0=0 x' =[p(y) -+ p(y)] (4.2.3)

where the parameter 6y associated with the constant carrier was renamed c, all the other
carriers were gathered into the vector x, and the parameters into the vector 8. The linear
structure of this model implies that m = p. Note that the constraint (4.2.3) in general is
nonlinear in the variables.

The parameters o and @ are defined in (4.2.3) only up to a multiplicative constant. This
ambiguity can be eliminated in many different ways. We will show in Section 4.2.6 that
often it is advantageous to impose ||@]| = 1. Any condition additional to (4.2.3) is called
an ancillary constraint.

In some applications one of the variables has to be singled out. This variable, denoted
z, is called the dependent variable while all the other ones are independent variables which
enter into the constraint through the carriers. The constraint becomes

z2=0+ XTH (424)

and the parameters are no longer ambiguous.
To illustrate the role of the variables and carriers in a constraint, will consider the case
of the ellipse (Figure 4.1). The constraint can be written as

¥-y.) Qy-y,)—1=0 (4.2.5)

where the two variables are the coordinates of a point on the ellipse, y ' = [y; v2]. The
constraint has five parameters. The two coordinates of the ellipse center y ., and the three
distinct elements of the 2 x 2 symmetric, positive definite matrix Q. The constraint is
rewritten under the form (4.2.3) as

o+ 01y1 + O2ys + 03y7 + Oay1y2 + 0595 =0 (4.2.6)
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Figure 4.1. A typical nonlinear regression problem. Estimate the parameters of the ellipse
from the noisy data points.

where
a=y/Qy.-1 08" =[-2y]Q Qu 2Q12 Q]. (4.2.7)
Three of the five carriers
x" =y 2 ¥i vy v 4.2.8)

are nonlinear functions in the variables.

Ellipse estimation uses the constraint (4.2.6). This constraint, however, has not five but
six parameters which are again defined only up to a multiplicative constant. Furthermore,
the same constraint can also represent two other conics: a parabola or a hyperbola. The
ambiguity of the parameters therefore is eliminated by using the ancillary constraint which
enforces that the quadratic expression (4.2.6) represents an ellipse

40305 — 67 =1. 4.2.9)

The nonlinearity of the constraint in the variables makes ellipse estimation a difficult prob-
lem. See [27], [57], [72], [117] for different approaches and discussions.

For most of the variables only the noise corrupted version of their true value is available.
Depending on the nature of the data, the noise is due to the measurement errors, or to the
inherent uncertainty at the output of another estimation process. While for convenience
we will use the term measurements for any input into an estimation process, the above
distinction about the origin of the data should be kept in mind.

The general assumption in computer vision problems is that the noise is additive. Thus,
the measurement equation is

Vi =¥, +0y;  y;€RY i=1,...,n (4.2.10)

where y;, is the true value of y;, the i-th measurement. The subscript ‘0’ denotes the
true value of a measurement. Since the constraints (4.2.3) or (4.2.4) capture our a priori
knowledge, they are valid for the true values of the measurements or parameters, and should
have been written as

a+x3—0:0 or z0:a+x3—0 4.2.11)
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where x, = x(y,). In the ellipse example 1, and yz, should have been used in (4.2.6).
The noise corrupting the measurements is assumed to be independent and identically
distributed (i.i.d.)
dy; ~ GI(0,0°C,) (4.2.12)

where GI(-) stands for a general symmetric distribution of independent outcomes. Note
that this distribution does not necessarily has to be normal. A warning is in order, though.
By characterizing the noise only with its first two central moments we implicitly agree to
normality, since only the normal distribution is defined uniquely by these two moments.

The independency assumption usually holds when the input data points are physical
measurements, but may be violated when the data is the output of another estimation pro-
cess. Itis possible to take into account the correlation between two data points y; and y ; in
the estimation, e.g., [76], but it is rarely used in computer vision algorithm. Most often this
is not a crucial omission since the main source of performance degradation is the failure of
the constraint to adequately model the structure of the data.

The covariance of the noise is the product of two components in (4.2.12). The shape
of the noise distribution is determined by the matrix C,. This matrix is assumed to be
known and can also be singular. Indeed for those variables which are available without
error there is no variation along their dimensions in 7R ¢. The shape matrix is normalized to
have det[C,] = 1, where in the singular case the determinant is computed as the product
of nonzero eigenvalues (which are also the singular values for a covariance matrix). For
independent variables the matrix C, is diagonal, and if all the independent variables are
corrupted by the same measurement noise, C,, = I,. This is often the case when variables
of the same nature (e.g., spatial coordinates) are measured in the physical world. Note that
the independency of the n measurements y;, and the independency of the ¢ variables yy,
are not necessarily related properties.

The second component of the noise covariance is the scale o, which in general is not
known. The main messages of this chapter will be that

robustness in computer vision cannot be achieved without having access to a
reasonably correct value of the scale.

The importance of scale is illustrated through the simple example in Figure 4.2. All the
data points except the one marked with the star, belong to the same (linear) model in Figure
4.2a. The points obeying the model are called inliers and the point far away is an outlier.
The shape of the noise corrupting the inliers is circular symmetric, i.e., 02C, = o2I,. The
data in Figure 4.2b differs from the data in Figure 4.2a only by the value of the scale o.
Should the value of o from the first case be used when analyzing the data in the second
case, many inliers will be discarded with severe consequences on the performance of the
estimation process.

The true values of the variables are not available, and instead of y;, and at the beginning
of the estimation process the measurement y,; has to be used to compute the carriers. The
first two central moments of the noise associated with a carrier can be approximated by
error propagation.

Let z;; = ¢;(y;) be the j-thelement, j = 1, ..., p, of the carrier vector x; = x(y;) €
‘RP, computed for the i-th measurementy; € R%, ¢ = 1,...,n. Since the measurement
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Figure 4.2. The importance of scale. The difference between the data in (a) and (b) is only
in the scale of the noise.

vectors y; are assumed to be independent, the carrier vectors x; are also independent ran-
dom variables.

The second order Taylor expansion of the carrier x;; around the corresponding true
value ;50 = ¢;(¥;,) 18

T 62901' (¥io)
Oyoy "

0pi(y; T 1
Tij N Tijo + [M] (Vi—Yil) + 5

dy 5 (¥; —¥;0) (4.2.13)

(¥i = ¥Yio)
where is the gradient of the carrier with respect to the vector of the variables

2,
y, and H;(y;,) = %‘;,JT(;’?) is its Hessian matrix, both computed in the true value of

the variables y,,. From the measurement equation (4.2.10) and (4.2.13) the second order
approximation for the expected value of the noise corrupting the carrier z;; is

O0v; (yio)
oy

o2
2

which shows that this noise is not necessarily zero-mean. The first order approximation of
the noise covariance obtained by straightforward error propagation

E[zij — zij0) = —trace[CyH;(y;,)] (4.2.14)

cov[x; — Xio] = 0°Ca; = 0°Jo1y (¥10) " Cy Ly (Vi) (4.2.15)

where J, |, (y;,) is the Jacobian of the carrier vector x with respect to the vector of the
variables y, computed in the true values y;,. In general the moments of the noise corrupting
the carriers are functions of y,, and thus are point dependent. A point dependent noise
process is called heteroscedastic. Note that the dependence is through the true values of
the variables, which in general are not available. In practice, the true values are substituted
with the measurements.

To illustrate the heteroscedasticity of the carrier noise we return to the example of the
ellipse. From (4.2.8) we obtain the Jacobian

10 2y y O

01 0 v % (4.2.16)

Jaly =
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and the Hessians

2 0 01 00
memeo m=[2 0] m=[0 ] m=0 0] wan

Assume that the simplest measurement noise distributed GI(0, 021, is corrupting the two
spatial coordinates (the variables). The noise corrupting the carriers, however, has nonzero
mean and a covariance which is a function of y ,

E[x —x,]=[0 0 ¢> 0 0?7 cov[x — X, = 02Jw|y(yo)TJw|y(yo) . (4.2.18)

To accurately estimate the parameters of the general model the heteroscedasticity of the
carrier noise has to be taken into account, as will be discussed in Section 4.2.5.

4.2.2 Estimation of a Model

We can proceed now to a formal definition of the estimation process.

Given the model:
— the noisy measurements y; which are the additively corrupted versions of the
true values y;,

Yi=Yio+0y; Yi€R! 8y, ~GI(0,06°C,) i=1,...,n

— the covariance of the errors 6> C,;, known only up to the scale o

— the constraint obeyed by the true values of the measurements
a+x.0=0 xi,=x(y;) i=1,...,n
and some ancillary constraints.
Find the estimates: .
— for the model parameters, & and @

— for the true values of the measurements, y;

— such that they satisfy the constraint
A ~TA A~ A~ .
a+%,0=0 %x;,=x(¥;) i=1,...,n
and all the ancillary constraints.

The true values of the measurements y;, are called nuisance parameters since they
have only a secondary role in the estimation process. We will treat the nuisance parameters
as unknown constants, in which case we have a functional model [33, p.2]. When the
nuisance parameters are assumed to obey a know distribution whose parameters also have
to be estimated, we have a structural model. For robust estimation the functional models
are more adequate since require less assumptions about the data.



10 ROBUST TECHNIQUES FOR COMPUTER VISION  Chapter 4

The estimation of a functional model has two distinct parts. First, the parameter esti-
mates are obtained in the main parameter estimation procedure, followed by the compu-
tation of the nuisance parameter estimates in the data correction procedure. The nuisance
parameter estimates ¥, are called the corrected data points. The data correction procedure
is usually not more than the projection of the measurements y; on the already estimated
constraint surface.

The parameter estimates are obtained by (most often) seeking the global minima of an
objective function. The variables of the objective function are the normalized distances
between the measurements and their true values. They are defined from the squared Maha-
lanobis distances

1 1 .
di = —(vi —¥i) CH(yi = ¥io) = ;53'?0;,*5% i=1,...,n  (42.19)

where ‘+ stands for the pseudoinverse operator since the matrix C, can be singular, in
which case (4.2.19) is only a pseudodistance. Note that d; > 0. Through the estimation
procedure the y,, are replaced with §, and the distance d; becomes the absolute value of
the normalized residual.

The objective function 7 (d1, - . ., d,) is always a positive semidefinite function taking
value zero only when all the distances are zero. We should distinguish between homoge-
neous and nonhomogeneous objective functions. A homogeneous objective function has
the property

1
T, d) = T (I65llc, - 193l (4.2.20)

where [|0y;llc. = [6yiTC;6yi]1/ 2 is the covariance weighted norm of the measurement
y

error. The homogeneity of an objective function is an important property in the estimation.

Only for homogeneous objective functions we have

(6, 0] = argin 7 (dr.....d,) = axgmin T (Ivillc, - Iovallc,)  @4221)

meaning that the scale ¢ does not play any role in the main estimation process. Since the
value of the scale is not known a priori, by removing it an important source for performance
deterioration is eliminated. All the following objective functions are homogeneous

1< 1«
=3 ¢ =29 4 =dpn 4222
JLs - ;:1 i JrAD - ;:1 Jrkos = di: ( )

where, Jr s yields the family of least squares estimators, Jr 4p the least absolute devia-
tions estimator, and 71 xos the family of least k-th order statistics estimators. In an LkOS
estimator the distances are assumed sorted in ascending order, and the k-th element of
the list is minimized. If ¥ = n/2, the least median of squares (LMedS) estimator, to be
discussed in detail in Section 4.4.4, is obtained.

The most important example of nonhomogeneous objective functions is that of the M-
estimators

1 n
Im =~ ; p(d;) (4.2.23)
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where p(u) is a nonnegative, even-symmetric loss function, nondecreasing with |u|. The
class of Jys includes as particular cases Jrs and JLap, for p(u) = u? and p(u) = |ul,
respectively, but in general this objective function is not homogeneous. The family of M-
estimators to be discussed in Section 4.4.2 have the loss function

_[1-0-u?)? lul <1
plu) = { 1 lu| > 1 (4.2.24)

where d = 0,1,2,3. It will be shown later in the chapter that all the robust techniques
popular today in computer vision can be described as M-estimators.

The definitions introduced so far implicitly assumed that all the n data points obey the
model, i.e., are inliers. In this case nonrobust estimation technique provide a satisfactory
result. In the presence of outliers, only n; < n measurements are inliers and obey (4.2.3).
The number 71 is not know. The measurement equation (4.2.10) becomes

Y =Y, +0y; Sy; ~ GI(0,06°C,) i=1,...,m (4.2.25)
Yi i=(m+1),...,n

where nothing is assumed known about the n — nq outliers. Sometimes in robust methods
proposed in computer vision, such as [100], [107], [114], the outliers were modeled as
obeying a uniform distribution.

A robust method has to determine n; simultaneously with the estimation of the inlier
model parameters. Since m; is unknown, at the beginning of the estimation process the
model is still defined for ¢ = 1,...,n. Only through the optimization of an adequate
objective function are the data points classified into inliers or outliers. The result of the
robust estimation is the inlier/outlier dichotomy of the data.

The estimation process maps the input, the set of measurements y;, ¢ = 1,...,n into
the output, the estimates @&, 6 and ¥;. The measurements are noisy and the uncertainty
about their true value is mapped into the uncertainty about the true value of the estimates.
The computational procedure employed to obtain the estimates is called the estimator. To
describe the properties of an estimator the estimates are treated as random variables. The
estimate 6 will be used generically in the next two sections to discuss these properties.

4.2.3 Robustness of an Estimator

Depending on n, the number of available measurements, we should distinguish between
small (finite) sample and large (asymptotic) sample properties of an estimator [76, Secs.6,7].
In the latter case n becomes large enough that further increase in its value no longer has
a significant influence on the estimates. Many of the estimator properties proven in theo-
retical statistics are asymptotic, and are not necessarily valid for small data sets. Rigorous
analysis of small sample properties is difficult. See [86] for examples in pattern recogni-
tion.

What is a small or a large sample depends on the estimation problem at hand. Whenever
the model is not accurate even for a large number of measurements the estimate remains
highly sensitive to the input. This situation is frequently present in computer vision, where
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only a few tasks would qualify as large scale behavior of the employed estimator. We
will not discuss here asymptotic properties, such as the consistency, which describes the
relation of the estimate to its true value when the number of data points grows unbounded.
Our focus is on the bias of an estimator, the property which is also central in establishing
whether the estimator is robust or not.
Let @ be the true value of the estimate 6. The estimator mapping the measurements y;
into @ is unbiased if
E[6] =6 (4.2.26)

where the expectation is taken over all possible sets of measurements of size n, i.e., over
the joint distribution of the g variables. Assume now that the input data contains n; inliers
and n — ny outliers. In a “thought” experiment we keep all the inliers fixed and allow the
outliers to be placed anywhere in %9, the space of the measurements y,. Clearly, some
of these arrangements will have a larger effect on 6 than others. Will define the maximum

bias as .
bmazc (nh n) = m(gx ”0 - 0” (4227)

where O stands for the arrangements of the n — n; outliers. Will say that an estimator
exhibits a globally robust behavior in a given task if and only if

for m; <n bmaz(n1,n) < tp (4.2.28)

where t; > 0 is a threshold depending on the task. That is, the presence of outliers cannot
introduce an estimation error beyond the tolerance deemed acceptable for that task. To
qualitatively assess the robustness of the estimator we can define

nn) =1-— rrrlbin % while (4.2.28) holds (4.2.29)
1

which measures its outlier rejection capability. Note that the definition is based on the

worst case situation which may not appear in practice.

The robustness of an estimator is assured by the employed objective function. Among
the three homogeneous objective functions in (4.2.22), minimization of two criteria, the
least squares Jr s and the least absolute deviations Jr4p, does not yield robust estima-
tors. A striking example for the (less known) nonrobustness of the latter is discussed in
[90, p.20]. The LS and LAD estimators are not robust since their homogeneous objective
function (4.2.20) is also symmetric. The value of a symmetric function is invariant under
the permutations of its variables, the distances d; in our case. Thus, in a symmetric function
all the variables have equal importance.

To understand why these two objective functions lead to a nonrobust estimator, consider
the data containing a single outlier located far away from all the other points, the inliers
(Figure 4.2a). The scale of the inlier noise, o, has no bearing on the minimization of a
homogeneous objective function (4.2.21). The symmetry of the objective function, on the
other hand, implies that during the optimization all the data points, including the outlier, are
treated in the same way. For a parameter estimate close to the true value the outlier yields
a very large measurement error ”‘Syz'”Cy' The optimization procedure therefore tries to
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compensate for this error and biases the fit toward the outlier. For any threshold ¢; on the
tolerated estimation errors, the outlier can be placed far enough from the inliers such that
(4.2.28) is not satisfied. This means n(n) = 0.

In a robust technique the objective function cannot be both symmetric and homoge-
neous. For the M-estimators Jjs (4.2.23) is only symmetric, while the least k-th order
statistics objective function Jrrog (4.2.20) is only homogeneous.

Consider Jrros. When at least k measurements in the data are inliers and the param-
eter estimate is close to the true value, the k-th error is computed based on an inlier and it
is small. The influence of the outliers is avoided, and if (4.2.28) is satisfied, for the LkOS
estimator n(n) = (n — k)/n. As will be shown in the next section, the condition (4.2.28)
depends on the level of noise corrupting the inliers. When the noise is large, the value of
n(n) decreases. Therefore, it is important to realize that 77(n) only measures the global
robustness of the employed estimator in the context of the task. However, this is what we
really care about in an application!

Several strategies can be adopted to define the value of k. Prior to the estimation process
k can be set to a given percentage of the number of points n. For example, if k = n/2 the
least median of squares (LMedS) estimator [87] is obtained. Similarly, the value of k£ can
be defined implicitly by setting the level of the allowed measurement noise and maximizing
the number of data points within this tolerance. This is the approach used in the random
sample consensus (RANSAC) estimator [26] which solves

0 = arg max di:n subjectto  [|0yy.,llc. < s(o) (4.2.30)
0 Y

where s(o) is a user set threshold related to the scale of the inlier noise. In a third, less
generic strategy, an auxiliary optimization process is introduced to determine the best value
of k by analyzing a sequence of scale estimates [63], [77].

Beside the global robustness property discussed until now, the local robustness of an
estimator also has to be considered when evaluating performance. Local robustness is
measured through the gross error sensitivity which describes the worst influence a single
measurement can have on the value of the estimate [90, p.191]. Local robustness is a central
concept in the theoretical analysis of robust estimators and has a complex relation to global
robustness e.g., [40], [69]. It also has important practical implications.

Large gross error sensitivity (poor local robustness) means that for a critical arrange-
ment of the n data points, a slight change in the value of a measurement y; yields an
unexpectedly large change in the value of the estimate 6. Such behavior is certainly unde-
sirable. Several robust estimators in computer vision, such as LMedS and RANSAC have
large gross error sensitivity, as will be shown in Section 4.4.4.

4.2.4 Definition of Robustness

We have defined global robustness in a task specific manner. An estimator is considered
robust only when the estimation error is guaranteed to be less than what can be tolerated
in the application (4.2.28). This definition is different from the one used in statistic, where
global robustness is closely related to the breakdown point of an estimator. The (explosion)
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breakdown point is the minimum percentage of outliers in the data for which the value
of maximum bias becomes unbounded [90, p.117]. Also, the maximum bias is defined in
statistics relative to a typically good estimate computed with all the points being inliers,
and not relative to the true value as in (4.2.27).

For computer vision problems the statistical definition of robustness is too narrow. First,
a finite maximum bias can still imply unacceptably large estimation errors. Second, in
statistics the estimators of models linear in the variables are often required to be affine
equivariant, i.e., an affine transformation of the input (measurements) should change the
output (estimates) by the inverse of that transformation [90, p.116]. It can be shown that
the breakdown point of an affine equivariant estimator cannot exceed 0.5, i.e., the inliers
must be the absolute majority in the data [90, p.253], [69]. According to the definition of
robustness in statistics, once the number of outliers exceeds that of inliers, the former can
be arranged into a false structure thus compromising the estimation process.

Our definition of robust behavior is better suited for estimation in computer vision
where often the information of interest is carried by less than half of the data points and/or
the data may also contain multiple structures. Data with multiple structures is characterized
by the presence of several instances of the same model, each corresponding in (4.2.11)to a
different set of parameters a, @, k = 1,..., K. Independently moving objects in a scene
is just one example in which such data can appear. (The case of simultaneous presence of
different models is too rare to be considered here.)

The data in Figure 4.3 is a simple example of the multistructured case. Outliers not
belonging to any of the model instances can also be present. During the estimation of any
of the individual structures, all the other data points act as outliers. Multistructured data is
very challenging and once the measurement noise becomes large (Figure 4.3b) none of the
current robust estimators can handle it. Theoretical analysis of robust processing for data
containing two structures can be found in [9], [98], and we will discuss it in Section 4.4.7.

The definition of robustness employed here, beside being better suited for data in com-
puter vision, also has the advantage of highlighting the complex relation between o, the
scale of the inlier noise and n(n), the amount of outlier tolerance. To avoid misconcep-
tions we do not recommend the use of the term breakdown point in the context of computer
vision.

Assume for the moment that the data contains only inliers. Since the input is corrupted
by measurement noise, the estimate 6 will differ from the true value 6. The larger the scale
of the inlier noise, the higher the probability of a significant deviation between 8 and 6. The
inherent uncertainty of an estimate computed from noisy data thus sets a lower bound on ¢,
(4.2.28). Several such bounds can be defined, the best known being the Cramer-Rao bound
[76, p.78]. Most bounds are computed under strict assumptions about the distribution of the
measurement noise. Given the complexity of the visual data, the significance of a bound in
a real application is often questionable. For a discussion of the Cramer-Rao bound in the
context of computer vision see [58, Chap. 14], and for an example [96].

Next, assume that the employed robust method can handle the percentage of outliers
present in the data. After the outliers were removed, the estimate dis computed from less
data points and therefore it is less reliable (a small sample property). The probability of
a larger deviation from the true value increases, which is equivalent to an increase of the



Section 4.2. Models and Estimation Problems 15

Yz
Y2

0 0 @ @ 40 s w0 70 @ w0 10 o o ) o W ® W
y| y|

(a) (b)

Figure 4.3. Multistructured data. The measurement noise is small in (a) and large in (b).
The line is the fit obtained with the least median of squares (LMedS) estimator.

lower bound on t,. Thus, for a given level of the measurement noise (the value of o), as
the employed estimator has to remove more outliers from the data, the chance of larger
estimation errors (the lower bound on %) also increases. The same effect is obtained when
the number of removed outliers is kept the same but the level of the measurement noise
increases.

In practice, the tolerance threshold £, is set by the application to be solved. When
the level of the measurement noise corrupting the inliers increases, eventually we are no
longer able to keep the estimation errors below ¢;. Based on our definition of robustness
the estimator no longer can be considered as being robust! Note that by defining robustness
through the breakdown point, as it is done in statistics, the failure of the estimator would
not have been recorded. Our definition of robustness also covers the numerical robustness
of a nonrobust estimator when all the data obeys the model. In this case the focus is
exclusively on the size of the estimation errors, and the property is related to the efficiency
of the estimator.

The loss of robustness is best illustrated with multistructured data. For example, the
LMedS estimator was designed to reject up to half the points being outliers. When used to
robustly fit a line to the data in Figure 4.3a, correctly recovers the lower structure which
contains sixty percent of the points. However, when applied to the similar but heavily
corrupted data in Figure 4.3b, LMedS completely fails and the obtained fit is not different
from that of the nonrobust least squares [9], [78], [98]. As will be shown in Section 4.4.7,
the failure of LMedS is part of a more general deficiency of robust estimators.

4.2.5 Taxonomy of Estimation Problems

The model described at the beginning of Section 4.2.2, the measurement equation
Yi=Yio+0y; ¥;€R? 8y, ~GI(0,06°C,) i=1,...,n (4.2.31)
and the constraint

a+x.0=0 x4 =x(y;,) i=1,...,n (4.2.32)
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Figure 4.4. A typical traditional regression problem. Estimate the parameters of the surface
defined on a sampling grid.

is general enough to apply to almost all computer vision problems. The constraint is linear
in the parameters « and 6, but nonlinear in the variables y;. A model in which all the
variables are measured with errors is called in statistics an errors-in-variables (EIV) model
[112],[116].

We have already discussed in Section 4.2.1 the problem of ellipse fitting using such
nonlinear EIV model (Figure 4.1). Nonlinear EIV models also appear in any computer
vision problem in which the constraint has to capture an incidence relation in projective
geometry. For example, consider the epipolar constraint between the affine coordinates of
corresponding points in two images A and B

[yBio yB20 1]'F [ya1o Yazo 1]=0 (4.2.33)

where F is a rank two matrix [43, Chap.8]. When this bilinear constraint is rewritten as
(4.2.32) four of the eight carriers

XOT:[yAlo YA20 YBlo YB2o YA10YBlo YA20YBlo YA20YBilo yAQOyBQO] (4234)

are nonlinear functions in the variables. Several nonlinear EIV models used in recovering
3D structure from uncalibrated image sequences are discussed in [34].

To obtain an unbiased estimate, the parameters of a nonlinear EIV model have to
be computed with nonlinear optimization techniques such as the Levenberg-Marquardt
method. See [43, Appen.4] for a discussion. However, the estimation problem can be
also approached as a linear model in the carriers and taking into account the heteroscedas-
ticity of the noise process associated with the carriers (Section 4.2.1). Several such tech-
niques were proposed in the computer vision literature: the renormalization method [58],
the heteroscedastic errors-in-variables (HEIV) estimator [64], [71], [70] and the funda-
mental numerical scheme (FNS) [12]. All of them return estimates unbiased in a first order
approximation.

Since the focus of this chapter is on robust estimation, we will only use the less general,
linear errors-in-variables regression model. In this case the carriers are linear expressions
in the variables, and the constraint (4.2.32) becomes

a+y,0=0 i=1,...,n. (4.2.35)
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Figure 4.5. A typical location problem. Determine the center of the cluster.

An important particular case of the general EIV model is obtained by considering the
constraint (4.2.4). This is the traditional regression model where only a single variable,
denoted z, is measured with error and therefore the measurement equation becomes

2i = Zio + 02 82; ~GI(0,6%) i=1,...,n (4.2.36)
y'i:yio i:].,...,n
while the constraint is expressed as
Zio = @ + X, Xio = %X(¥;,) i=1,....n. (4.2.37)

Note that the nonlinearity of the carriers is no longer relevant in the traditional regression
model since now their value is known.
In traditional regression the covariance matrix of the variable vector

10T]

0 O (4.2.38)

vi=[z y] 0?C, =02 [

has rank one, and the normalized distances, d; (4.2.19) used in the objective functions
become

1 2i — Zip)? 6z \°

d; = ;(Vz’ —vio) [ CF (Vi = vio) = % = (f) . (4.2.39)

The two regression models, the linear EIV (4.2.35) and the traditional (4.2.37), has to be

estimated with different least squares techniques, as will be shown in Section 4.4.1. Using

the method optimal for traditional regression when estimating an EIV regression model,

yields biased estimates. In computer vision the traditional regression model appears almost

exclusively only when an image defined on the sampling grid is to be processed. In this

case the pixel coordinates are the independent variables and can be considered available

uncorrupted (Figure 4.4).
All the models discussed so far were related the class of regression problems. A second,
equally important class of estimation problems also exist. They are the location problems in
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which the goal is to determine an estimate for the “center” of a set of noisy measurements.
The location problems are closely related to clustering in pattern recognition.

In practice a location problem is of interest only in the context of robust estimation.
The measurement equation is

Yi =Yio +5y, 1= ].,. (3] (4240)
Y: i=(m+1),...,n

with the constraint
Yio=0 i=1,...,m 4.2.41)

with n1, the number of inliers, unknown.

The important difference from the regression case (4.2.25) is that now we do not assume
that the noise corrupting the inliers can be characterized by a single covariance matrix, i.e.,
the cloud of inliers has an elliptical shape. This will allow to handle data such as in Figure
4.5.

The goal of the estimation process in a location problem is twofold.

— Find a robust estimate 6 for the center of the n measurements.
— Select the nq data points associated with this center.

The discussion in Section 4.2.4 about the definition of robustness also applies to location
estimation.

While handling multistructured data in regression problems is an open research ques-
tion, clustering multistructured data is the main application of the location estimators. The
feature spaces derived from visual data are complex and usually contain several clusters.
The goal of feature space analysis is to delineate each significant cluster through a robust
location estimation process. We will return to location estimation in Section 4.3.

4.2.6 Linear Errors-in-Variables Regression Model

To focus on the issue of robustness in regression problems, only the simplest linear errors-
in-variables (EIV) regression model (4.2.35) will be used. The measurements are corrupted
by i.i.d. noise

Vi =Yio +0y; ¥;ERP 8y, ~GI(0,0%1,) i=1,...,n (4.2.42)

where the number of variables ¢ was aligned with p the dimension of the parameter vector
6. The constraint is rewritten under the more convenient form

g(yzo) :y;l;e—azo 1= 1,,’[1 (4243)

To eliminate the ambiguity up to a constant of the parameters the following two ancillary
constraints are used
18] =1 a>0. (4.2.44)
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estimated

0 true

Figure 4.6. The concepts of the linear errors-in-variables regression model. The constraint
is in the Hessian normal form.

The three constraints together define the Hessian normal form of a plane in R?. Figure 4.6
shows the interpretation of the two parameters. The unit vector 6 is the direction of the
normal, while « is the distance from the origin.

In general, given a surface f(y,) = 0 in RP?, the first order approximation of the
shortest Euclidean distance from a point y to the surface is [111, p.101]

lf(y)l

|| = = 4.2.45

where ¥ is the orthogonal projection of the point onto the surface, and V f (§) is the gradient
computed in the location of that projection. The quantity f(y) is called the algebraic
distance, and it can be shown that it is zero only when y = y, i.e., the point is on the
surface.

Taking into account the linearity of the constraint (4.2.43) and that 6 has unit norm,
(4.2.45) becomes

ly =31l =l9)l (4.2.46)

i.e., the Euclidean distance from a point to a hyperplane written under the Hessian normal
form is the absolute value of the algebraic distance.

When all the data points obey the model the least squares objective function Jrs
(4.2.22) is used to estimate the parameters of the linear EIV regression model. The i.i.d.
measurement noise (4.2.42) simplifies the expression of the distances d; (4.2.19) and the
minimization problem (4.2.21) can be written as

LA 1
[&, 6] = argmin — Y " [ly; — y,|” - (4.2.47)
a0 Mo

Combining (4.2.46) and (4.2.47) we obtain

(&, 0] = argmiél % Zg(yi)2 . (4.2.48)
i=1

a’
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To solve (4.2.48) the true values y;, are replaced with the orthogonal projection of the y;-s
onto the hyperplane. The orthogonal projections ¥, associated with the solution &, @ are
the corrected values of the measurements y;, and satisfy (Figure 4.6)

iy)=yi0—-a=0 i=1,....n. (4.2.49)

The estimation process (to be discussed in Section 4.4.1) returns the parameter es-
timates, after which the ancillary constrains (4.2.44) can be imposed. The employed
parametrization of the linear model

wi=[0"a" =016 --- 0, a]" € RPH (4.2.50)

however is redundant. The vector @ being a unit vector it is restricted to the p-dimensional
unit sphere in RP. This can be taken into account by expressing @ in polar angles [116] as,

0=0(3)
B=11fa - Bpa] 0<Bi<mj=1,---,p=2 0<P,_1 <21 (4251)

where the mapping is

61(B) = sinPi---sinfBp_o sinfp_1
02(B) = sinf --- sinfp_2 cosPp_1
03(B) = sinf - - sinfp_3 cosfp—2
: 4.2.52)
0;0—1(,8) = 87:771,31 COS,BZ
Hp(ﬂ) = cosfh -
The polar angles 8; and a provide the second representation of a hyperplane
we=1[8"a]" =[B1Bs - Bp-1 o] €RP. (4.2.53)

The ws representation being based in part on the mapping from the unit sphere to
RP~1, is inherently discontinuos. See [24, Chap. 5] for a detailed discussion of such
representations. The problem is well known in the context of Hough transform, where this
parametrization is widely used.

To illustrate the discontinuity of the mapping, consider the representation of a line,
p = 2. In this case only a single polar angle 3 is needed and the equation of a line in the
Hessian normal form is

y1cosf + yasinff —a =0. (4.2.54)

In Figures 4.7a and 4.7b two pairs of lines are shown, each pair having the same « but
different polar angles. Take 5; = . The lines in Figure 4.7a have the relation 8y = 8+,
while those in Figure 4.7b 82 = 2w — . When represented in the w» parameter space
(Figure 4.7¢) the four lines are mapped into four points.
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Figure 4.7. Discontinuous mappings due to the polar representation of 8. (a) Two lines
with same a and antipodal polar angles 5. (b) Two lines with same « and polar angles 3
differing only in sign. (c) The wo parameter space. (d) The w3 parameter space.

Let now o — 0 for the first pair, and § — 0 for the second pair. In the input space each
pair of lines merges into a single line, but the four points in the wy parameter space remain
distinct, as shown by the arrows in Figure 4.7c.

A different parameterization of the hyperplane in R? can avoid this problem, though no
representation of the Hessian normal form can provide a continuous mapping into a feature
space. In the new parameterization all the hyperplanes not passing through the origin are
represented by their point closest to the origin. This point has the coordinates a8 and is the
intersection of the plane with the normal from the origin. The new parametrization is

w3 =af =[ab by --- af,]" € RP. (4.2.55)

It is important to notice that the space of wjs is in fact the space of the input as can also be
seen from Figure 4.6. Thus, when the pairs of lines collapse, so do their representations in
the w3 space (Figure 4.7d).

Planes which contain the origin have to be treated separately. In practice this also ap-
plies to planes passing near the origin. A plane with small « is translated along the direction
of the normal @ with a known quantity 7. The plane is then represented as 768. When m

m
planes are close to the origin the direction of translation is ) @; and the parameters of
i=1
each translated plane are adjusted accordingly. After process;ng in the w3 space it is easy
to convert back to the w representation.

Estimation of the linear EIV regression model parameters by total least squares (Section
4.4.1) uses the w; parametrization. The wo parametrization will be employed in the robust
estimation of the model (Section 4.4.5). The parametrization w3 is useful when the problem
of robust multiple regression is approached as a feature space analysis problem [9].

4.2.7 Objective Function Optimization

The objective functions used in robust estimation are often nondifferentiable and analyti-
cal optimization methods, like those based on the gradient, cannot be employed. The k-th
order statistics, Jrros (4.2.22) is such an objective function. Nondifferentiable objective
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functions also have many local extrema and to avoid being trapped in one of these minima
the optimization procedure should be run starting from several initial positions. A numeri-
cal technique to implement robust estimators with nondifferentiable objective functions, is
based on elemental subsets.

An elemental subset is the smallest number of data points required to fully instantiate
a model. In the linear EIV regression case this means p points in a general position, i.e.,
the points define a basis for a (p — 1)-dimensional affine subspace in R? [90, p. 257]. For
example, if p = 3 not all three points can lie on a line in 3D.

The p points in an elemental subset thus define a full rank system of equations from
which the model parameters o and @ can be computed analytically. Note that using p
points suffices to solve this homogeneous system. The ancillary constraint ||@] = 1 is
imposed at the end. The obtained parameter vector w; = [0—r a]T will be called, with a
slight abuse of notation, a model candidate.

The number of possibly distinct elemental subsets in the data ( Z ) , can be very large.

In practice an exhaustive search over all the elemental subsets is not feasible, and a random
sampling of this ensemble has to be used. The sampling drastically reduces the amount of
computations at the price of a negligible decrease in the outlier rejection capability of the
implemented robust estimator.

Assume that the number of inliers in the data is nq, and that N elemental subsets, p-
tuples, were drawn independently from that data. The probability that none of these subsets
contains only inliers is (after disregarding the artifacts due to the finite sample size)

Pjait = [1 - (%)?N . (4.2.56)

We can choose a small probability Peyror to bound upward Py,;. Then the equation
Pfaz'l = Perror (4257)

provides the value of N as a function of the percentage of inliers ny /n, the dimension
of the parameter space p and P,,.,.. This probabilistic sampling strategy was applied
independently in computer vision for the RANSAC estimator [26] and in statistics for the
LMedsS estimator [90, p.198].

Several important observations has to be made. The value of IV obtained from (4.2.57)
is an absolute lower bound since it implies that any elemental subset which contains only
inliers can provide a satisfactory model candidate. However, the model candidates are
computed from the smallest possible number of data points and the influence of the noise
is the largest possible. Thus, the assumption used to compute N is not guaranteed to be
satisfied once the measurement noise becomes significant. In practice n; is not know prior
to the estimation, and the value of N has to be chosen large enough to compensate for the
inlier noise under a worst case scenario.

Nevertheless, it is not recommended to increase the size of the subsets. The reason is
immediately revealed if we define in a drawing of subsets of size ¢ > p, the probability of
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success as obtaining a subset which contains only inliers

ni )
q—1
L LA, | JUS (4.2.58)

<n> S =k
q

This probability is maximized when g = p.

Optimization of an objective function using random elemental subsets is only a compu-
tational tool and has no bearing on the robustness of the corresponding estimator. This fact
is not always recognized in the computer vision literature. However, any estimator can be
implemented using the following numerical optimization procedure.

Pisuccess =

Objective Function Optimization With Elemental Subsets

— Repeat N times:
1. choose an elemental subset (p-tuple) by random sampling;

2. compute the corresponding model candidate;

3. compute the value of the objective function by assuming the model candidate
valid for all the data points.
— The parameter estimate is the model candidate yielding the smallest (largest) objec-
tive function value.

This procedure can be applied the same way for the nonrobust least squares objective func-
tion Jr s as for the the robust least k-th order statistics Jrros (4.2.22). However, while
an analytical solution is available for the former (Section 4.4.1), for the latter the above
procedure is the only practical way to obtain the estimates.

Performing an exhaustive search over all elemental subsets does not guarantee to find
the global extremum of the objective function since not every location in the parameter
space can be visited. Finding the global extremum, however, most often is also not re-
quired. When a robust estimator is implemented with the elemental subsets based search
procedure, the goal is only to obtain the inlier/outlier dichotomyj, i.e., to select the “good”
data. The robust estimate corresponding to an elemental subset is then refined by process-
ing the selected inliers with a nonrobust (least squares) estimator. See [88] for an extensive
discussion of the related issues from a statistical perspective.

The number of required elemental subsets IV can be significantly reduced when infor-
mation about the reliability of the data points is available. This information can be either
provided by the user, or can be derived from the data through an auxiliary estimation pro-
cess. The elemental subsets are then chosen with a guided sampling biased toward the
points having a higher probability to be inliers. See [104] and [105] for computer vision
examples.

We have emphasized that the random sampling of elemental subsets is not more than a
computational procedure. However, guided sampling has a different nature since it relies
on a fuzzy pre-classification of the data (derived automatically, or supplied by the user).
Guided sampling can yield a significant improvement in the performance of the estimator
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relative to the unguided approach. The better quality of the elemental subsets can be con-
verted into either less samples in the numerical optimization (while preserving the outlier
rejection capacity n(n) of the estimator), or into an increase of (n) (while preserving the
same number of elemental subsets V).

We conclude that guided sampling should be regarded as a robust technique, while the
random sampling procedure should be not. Their subtle but important difference has to be
recognized when designing robust methods for solving complex vision tasks.

In most applications information reliable enough to guide the sampling is not available.
However, the amount of computations still can be reduced by performing in the space of the
parameters local searches with optimization techniques which do not rely on derivatives.
For example, in [91] line search was proposed to improve the implementation of the LMedS
estimator. Let w? = [0;— a,]" be the currently best model candidate, as measured by
the value of the objective function. From the next elemental subset the model candidate
wy = [HT a]T is computed. The objective function is then assessed at several locations
along the line segment w® — w, and if an improvement relative to w? is obtained the best
model candidate is updated.

In Section 4.4.5 we will use a more effective multidimensional unconstrained optimiza-
tion technique, the simplex based direct search. The simplex search is a heuristic method
proposed in 1965 by Nelder and Mead [79]. See also [83, Sec.10.4]. Simplex search is a
heuristic with no theoretical foundations. Recently direct search methods became again of
interest and significant progress was reported in the literature [66] [115], but in our context
there is no need to use these computationally more intensive techniques.

To take into account the fact that 6 is a unit vector, the simplex search should be per-
formed in the space of the polar angles 3 € RP~!. A simplex in RP~! is the volume
delineated by p vertices in a nondegenerate position, i.e., the points define an affine basis
in RP~!. For example, in R? the simplex is a triangle, in R? it is a tetrahedron. In our
case, the vertices of the simplex are the polar angle vectors B, € RP~L, k = 1,...,p,
representing p unit vectors @, € RP. Each vertex is associated with the value of a scalar
function fr = f(8,). For example, f(u) can be the objective function of an estimator.
The goal of the search is to find the global (say) maximum of this function.

We can always assume that at the beginning of an iteration the vertices are labeled such
that f; < fo < --- < fp. In each iteration an attempt is made to improve the least favor-
able value of the function, f; in our case, by trying to find a new location 3] for the vertex

B, such that f; < f(B87).

Simplex Based Direct Search Iteration
First 3 the centroid of the nonminimum vertices, B, k = 2,...,p, is obtained. The new
location is then computed with one of the following operations along the direction 8 — 3;:

reflection, expansion and contraction.

1. The reflection of B,, denoted B’ (Figure 4.8a) is defined as

,BI =cB + (1 - CT)B (4.2.59)
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Figure 4.8. Basic operations in simplex based direct search. (a) Reflection. (b) Expansion.
(c) Outside contraction. (d) Inside contraction.

where ¢, < 0 is the reflection coefficient. If fo < f(8') < f,, then 8] = B’ and the
next iteration is started.

2. If f(B') > fp, ie., the reflection has produced a new maximum, the simplex is
expanded by moving B’ to 8* (Figure 4.8b)

B*=c.B +(1—c.)B (4.2.60)

where the expansion coefficient ¢, > 1. If f(8*) > f(B') the expansion is success-
ful and B} = B*. Else, B8] = B'. The next iteration is started.

3. If f(B') < fa, the vector B, is defined as either B, or ', whichever has the larger
associated function value, and a contraction is performed

B*=cPin+(1—cc)B. (4.2.61)

First, a contraction coefficient 0 < ¢, < 1 is chosen for outside contraction (Figure
4.8¢). If f(B*) > f(B1,). then B = B* and the next iteration is started. Otherwise,
an inside contraction is performed (Figure 4.8d) in which ¢, is replaced with —c,
and the condition f(8*) > f(8,,) is again verified.

4. Should both contractions fail all the vertices are updated

1
B 5 (Br, +8,) k=1,...,(p—-1) (4.2.62)
and the next iteration is started.

Recommended values for the coefficients are ¢, = —1, ¢, = 1.5, ¢, = 0.5.

To assess the convergence of the search several stopping criteria can be employed. For
example, the variance of the p function values f}, should fall below a threshold which is
exponentially decreasing with the dimension of the space, or the ratio of the smallest and
largest function values f1/ f;, should be close to one. Similarly, the volume of the simplex
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Figure 4.9. Multistructured data in the location estimation problem. (a) The “traditional”
case. (b) A typical computer vision example.

should shrink below a dimension dependent threshold. In practice, the most effective stop-
ping criteria are application specific incorporating additional information which was not
used during the optimization.

In the previous sections we have analyzed the problem of robust estimation from a
generic point of view. We can proceed now to examine the two classes of estimation prob-
lems: location and regression. In each case will introduce a new robust technique whose
improved behavior was achieved by systematically exploiting the principles discussed so
far.

4.3 Location Estimation

In this section will show that in the context of computer vision tasks often only nonpara-
metric approaches can provide a robust solution for the location estimation problem. We
employ a class of nonparametric techniques in which the data points are regarded as sam-
ples from an unknown probability density. The location estimates are then defined as the
modes of this density. Explicit computation of the density is avoided by using the mean
shift procedure.

4.3.1 Why Nonparametric Methods

The most general model of the location problem is that of multiple structures

k:].,...,K m1:1 mK+1:n1+1
ygk) = ygf) + 0y; ygf) = 9" T=mg, ..., (Mrr1 — 1)
¥ i=(m+1),...,n (43.1)

with no information being available about the nature of the inlier noise dy;, the n — ny
outliers, or the number of structures present in the data K. The model (4.3.1) is also used
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in cluster analysis, the equivalent pattern recognition problem. Clustering under its most
general form is an unsupervised learning method of unknown categories from incomplete
prior information [52, p. 242]. The books [52], [21, Chap. 10], [44, Sec.14.3] provide a
complete coverage of the related pattern recognition literature.

Many of the pattern recognition methods are not adequate for data analysis in computer
vision. To illustrate their limitations will compare the two data sets shown in Figure 4.9.
The data in Figure 4.9a obeys what is assumed in traditional clustering methods when
the proximity to a cluster center is measured as a function of Euclidean or Mahalanobis
distances. In this case the shape of the clusters is restricted to elliptical and the inliers are
assumed to be normally distributed around the true cluster centers. A different metric will
impose a different shape on the clusters. The number of the structures (clusters) K, is a
parameter to be supplied by the user and has a large influence on the quality of the results.
While the value of K can be also derived from the data by optimizing a cluster validity
index, this approach is not robust since it is based on (possibly erroneous) data partitions.

Expectation maximization (EM) is a frequently used technique today in computer vision
to model the data. See [44, Sec.8.5.2] for a short description. The EM algorithm also relies
on strong prior assumptions. A likelihood function, defined from a mixture of predefined
(most often normal) probability densities, is maximized. The obtained partition of the data
thus employs “tiles” of given shape. The number of required mixture components is often
difficult to determine, and the association of these components with true cluster centers
may not be obvious.

Examine now the data in Figure 4.9b in which the pixels of a color image were mapped
into the three-dimensional L*u*v* color space. The significant clusters correspond to sim-
ilarly colored pixels in the image. The clusters have a large variety of shapes and their
number is not obvious. Any technique which imposes a preset shape on the clusters will
have difficulties to accurately separate K significant structures from the background clutter
while simultaneously also having to determine the value of K.

Following our goal oriented approach toward robustness (Section 4.2.3) a location es-
timator should be declared robust only if it returns a satisfactory result. From the above
discussion can be concluded that robustly solving location problems in computer vision
often requires techniques which use the least possible amount of prior assumptions about
the data. Such techniques belong to the family of nonparametric methods.

In nonparametric methods the n data points are regarded as outcomes from an (un-
known) probability distribution f(y). Each data point is assumed to have an equal proba-
bility

Probly = y;] = % i=1,...,n. 4.3.2)

When several points have the same value, the probability is n~! times the multiplicity.
The ensemble of points defines the empirical distribution f(y|y, - -y,,) of the data. The
empirical distribution is the nonparametric maximum likelihood estimate of the distribution
from which the data was drawn [22, p.310]. It is also the “least committed” description of
the data.

Every clustering technique exploits the fact that the clusters are the denser regions in
the space. However, this observation can be pushed further in the class of nonparamet-
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ric methods considered here, for which a region of higher density implies more probable
outcomes of the random variable y. Therefore, in each dense region the location estimate
(cluster center) should be associated with the most probable value of y, i.e., with the local
mode of the empirical distribution

5(k)

6 = argm}z}xk fYlyL--yn) k=1,....K. (4.3.3)

Note that by detecting all the significant modes of the empirical distribution the number
of clusters K is automatically determined. The mode based clustering techniques make
extensive use of density estimation during data analysis.

4.3.2 Kernel Density Estimation

The modes of a random variable y are the local maxima of its probability density func-
tion f(y). However, only the empirical distribution, the data points y;, i = 1,...,n are
available. To accurately de}ermine the locations of the modes, first a continuous estimate
of the underlying density f(y) has to be defined. Later we will see that this step can be
eliminated by directly estimating the gradient of the density (Section 4.3.3).

To estimate the probability density in y a small neighborhood is defined around y. The
neighborhood usually has a simple shape: cube, sphere or ellipsoid. Let its volume be V,,
and m, be the number of data points inside. Then the density estimate is [21, Sec.4.2]

Flv) = by
fly)= v, (4.3.4)

which can be employed in two different ways.

— In the nearest neighbors approach, the neigborhoods (the volumes V) are scaled to
keep the number of points m,, constant. A mode corresponds to a location in which
the neighborhood has the smallest volume.

— In the kernel density approach, the neigborhoods have the same volume V,, and the
number of points m,, inside are counted. A mode corresponds to a location in which
the neighborhood contains the largest number of points.

The minimum volume ellipsoid (MVE) robust location estimator proposed in statistics
[90, p.258], is a technique related to the nearest neighbors approach. The ellipsoids are
defined by elemental subsets obtained through random sampling, and the numerical opti-
mization procedure discussed in Section 4.2.7 is employed. The location estimate is the
center of the smallest ellipsoid which contains a given percentage of the data points. In
a robust clustering method proposed in computer vision the MVE estimator was used to
sequentially remove the clusters from the data, starting from the largest [53]. However,
by imposing an elliptical shape for the clusters severe artifacts were introduced and the
method was never successful in real vision applications.

For our goal of finding the local maxima of f(y), the kernel density methods are more
suitable. Kernel density estimation is a widely used technique in statistics and pattern
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Figure 4.10. Kernel density estimation. (a) Histogram of the data. (b) Some of the em-
ployed kernels. (c) The estimated density.

recognition, where it is also called the Parzen window method. See [93], [113] for a de-
scription in statistics, and [21, Sec.4.3] [44, Sec. 6.6] for a description in pattern recogni-
tion.

Will start with the simplest case of one-dimensional data. Let y;, ¢ = 1,...,n, be
scalar measurements drawn from an arbitrary probability distribution f(y). The kernel
density estimate f(y) of this distribution is obtained based on a kernel function K (u) and
a bandwidth h as the average

nhz (y y'). (4.3.5)

Only the class of symmetric kernel functions with bounded support will be considered.
They satisfy the following properties

X
£
[

0 for |u|>1 / K(u (4.3.6)
K(u) = K(—u)ZO )>K(u2) for |U1|S|U2|.

Other conditions on the kernel function or on the density to be estimated [113, p.18], are of
less significance in practice. The even symmetry of the kernel function allows us to define
its profile k(u)

K(u) = cpk(u®)  k(u) >0 for 0<u<1 4.3.7)

where ¢, is a normalization constant determined by (4.3.6). The shape of the kernel implies
that the profile is a monotonically decreasing function.

The kernel density estimate is a continuous function derived from the discrete data,
the empirical distribution. An example is shown in Figure 4.10. When instead of the
histogram of the n points (Figure 4.10a) the data is represented as an ordered list (Figure
4.10b, bottom), we are in fact using the empirical distribution. By placing a kernel in each
point (Figure 4.10b) the data is convolved with the symmetric kernel function. The density
estimate in a given location is the average of the contributions from each kernel (Figure
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4.10c). Since the employed kernel has a finite support, not all the points contribute to a
density estimate. The bandwidth h scales the size of the kernels, i.e., the number of points
whose contribution is averaged when computing the estimate. The bandwidth thus controls
the amount of smoothing present in f(y).

For multivariate measurements y, € RP, in the most general case, the bandwidth h
is replaced by a symmetric, positive definite bandwidth matrix H. The estimate of the
probability distribution at location y is still computed as the average

. 1 <
)=~ ; Ky (v - ¥)) (438)
where the bandwidth matrix H scales the kernel support to be radial symmetric, i.e., to have
the desired elliptical shape and size
Ky(u) = [det[H]] 2K (H/?u) . (4.3.9)

Since only circular symmetric prototype kernels K (u) will be considered, we have, using
the profile k(u)
K(u) = ¢t pk(u"u). (4.3.10)

From (4.3.8), taking into account (4.3.10) and (4.3.9) results

1) = ey Y k(v =)y =)
- n[dectlfg 172 Zk( v,y ) 43.11)

where the expression d[y, y;, H]2 denotes the squared Mahalanobis distance from y to y;.
The case H = h2I, is the most often used. The kernels then have a circular support whose
radius is controlled by the bandwidth A and (4.3.8) becomes

) (4.3.12)

5 1 < Y-V Chp Y-V
-— YK =
k) = 3 ; ( h ) nhv - (H

where the dependence of the density estimate on the kernel was made explicit.
The quality of a density estimate f(y) is assessed in statistics using the asymptotic
mean integrated error (AMISE), i.e., the integrated mean square error

MISE(y) = / E[f() - f(y)]zdy. (4.3.13)

between the true density and its estimate for n — oo while h — 0 at a slower rate.
The expectation is taken over all data sets of size n. Since the bandwidth A of a circular
symmetric kernel has a strong influence on the quality of f(y), the bandwidth minimizing
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an approximation of the AMISE error is of interest. Unfortunately, this bandwidth depends
on f(y), the unknown density [113, Sec.4.3].

For the univariate case several practical rules are available [113, Sec.3.2]. For example,
the information about f(y) is substituted with &, a robust scale estimate derived from the
data

. [ 243R(K) 1'°
where . )
pa(K) = / w?K(u)du  R(K)= / K(u)*du (4.3.15)
-1 -1

The scale estimate & will be discussed in Section 4.4.3.
For a given bandwidth the AMISE measure is minimized by the Epanechnikov kernel
[113, p.104] having the profile

1—u 0<u<l1
kr(u) = { 0 s 1 (4.3.16)
which yields the kernel
1.1 2
_{ s+ -yl*) lyll <1
Ke(y) { 0 otherwise (4.3.17)

where ¢, is the volume of the p-dimensional unit sphere. Other kernels can also be defined.
The truncated normal has the profile

e 0<u<i1
kn(u) = { 0 us1 (4.3.18)

where a is chosen such that e * is already negligible small. Neither of the two profiles
defined above have continuous derivatives at the boundary w = 1. This condition is satisfied
(for the first two derivatives) by the biweight kernel having the profile

PR
kp(u) = { (1 0“) 0= Zii (4.3.19)

Its name here is taken from robust statistics, in the kernel density estimation literature it is
called the triweight kernel [113, p.31].

The bandwidth matrix H is the critical parameter of a kernel density estimator. For
example, if the region of summation (bandwidth) is too large, significant features of the
distribution, like multimodality, can be missed by oversmoothing. Furthermore, locally
the data can have very different densities and using a single bandwidth matrix often is not
enough to obtain a satisfactory estimate.

There are two ways to adapt the bandwidth to the local structure, in each case the adap-
tive behavior being achieved by first performing a pilot density estimation. The bandwidth
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matrix can be either associated with the location y in which the distribution is to be esti-
mated, or each measurement y; can be taken into account in (4.3.8) with its own bandwidth
matrix

N 1
fr(y) = Ku, (y-vyi) - (4.3.20)
i=1

It can be shown that (4.3.20), called the sample point density estimator, has superior statis-
tical properties [39].
The local maxima of the density f(y) are by definition the roots of the equation

Vi(y)=0 (4.3.21)

i.e., the zeros of the density gradient. Note that the converse is not true since any stationary
point of f(y) satisfies (4.3.21). The true density, however, is not available and in practice
the estimate of the gradient V f(y) has to be used.

In the next section we describe the mean shift technique which avoids explicit compu-
tation of the density estimate when solving (4.3.21). The mean shift procedure also asso-
ciates each data point to the nearest density maximum and thus performs a nonparametric
clustering in which the shape of the clusters is not set a priori.

4.3.3 Adaptive Mean Shift

The mean shift method was described in several publications [16], [18], [17]. Here we
are considering its most general form in which each measurement y; be associated with
a known bandwidth matrix H;, ¢ = 1,...,n. Taking the gradient of the sample point
density estimator (4.3.20) we obtain, after recalling (4.3.11) and exploiting the linearity of
the expression

Vik(y) = Vik(y) (4.322)
20];, "
) — - 2
= R0 ldet[H] TV H v - yo) K (dy, v, HIT) -
i=1
The function g(z) = —k'(z) satisfies the properties of a profile, and thus we can define the

kernel G(u) = ¢, pg(u"u). For example, for the Epanechnikov kernel the corresponding
new profile is

1 0<u<l1
gr(u) = { 0 u>1 (4.3.23)

and thus Gg(u) is the uniform kernel. For convenience will introduce the notation
Qi(y) = det[H] /2 H; g (dly, v, Hil”) - (4324)
From the definition of g(u) and (4.3.7)

Qi(y)=0 dly,y; Hi] > 1. (4.3.25)
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Then (4.3.22) can be written as
-1
. 2 n n n
Vik(y) = % (Z Qi(y)) (Z Qi(y)> > QE)yi-y (4.3.26)
i=1 i=1

i=1

and the roots of the equation (4.3.21) are the solutions of

y= <Z Qz-(y)) ZQi(Y)Yi 4.3.27)

which can be solved only iteratively

1] = (2": Q; (ym)) B Xn: Q (") y; 1=0,1,... 4.3.28)
i=1 i=1

The meaning of an iteration becomes apparent if we consider the particular case H; = h?1
yielding

—-V. 2
mran e (|5 )
y = (4.3.29)

n — 2 -Yy. 2
s o ([5)

and which becomes when all h; = h

22;1 Yig (H y;Lyi

)
. (4.3.30)
Z?=1 g (H %

)
From (4.3.25) we see that at every step only a local weighted mean is computed. The
robustness of the mode detection method is the direct consequence of this property. In the

next iteration the computation is repeated centered on the previously computed mean. The
difference between the current and previous locations, the vector

ml

yltl — yll 1=0,1,... (4.3.31)
is called the mean shift vector, where the fact that the weighted averages are computed with
the kernel G was made explicit. Adapting (4.3.26) to the two particular cases above it can
be shown that )

i+ Viky®)

fa(y)

where c is a positive constant. Thus, the mean shift vector is aligned with the gradient
estimate of the density, and the window of computations is always moved toward regions

(4.3.32)
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(a) (b) (©

Figure 4.11. The main steps in mean shift based clustering. (a) Computation of the
weighted mean in the general case. (b) Mean shift trajectories of two points in a bimodal
data. (c) Basins of attraction.

of higher density. See [17] for the details. A relation similar to (4.3.32) still holds in
the general case, but now the mean shift and gradient vectors are connected by a linear
transformation.

In the mean shift procedure the user controls the resolution of the data analysis by pro-
viding the bandwidth information. Since most often circular symmetric kernels are used,
only the bandwith parameters h; are needed.

Mean Shift Procedure
1. Choose a data point y; as the initial ylol.

2. Compute y('t11, 1 = 0,1,... the weighted mean of the points at less than unit
Mahalanobis distance from y[4. Each point is considered with its own metric.

3. Verify if ngﬂ] H is less than the tolerance. If yes, stop.

4. Replace yl!l with y!'*+1 i.e., move the processing toward a region with higher point
density. Return to Step 2.

The most important properties of the mean shift procedure are illustrated graphically in
Figure 4.11. In Figure 4.11a the setup of the weighted mean computation in the general
case is shown. The kernel associated with a data point is nonzero only within the elliptical
region centered on that point. Thus, only those points contribute to the weighted mean in
y whose kernel support contains y.

The evolution of the iterative procedure is shown in Figure 4.11b for the simplest case
of identical circular kernels (4.3.30). When the locations of the points in a window are
averaged, the result is biased toward the region of higher point density in that window.
By moving the window into the new position we move uphill on the density surface. The
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Figure 4.12. An example of clustering using the mean shift procedure. (a) The two-
dimensional input. (b) Kernel density estimate of the underlying distribution. (c) The
basins of attraction of the three significant modes (marked ‘+).

mean shift procedure is a gradient ascent type technique. The processing climbs toward the
highest point on the side of the density surface on which the initial position y!% was placed.
At convergence (which can be proven) the local maximum of the density, the sought mode,
is detected.

The two initializations in Figure 4.11b are on different components of this mixture of
two Gaussians. Therefore, while the two mean shift procedures start from nearby locations,
they converge to different modes, both of which are accurate location estimates.

A nonparametric classification of the data into clusters can be obtained by starting a
mean shift procedure from every data point. A set of points converging to nearby locations
defines the basin of attraction of a mode. Since the points are processed independently the
shape of the basin of attraction is not restricted in any way. The basins of attraction of the
two modes of a Gaussian mixture (Figure 4.11c) were obtained without using the nature of
the distributions.

The two-dimensional data in Figure 4.12a illustrates the power of the mean shift based
clustering. The three clusters have arbitrary shapes and the background is heavily cluttered
with outliers. Traditional clustering methods would have difficulty yielding satisfactory
results. The three significant modes in the data are clearly revealed in a kernel density esti-
mate (Figure 4.12b). The mean shift procedure detects all three modes, and the associated
basins of attraction provide a good delineation of the individual clusters (Figure 4.12c). In
practice, using only a subset of the data points suffices for an accurate delineation. See [16]
for details of the mean shift based clustering.

The original mean shift procedure was proposed in 1975 by Fukunaga and Hostetler
[32]. See also [31, p.535]. It came again into attention with the paper [10]. In spite of
its excellent qualities, mean shift is less known in the statistical literature. The book [93,
Sec.6.2.2] discusses [32], and a similar technique is proposed in [11] for bias reduction in
density estimation.

The simplest, fixed bandwith mean shift procedure in which all H; = hQIp, is the one
most frequently used in computer vision applications. The adaptive mean shift procedure
discussed in this section, however, is not difficult to implement with circular symmetric

700
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kernels, i.e., H; = h?I,. The bandwidth value h; associated with the data point y; can be
defined as the distance to the k-th neighbor, i.e., for the pilot density estimation the nearest
neighbors approach is used. An implementation for high dimensional spaces is described
in [35]. Other, more sophisticated methods for local bandwidth selection are described
in [15], [18]. Given the complexity of the visual data, such methods, which are based on
assumptions about the local structure, may not provide any significant gain in performance.

4.3.4 Applications

We will sketch now two applications of the fixed bandwith mean shift procedure, i.e., cir-
cular kernels with H; = h%I,,.

— discontinuity preserving filtering and segmentation of color images;
— tracking of nonrigid objects in a color image sequence.

These applications are the subject of [17] and [19] respectively, which should be consulted
for details.

An image can be regarded as a vector field defined on the two-dimensional lattice.
The dimension of the field is one in the gray level case and three for color images. The
image coordinates belong to the spatial domain, while the gray level or color information
is in the range domain. To be able to use in the mean shift procedure circular symmetric
kernels the validity of an Euclidean metric must be verified for both domains. This is most
often true in the spatial domain and for gray level images in the range domain. For color
images, mapping the RGB input into the L*u*v* (or L*a*b*) color space provides the
closest possible Euclidean approximation for the perception of color differences by human
observers.

The goal in image filtering and segmentation is to generate an accurate piecewise con-
stant representation of the input. The constant parts should correspond in the input image
to contiguous regions with similarly colored pixels, while the discontinuities to significant
changes in color. This is achieved by considering the spatial and range domains jointly. In
the joint domain the basin of attraction of a mode corresponds to a contiguous homoge-
neous region in the input image and the valley between two modes most often represents a
significant color discontinuity in the input. The joint mean shift procedure uses a product

kernel , ,
c y"
— LA 4.3.
K(y) hihﬁkO >k<Hhr > (4.3.33)

where y® and y" are the spatial and the range parts of the feature vector, k() is the profile
of the kernel used in both domains (though they can also differ), hs and h,. are the employed
bandwidths parameters, and c is the normalization constant. The dimension of the range
domain g, is one for the gray level and three for the color images. The user sets the value
of the two bandwidth parameters according to the desired resolution of the image analysis.

In discontinuity preserving filtering every pixel is allocated to the nearest mode in the
joint domain. All the pixels in the basin of attraction of the mode get the range value of that
mode. From the spatial arrangement of the basins of attraction the region adjacency graph
(RAG) of the input image is then derived. A transitive closure algorithm is performed on

ys
hs
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the RAG and the basins of attraction of adjacent modes with similar range values are fused.
The result is the segmented image.

The gray level image example in Figure 4.13 illustrates the role of the mean shift proce-
dure. The small region of interest (ROI) in Figure 4.13a is shown in a wireframe represen-
tation in Figure 4.13b. The three-dimensional G kernel used in the mean shift procedure
(4.3.30) is in the top-left corner. The kernel is the product of two uniform kernels: a circu-
lar symmetric two-dimensional kernel in the spatial domain and a one-dimensional kernel
for the gray values.

At every step of the mean shift procedure, the average of the 3D data points is com-
puted and the kernel is moved to the next location. When the kernel is defined at a pixel
on the high plateau on the right in Figure 4.13b, adjacent pixels (neighbors in the spatial
domain) have very different gray level values and will not contribute to the average. This
is how the mean shift procedure achieves the discontinuity preserving filtering. Note that
the probability density function whose local mode is sought cannot be visualized since it
would require a four-dimensional space, the fourth dimension being that of the density.

The result of the segmentation for the ROI is shown in Figure 4.13c, and for the entire
image in Figure 4.13d. A more accurate segmentation is obtained if edge information is
incorporated into the mean shift procedure (Figures 4.13e and 4.13f). The technique is
described in [13].

A color image example is shown in Figure 4.14. The input has large homogeneous re-
gions, and after filtering (Figures 4.14b and 4.14c) many of the delineated regions already
correspond to semantically meaningful parts of the image. However, this is more the ex-
ception than the rule in filtering. A more realistic filtering process can be observed around
the windows, where many small regions (basins of attraction containing only a few pixels)
are present. These regions are either fused or attached to a larger neighbor during the tran-
sitive closure process on the RAG, and the segmented image (Figures 4.14d and 4.14e) is
less cluttered. The quality of any segmentation, however, can be assessed only through the
performance of subsequent processing modules for which it serves as input.

The discontinuity preserving filtering and the image segmentation algorithm were inte-
grated together with a novel edge detection technique [74] in the Edge Detection and Image
SegmentatiON (EDISON) system [13]. The C++ source code of EDISON is available on
the web at

WWw.calp.rutgers.edu/riul/

The second application of the mean shift procedure is tracking of a dynamically chang-
ing neighborhood in a sequence of color images. This is a critical module in many object
recognition and surveillance tasks. The problem is solved by analyzing the image sequence
as pairs of two consecutive frames. See [19] for a complete discussion.

The neighborhood to be tracked, i.e., the target model in the first image contains n,
pixels. We are interested only in the amount of relative translation of the target between
the two frames. Therefore, without loss of generality the target model can be considered
centered on y, = 0. In the next frame, the target candidate is centered on y, and contains
ny pixels.



38 ROBUST TECHNIQUES FOR COMPUTER VISION  Chapter 4

! Ty -

AT

(e) ®

Figure 4.13. The image segmentation algorithm. (a) The gray level input image with a
region of interest (ROI) marked. (b) The wireframe representation of the ROI and the 3D
window used in the mean shift procedure. (c) The segmented ROI. (d) The segmented
image. (e) The segmented ROI when local discontinuity information is integrated into the
mean shift procedure. (f) The segmented image.
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Figure 4.14. A color image filtering/segmentation example. (a) The input image. (b) The
filtered image. (c) The boundaries of the delineated regions. (d) The segmented image. (e)
The boundaries of the delineated regions.
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In both color images kernel density estimates are computed in the joint five-dimensional
domain. In the spatial domain the estimates are defined in the center of the neighborhoods,
while in the color domain the density is sampled at m locations c. Letc = 1,...,mbea
scalar hashing index of these three-dimensional sample points. A kernel with profile k(u)
and bandwidths h, and hy is used in the spatial domain. The sampling in the color domain
is performed with the Kronecker delta function §(u) as kernel.

The result of the two kernel density estimations are the two discrete color densities
associated with the target in the two images. Forc=1,...,m

model: Fale) = AET“kM%ZQ)ﬂdhﬂ—q (43.34)

candidate: fb(C; yb) = le":bl k (H szi’b,i

2) 6 [c(yy) —c]  (4.3.35)

where, ¢(y) is the color vector of the pixel at y. The normalization constants A, B are
determined such that
m R m
D falo)=1 Z (¢, ¥3) (4.3.36)
c=1 =1
The normalization assures that the template matching score between these two discrete
signals is

fale) fole,y) (4.3.37)

and it can be shown that
d(yy) = V1 - p(y) (4.3.38)

is a metric distance between f,(c) and fo(c,y;)

To find the location of the target in the second image, the distance (4.3.38) has to
be minimized over y,, or equivalently (4.3.37) has to be maximized. That is, the local
maximum of p(y;) has to be found by performing a search in the second image. This
search is implemented using the mean shift procedure.

The local maximum is a root of the template matching score gradient

fale)

=0. (4.3.39)
fb(c Yb)

Vo(y,) = % > Ve, vs)

Taking into account (4.3.35) yields

m  ng _ )
ZZ(YI; - yb,z’) k' (H%

c=1 i=1

) 8 [e(yps) — <] #(;)b) —0. (43.40)

As in Section 4.3.3 we can introduce the profile g(u) = —k'(u) and define the weights

) — 4.3.41
Zl fb c yb) [ (yb,z) C] ( )
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Figure 4.15. An example of the tracking algorithm. (a) The first frame of a color image
sequence with the target model manually defined as the marked elliptical region. (b) to (d)
Localization of the target in different frames.

and obtain the iterative solution of (4.3.39) from

m_y |2
sy g (yﬁl]) g (‘ Ys Yus h:y bl )
[1+1] _
- - (4.3.42)

e ()

which is a mean shift procedure, the only difference being that at each step the weights
(4.3.41) are also computed.

In Figure 4.15 four frames of an image sequence are shown. The target model, defined
in the first frame (Figure 4.15a), is successfully tracked throughout the sequence. As can
be seen, the localization is satisfactory in spite of the target candidates’ color distribution
being significantly different from that of the model. While the model can be updated as we
move along the sequence, the main reason for the good performance is the small amount of
translation of the target region between two consecutive frames. The search in the second
image always starts from the location of the target model center in the first image. The
mean shift procedure then finds the nearest mode of the template matching score, and with
high probability this is the target candidate location we are looking for. See [19] for more
examples and extensions of the tracking algorithm, and [14] for a version with automatic

hy
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bandwidth selection.

The robust solution of the location estimation problem presented in this section put the
emphasis on employing the least possible amount of a priori assumptions about the data
and belongs to the class of nonparametric techniques. Nonparametric techniques require a
larger number of data points supporting the estimation process than their parametric coun-
terparts. In parametric methods the data is more constrained, and as long as the model is
obeyed the parametric methods are better in extrapolating over regions where data is not
available. However, if the model is not correct a parametric method will still impose it at
the price of severe estimation errors. This important trade-off must be kept in mind when
feature space analysis is used in a complex computer vision task.

4.4 Robust Regression

The linear errors-in-variables (EIV) regression model (Section 4.2.6) is employed for the
discussion of the different regression techniques. In this model the inliers are measured as

Yi=Yi, +0y; y; €RP Jy; ~GI(0,0°L) i=1,...,n (4.4.1)
and their true values obey the constraints
9(¥i) =yi0—a=0 i=1,....,n; [|8]=1 a>0. (4.4.2)

The number of inliers must be much larger than the number of free parameters of the model,
n1 > p. Nothing is assumed about the n — nq outliers.

After a robust method selects the inliers they are often postprocessed with a nonrobust
technique from the least squares (LS) family to obtain the final parameter. Therefore, we
start by discussing the LS estimators. Next, the family of M-estimators is introduced and
the importance of the scale parameter related to the noise of the inliers is emphasized.

All the robust regression methods popular today in computer vision can be described
within the framework of M-estimation and thus their performance also depends on the
accuracy of the scale parameter. To avoid this deficiency, we approach M-estimation in a
different way and introduce the pbM-estimator which does not require the user to provide
the value of the scale.

In Section 4.2.5 it was shown that when a nonlinear EIV regression model is processed
as a linear model in the carriers, the associated noise is heteroscedastic. Since the robust
methods discussed in this section assume the model (4.4.1) and (4.4.2), they return biased
estimates if employed for solving nonlinear EIV regression problems. However, this does
not mean they should not be used! The role of any robust estimator is only to establish a
satisfactory inlier/outlier dichotomy. As long as most of the inliers were recovered from
the data, postprocessing with the proper nonlinear (and nonrobust) method will provide the
correct estimates.

Regression in the presence of multiple structures in the data will not be considered
beyond the particular case of two structures in the context of structured outliers. We will
show why all the robust regression methods fail to handle such data once the measurement
noise becomes large.
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Each of the regression techniques in this section is related to one of the objective func-
tions described in Section 4.2.2. Using the same objective function location models can
also be estimated, but we will not discuss these location estimators. For example, many
of the traditional clustering methods belong to the least squares family [52, Sec.3.3.2], or
there is a close connection between the mean shift procedure and M-estimators of location
[17].

4.4.1 VLeast Squares Family

We have seen in Section 4.2.3 that the least squares family of estimators is not robust
since its objective function Jr g (4.2.22) is a symmetric function in all the measurements.
Therefore, in this section will assume that the data contains only inliers, i.e., n = ny.

The parameter estimates of the linear EIV regression model are obtained by solving the
minimization

n n
(6, 6] = argmin D llyi — ¥ioll* = argmin L > 9(v,)’ (4.4.3)
af n i=1 af n i=1

subject to (4.4.2). The minimization yields the fotal least squares (TLS) estimator. For an
in-depth analysis of the TLS estimation see the book [112]. Related problems were already
discussed in the nineteenth century [33, p.30], though the method most frequently used
today, based on the singular value decomposition (SVD) was proposed only in 1970 by
Golub and Reinsch [37]. See the book [38] for the linear algebra background.

To solve the minimization problem (4.4.3) will define the n X p matrices of the mea-
surements Y and of the true values Y,

Y=[y1¥s o ¥nl'  Yo=[¥io¥2 =" ¥nol - (44.4)
Then (4.4.3) can be rewritten as
[&, 0] = argmin||]Y — Y,|% (4.4.5)
a,0
subject to
Y,0—al, =0, (4.4.6)

where 1,,(0,,) is a vector in R™ of all ones (zeros), and ||A||r is the Frobenius norm of the
matrix A.

The parameter « is eliminated next. The data is centered by using the orthogonal pro-
jector matrix G = I, — %lnl;— which has the property G1,, = 0,. It is easy to verify
that

- o 5 - 1 « _
Y=GY=[%7, ¥ Vi=yim ;D vi=¥i=¥. (447
i=1

The matrix ?o = GY, is similarly defined. The parameter estimate 0 is then obtained
from the minimization o
0= argmein 1Y = Y,|% (4.4.8)
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subject to _
Y,0=0,. (4.4.9)

The constraint (4.4.9) implies that the rank of the true data matrix ?o is only p — 1 and that
the true @ spans its null space. Indeed, our linear model requires that the true data points
belong to a hyperplane in R? which is a (p — 1)-dimensional affine subspace. The vector
0 is the unit normal to this plane.

The available measurements, however, are located nearby the hyperplane and thus the
measurement matrix Y has full rank p. The solution of the TLS thus is the rank p — 1
approximation of Y. This approximation is obtained from the SVD of Y written as a
dyadic sum

P
Y =) o) (4.4.10)

k=1
where the singular vectors U;, ¢ = 1,...,n and V;, j = 1,...,p provide orthonormal

bases for the four linear subspaces associated with the matrix Y [38, Sec.2.6.2], and oy >
gy > -+ > 0p > 0 are the singular values of this full rank matrix.

The optimum approximation yielding the minimum Frobenius norm for the error is the
truncation of the dyadic sum (4.4.10) at p — 1 terms [112, p.31]

~ p—1
Y = Z&kﬁ,ﬁ; (4.4.11)
k=1

where the matrix Y contains the centered corrected measurements § These corrected mea-
surements are the orthogonal projections of the available ¥, on the hyperplane characterized
by the parameter estimates (Figure 4.6). The TLS estimator is also known as orthogonal
least squares.

The rank one null space of 32( 15 spanned by V,,, the right singular vector associated with
the smallest singular value &, of Y [38, p.72]. Since V,, is a unit vector
6=v,. (4.4.12)
The estimate of « is obtained by reversing the centering operation
a=vy'90. (4.4.13)

The parameter estimates of the linear EIV model can be also obtained in a different,
though completely equivalent way. We define the carrier vector x by augmenting the vari-
ables with a constant

x=[y" —-1]" o2C = ¢? [ ;% 8 ] (4.4.14)

which implies that the covariance matrix of the carriers is singular. Using the n X (p + 1)
matrices

X=[x1%2 - xn]—r Xo = [X10 X20 - xno]T (4.4.15)
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the constraint (4.4.6) can be written as
Xow=0, w=[0"a]" |[0]=1 a>0 (4.4.16)

where the subscript ‘1° of this parametrization in Section 4.2.6 was dropped.
Using Lagrangian multipliers it can be shown that the parameter estimate @ is the
eigenvector of the generalized eigenproblem

X"Xw = ACw (4.4.17)

corresponding to the smallest eigenvalue Ap;,. This eigenproblem is equivalent to the
definition of the right singular values of the matrix Y [38, Sec.8.3]. The condition ||@]| = 1
is then imposed on the vector @.
The first order approximation for the covariance of the parameter estimate is [70,
Sec.5.2.2]
Co =6*(X'X = AminC)*F (4.4.18)

where the pseudoinverse has to be used since the matrix has rank p following (4.4.17). The
estimate of the noise standard deviation is

0A_2 _ Z?:1 g(yz’)z _ )‘min _ 5;2)

n—p+1 n—p+1 n-p+1

(4.4.19)

where §(y;) = y:é — & are the residuals. The covariances for the other parametriza-
tions of the linear EIV model, w, (4.2.53) and w3 (4.2.55) can be obtained through error
propagation.

Note that when computing the TLS estimate with either of the two methods, special
care has to be taken to execute all the required processing steps. The first approach starts
with the data being centered, while in the second approach a generalized eigenproblem has
to be solved. These steps are sometimes neglected in computer vision algorithms.

In the traditional linear regression model only the variable z is corrupted by noise
(4.2.36), and the constraint is

Zio = @ + X, Xio = X(¥;5) i=1,...,n. (4.4.20)
This model is actually valid for fewer computer vision problems (Figure 4.4) than it is used

in the literature. The corresponding estimator is the well known (ordinary) least squares
(OLS)

n g2
@=(X,X,) X,z Cy=0*(X X,) ' 2= Zn—il; (4.4.21)
where
X X .. X T
X, to 2o no z=[n2 - 2] . (4.4.22)



46 ROBUST TECHNIQUES FOR COMPUTER VISION  Chapter 4

(a) (b) ()

Figure 4.16. OLS vs. TLS estimation of a linear EIV model. (a) A typical trial. (b) The
scatterplot of the OLS estimates. A significant bias is present. (c) The scatterplot of the
TLS estimates. The true parameter values correspond to the location marked ‘4.

If the matrix X, is poorly conditioned the pseudoinverse should be used instead of the full
inverse.

In the presence of significant measurement noise, using the OLS estimator when the
data obeys the full EIV model (4.4.1) results in biased estimates [112, p.232]. This is
illustrated in Figure 4.16. The n = 30 data points are generated from the model

5910 —y20 +1=0 8y ~ NI(0,5°T,) (4.4.23)

where NI(-) stands for independent normally distributed noise. Note that the constraint is
not in the Hessian normal form but

a+601yio —y20 =0 0i=5 a=1 (4.4.24)

where, in order to compare the performance of the OLS and TLS estimators, the parameter
0> was set to -1. When the traditional regression model is associated with this data it is
assumed that

Yoo = 2o = O1y10 + @ 8z ~ NI(0,5%) (4.4.25)

and the OLS estimator (4.4.21) is used to find él and &. The scatterplot of the result of 100
trials is shown in Figure 4.16b, and the estimates are far away from the true values.

Either TLS estimation method discussed above can be employed to find the TLS esti-
mate. However, to eliminate the multiplicative ambiguity of the parameters the ancillary
constraint 85 = —1 has to be used. See [112, Sec. 2.3.2]. The TLS estimates are unbiased
and the scatterplot is centered on the true values (Figure 4.16c¢).

Throughout this section we have tacitly assumed that the data is not degenerate, i.e.,
the measurement matrix Y has full rank p. Both the TLS and OLS estimators can be
adapted for the rank deficient case, though then the parameter estimates are no longer
unique. Techniques similar to the ones described in this section yield minimum norm
solutions. See [112, Chap.3] for the case of the TLS estimator.
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Figure 4.17. Redescending M-estimators. (a) Biweight loss function. (b) The weight
function for biweight. (c) Zero-one loss function.

4.4.2 M-estimators

The robust equivalent of the least squares family are the M-estimators, first proposed in
1964 by Huber as a generalization of the maximum likelihood technique in which contam-
inations in the data distribution are tolerated. See [67] for an introduction to M-estimators
and [49] for a more in-depth discussion. We will focus only on the class of M-estimators
most recommended for computer vision applications.

The robust formulation of (4.2.48) is

[&, 8] = argri{iél % ; p (%g(yz)) = argmiél Im (4.4.26)

a,

where s is a parameter which depends on o, the (unknown) scale of the inlier noise (4.4.1).
With a slight abuse of notation s will also be called scale. The loss function p(u) satisfies
the following properties: nonnegative with p(0) = 0, even symmetric p(u) = p(—u), and
nondecreasing with |u|. For p(u) = u? we obtain the LS objective function (4.4.3).

The different M-estimators introduced in the statistical literature differ through the dis-
tribution assumed for the data. See [5] for a discussion in the context of computer vision.
However, none of these distributions will provide an accurate model in a real application.
Thus, the distinctive theoretical properties of different M-estimators are less relevant in
practice.

The redescending M-estimators are characterized by bounded loss functions

0<pu) <1l Jul<1 plu)y=1 |u|>1. (4.4.27)

As will be shown below, in a redescending M-estimator only those data points which are
at distance less than s from the current fit are taken into account. This yields better outlier
rejection properties than that of the M-estimators with nonredescending loss functions [69],
[116].

The following class of redescending loss functions covers several important M-estimators

_ [ 1-(1=-u?) lul <1
p(u) = { ) ul > 1 (4.4.28)
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where d = 1,2,3. The loss functions have continuous derivatives up the (d — 1)-th order,
and a unique minimum in p(0) = 0.

Tukey’s biweight function py,, (u) (Figure 4.17a) is obtained ford = 3 [67, p.295]. This
loss function is widely used in the statistical literature and was known at least a century
before robust estimation [40, p.151]. See also [42, vol.I, p.323]. The loss function obtained
for d = 2 will be denoted p,(u). The case d = 1 yields the skipped mean loss function, a
name borrowed from robust location estimators [90, p.181]

_[ ul <1
Pam (u) = { . > 1 (4.4.29)
which has discontinuous first derivative. It is often used in vision applications, e.g., [109].

In the objective function of any M-estimator the geometric distances (4.2.46) are nor-
malized by the scale s. Since p(u) is an even function we do not need to use absolute
values in (4.4.26). In redescending M-estimators the scale acts as a hard rejection thresh-
old, and thus its value is of paramount importance. For the moment we will assume that a
satisfactory value is already available for s, but will return to this topic in Section 4.4.3.

The M-estimator equivalent to the total least squares is obtained following either TLS
method discussed in Section 4.4.1. For example, it can be shown that instead of (4.4.17),
the M-estimate of w (4.4.16) is the eigenvector corresponding to the the smallest eigenvalue
of the generalized eigenproblem

X' WXw = ACw (4.4.30)
where W € R™*" is the diagonal matrix of the nonnegative weights

1 dp(u; i(y:)
wi:w(ui):;pés)zo uz:@ i=1,....n. (4.431)

Thus, in redescending M-estimators w(u) = 0 for |u| > 1, i.e., the data points whose
residual g(y;) = y:é — a relative to the current fit is larger than the scale threshold s
are discarded from the computations. The weights wp,, (u) = 6(1 — u?)? derived from the
biweight loss function are shown in Figure 4.17b. The weigths derived from the p.(u) loss
function are proportional to the Epanechnikov kernel (4.3.17). For traditional regression
instead of (4.4.21) the M-estimate is

@ =X WX,)'X]Wz. (4.4.32)

The residuals §(y;) in the weights w; require values for the parameter estimates. There-
fore, the M-estimates can be found only by an iterative procedure.

M-estimation with Iterative Weighted Least Squares
Given the scale s.

1. Obtain the initial parameter estimate & with total least squares.

2. Compute the weights w[l+1], 1=0,1,...

i
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3. Obtain the updated parameter estimates, @l

4. Verify if ||+ — &M|| is less than the tolerance. If yes, stop.
5. Replace @ with @Y. Return to Step 2.

For the traditional regression the procedure is identical. See [67, p.306]. A different way
of computing linear EIV regression M-estimates is described in [116].

The objective function minimized for redescending M-estimators is not convex, and
therefore the convergence to a global minimum is not guaranteed. Nevertheless, in practice
convergence is always achieved [67, p.307], and if the initial fit and the chosen scale value
are adequate, the obtained solution is satisfactory. These two conditions are much more in-
fluential than the precise nature of the employed loss function. Note that at every iteration
all the data points regarded as inliers are processed, and thus there is no need for postpro-
cessing, as is the case with the elemental subsets based numerical optimization technique
discussed in Section 4.2.7.

In the statistical literature often the scale threshold s is defined as the product between
o the robust estimate for the standard deviation of the inlier noise (4.4.1) and a tuning
constant. The tuning constant is derived from the asymptotic properties of the simplest
location estimator, the mean [67, p.296]. Therefore its value is rarely meaningful in real
applications. Our definition of redescending M-estimators avoids the problem of tuning by
using the inlier/outlier classification threshold as the scale parameter s.

The case d = 0 in (4.4.28) yields the zero-one loss function

0 <1
prolu) = { . }ZI > (4.433)

shown in Figure 4.17c. The zero-one loss function is also a redescending M-estimator,
however, is no longer continuous and does not have a unique minimum in v = 0. It
is only mentioned since in Section 4.4.4 will be used to link the M-estimators to other
robust regression techniques such as LMedS or RANSAC. The zero-one M-estimator is
not recommended in applications. The weight function (4.4.31) is nonzero only at the
boundary and the corresponding M-estimator has poor local robustness properties. That is,
in a critical data configuration a single data point can have a very large influence on the
parameter estimates.

4.4.3 Median Absolute Deviation Scale Estimate

Access to a reliable scale parameter s is a necessary condition for the minimization proce-
dure (4.4.26) to succeed. The scale s is a strictly monotonically increasing function of o
the standard deviation of the inlier noise. Since o is a nuisance parameter of the model, it
can be estimated together with a and @ at every iteration of the M-estimation process [67,
p-307]. An example of a vision application employing this approach is [7]. However, the
strategy is less robust than providing the main estimation process with a fixed scale value
[68]. In the latter case we talk about an M-estimator with auxiliary scale [69], [101].
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Figure 4.18. Sensitivity of the M-estimation to the §,,,4 scale value. Dashed line—initial
TLS fit. Solid line-biweight M-estimate. (a) ¢ = 1.5. (b) ¢ = 3.5. (c) Overestimation of
the scale in the presence of skewness. The median of the residuals is marked ‘+’ under the
sorted data points. The bar below corresponds to £3§,,,4 computed with ¢ = 3.

Two different approaches can be used to obtain the scale prior to the parameter estima-
tion. It can be either arbitrarily set by the user, or it can be derived from the data in a pilot
estimation procedure. The first approach is widely used in the robust regression techniques
developed within the vision community, such as RANSAC or Hough transform. The reason
is that it allows an easy way to tune a method to the available data. The second approach is
often adopted in the statistical literature for M-estimators and is implicitly employed in the
LMedS estimator.

The most frequently used off-line scale estimator is the median absolute deviation
(MAD), which is based on the residuals g(y;) relative to an initial (nonrobust TLS) fit

Smad = cmed|g(y;) — med§(y;)| (4.4.34)

where c is a constant to be set by the user. The MAD scale estimate measures the spread of
the residuals around their median.

In the statistical literature the constant in (4.4.34) is often taken as ¢ = 1.4826. How-
ever, this value is used to obtain a consistent estimate for ¢ when all the residuals obey a
normal distribution [67, p.302]. In computer vision applications where often the percentage
of outliers is high, the conditions is strongly violated. In the redescending M-estimators the
role of the scale parameter s is to define the inlier/outlier classification threshold. The order
of magnitude of the scale can be established by computing the MAD expression, and the
rejection threshold is then set as a multiple of this value. There is no need for assumptions
about the residual distribution. In [106] the standard deviation of the inlier noise & was
computed as 1.4826 times a robust scale estimate similar to MAD, the minimum of the
LMedsS optimization criterion (4.4.36). The rejection threshold was set at 1.966 by assum-
ing normally distributed residuals. The result is actually three times the computed MAD
value, and could be obtained by setting ¢ = 3 without any assumption about the distribution
of the residuals.

The example in Figures 4.18a and 4.18b illustrates not only the importance of the scale
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value for M-estimation but also the danger of being locked into the nature of the residu-
als. The data contains 100 inliers and 75 outliers, and as expected the initial TLS fit is
completely wrong. When the scale parameter is set small by choosing for §,,,4 the con-
stant ¢ = 1.5, at convergence the final M-estimate is satisfactory (Figure 4.18a). When the
scale 8,44 is larger, ¢ = 3.5, the optimization process converges to a local minimum of
the objective function. This minimum does not correspond to a robust fit (Figure 4.18b).
Note that ¢ = 3.5 is about the value of the constant which would have been used under the
assumption of normally distributed inlier noise.

The location estimator employed for centering the residuals in (4.4.34) is the median,
while the MAD estimate is computed with the second, outer median. However, the me-
dian is a reliable estimator only when the distribution underlying the data is unimodal and
symmetric [49, p.29]. It is easy to see that for a heavily skewed distribution, i.e., with a
long tail on one side, the median will be biased toward the tail. For such distributions the
MAD estimator severely overestimates the scale since the 50th percentile of the centered
residuals is now shifted toward the boundary of the inlier distribution. The tail is most often
due to outliers, and the amount of overestimation increases with both the decrease of the
inlier/outlier ratio and the lengthening of the tail. In the example in Figure 4.18c the inliers
(at the left) were obtained from a standard normal distribution. The median is 0.73 instead
of zero. The scale computed with ¢ = 3 is §,;,,¢ = 4.08 which in much larger than 2.5, a
reasonable value for the spread of the inliers. Again, ¢ should be chosen smaller.

Scale estimators which avoid centering the data were proposed in the statistical litera-
ture [89], but they are computationally intensive and their advantage for vision applications
is not immediate. We must conclude that the MAD scale estimate has to be used with care
in robust algorithms dealing with real data. Whenever available, independent information
provided by the problem at hand should be exploited to validate the obtained scale. The in-
fluence of the scale parameter s on the performance of M-estimators can be entirely avoided
by a different approach toward this family of robust estimators. This will be discussed in
Section 4.4.5.

444 LMedS, RANSAC and Hough Transform

The origin of these three robust techniques was described in Section 4.1. Now will show
that they all can be expressed as M-estimators with auxiliary scale.

The least median of squares (LMedS) estimator is a least k-th order statistics estimator
(4.2.22) for k = n/2, and is the main topic of the book [90]. The LMedS estimates are
obtained from

[&, é] = argmiél ngzdg(yi)2 (4.4.35)

a’

but in practice we can use

[&, 8] = argminmed |g(y;)| (4.4.36)

a,

The difference between the two definitions is largely theoretical, and becomes relevant only
when the number of data points n is small and even, while the median is computed as the
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Figure 4.19. The difference between LMedS and RANSAC. (a) LMeds: finds the location
of the narrowest band containing half the data. (b) RANSAC: finds the location of the
densest band of width specified by the user.

average of the two central values [90, p.126]. Once the median is defined as the [n/2]-th or-
der statistics, the two definitions always yield the same solution. By minimizing the median
of the residuals, the LMedS estimator finds in the space of the data the narrowest cylinder
which contains at least half the points (Figure 4.19a). The minimization is performed with
the elemental subsets based search technique discussed in Section 4.2.7.

The scale parameter s does not appear explicitly in the above definition of the LMedS
estimator. Instead of setting an upper bound on the value of the scale, the inlier/outlier
threshold of the redescending M-estimator, in the LMedS a lower bound on the percent-
age of inliers (fifty percent) is imposed. This eliminates the need for the user to guess
the amount of measurement noise, and as long as the inliers are in absolute majority, a
somewhat better robust behavior is obtained. For example, the LMedS estimator will suc-
cessfully process the data in Figure 4.18a.

The relation between the scale parameter and the bound on the percentage of inliers is
revealed if the equivalent condition of half the data points being outside of the cylinder, is

written as
1 < 1 1
2 Zotv)) = = 4437
- ;:1 Pzo (Sg(yz)> 3 ( )

where p,, is the zero-one loss function (4.4.33), and the scale parameter is now regarded as
a function of the residuals s [g(y;),---,9(¥,)]- By defining s = med |g(y;)| the LMedS

estimator becomes

(&, 0] = argmiéls [9(¥1),---,9(¥,)] subject to (4.4.37). (4.4.38)

«,

The new definition of LMedS is a particular case of the S-estimators, which while pop-
ular in statistics, are not widely know in the vision community. For an introduction to
S-estimators see [90, pp.135-143], and for a more detailed treatment in the context of EIV
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Figure 4.20. The poor local robustness of the LMedS estimator. The difference between
the data sets in (a) and (b) is that the point (6, 9.3) was moved to (6, 9.2).

models [116]. Let § be the minimum of s in (4.4.38). Then, it can be shown that

n

[, 6] = argmin - > pzo (ig(yi)) (4.4.39)
af T i=1 §

and thus the S-estimators are in fact M-estimators with auxiliary scale.

The value of § can also be used as a scale estimator for the noise corrupting the inliers.
All the observations made in Section 4.4.3 remain valid. For example, when the inliers
are no longer the absolute majority in the data the LMedsS fit is incorrect, and the residuals
used to compute § are not reliable.

The Random Sample Consensus (RANSAC) estimator predates the LMedS [26]. Since
the same elemental subsets based procedure is used to optimize their objective function,
sometimes the two techniques were mistakenly considered as being very similar, e.g., [75].
However, their similarity should be judged examining the objective functions and not the
way the optimization is implemented. In LMedS the scale is computed from a condition
set on the percentage of inliers (4.4.38). In RANSAC the following minimization problem
is solved .

(&, 0] = argmin% P20 (ég(yz)) given § (4.4.40)
that is, the scale is provided by the user. This is a critical difference. Note that (4.4.40)
is the same as (4.2.30). Since it is relative easy to tune RANSAC to the data, it can also
handle situations in which LMedS would already fail due to the large percentage of outliers
(Figure 4.19b). Today RANSAC replaced LMedS in most vision applications, e.g., [65],
[84], [108].

The use of the zero-one loss function in both LMedS and RANSAC yields very poor
local robustness properties, as it is illustrated in Figure 4.20, an example inspired by [2].
The n = 12 data points appear to be a simple case of robust linear regression for which
the traditional regression model (4.2.37) was used. The single outlier on the right corrupts
the least squares (OLS) estimator. The LMedS estimator, however, succeeds to recover



54 ROBUST TECHNIQUES FOR COMPUTER VISION  Chapter 4

the correct fit (Figure 4.20a), and the ordinary least squares postprocessing of the points
declared inliers (Final), does not yield any further change. The data in Figure 4.20b seems
to be the same but now the LMedS, and therefore the postprocessing, completely failed.
Actually the difference between the two data sets is that the point (6, 9.3) was moved to
(6, 9.2).

The configuration of this data, however, is a critical one. The six points in the center
can be grouped either with the points which appear to be also inliers (Figure 4.20a), or with
the single outlier on the right (Figure 4.20b). In either case the grouping yields an absolute
majority of points which is preferred by LMedS. There is a hidden bimodality in the data,
and as a consequence a delicate equilibrium exist between the correct and the incorrect fit.

In this example the LMedS minimization (4.4.36) seeks the narrowest band containing
at least six data points. The width of the band is measured along the 2 axis, and its boundary
is always defined by two of the data points [90, p.126]. This is equivalent to using the zero-
one loss function in the optimization criterion (4.4.39). A small shift of one of the points
thus can change to which fit does the value of the minimum in (4.4.36) correspond to. The
instability of the LMedS is discussed in a practical setting in [45], while more theoretical
issues are addressed in [23]. A similar behavior is also present in RANSAC due to (4.4.40).

For both LMedS and RANSAC several variants were introduced in which the zero-
one loss function is replaced by a smooth function. Since then more point have nonzero
weights in the optimization, the local robustness properties of the estimators improve. The
least trimmed squares (LTS) estimator [90, p.132]

k
[&, 8] = argmin Zg(y)in (4.4.41)

&Y =1

minimizes the sum of squares of the k smallest residuals, where k has to be provided by
the user. Similar to LMedS, the absolute values of the residuals can also be used.

In the first smooth variant of RANSAC the zero-one loss function was replaced with the
skipped mean (4.4.29), and was called MSAC [109]. Recently the same loss function was
used in a maximum a posteriori formulation of RANSAC, the MAPSAC estimator [105].
A maximum likelihood motivated variant, the MLESAC [107], uses a Gaussian kernel for
the inliers. Guided sampling is incorporated into the IMPSAC version of RANSAC [105].
In every variant of RANSAC the user has to provide a reasonably accurate scale value for
a satisfactory performance.

The use of zero-one loss function is not the only (or main) cause of the failure of LMedS
(or RANSAC). In Section 4.4.7 we show that there is a more general problem in applying
robust regression methods to multistructured data.

The only robust method designed to handle multistructured data is the Hough trans-
form. The idea of Hough transform is to replace the regression problems in the input
domain with location problems in the space of the parameters. Then, each significant mode
in the parameter space corresponds to an instance of the model in the input space. There is
a huge literature dedicated to every conceivable aspect of this technique. The survey papers
[50], [62], [82] contain hundreds of references.

Since we are focusing here on the connection between the redescending M-estimators
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and the Hough transform, only the randomized Hough transform (RHT) will be considered
[56]. Their equivalence is the most straightforward, but the same equivalence also exists
for all the other variants of the Hough transform as well. The feature space in RHT is built
with elemental subsets, and thus we have a mapping from p data points to a point in the
parameter space.

Traditionally the parameter space is quantized into bins, i.e., it is an accumulator. The
bins containing the largest number of votes yield the parameters of the significant structures
in the input domain. This can be described formally as

RPN 1 «
(&, Bk = arg[maé?k - ano (Sas881>---+58,_139(¥3)) (4.4.42)
@ i=1
where k.,(u) = 1 — p.o(u) and sq, 8, , .-, Sg,_, define the size (scale) of a bin along

each parameter coordinate. The index k stands for the different local maxima. Note that
the parametrization uses the polar angles as discussed in Section 4.2.6.

The definition (4.4.42) is that of a redescending M-estimator with auxiliary scale, where
the criterion is a maximization instead of a minimization. The accuracy of the scale param-
eters is a necessary condition for a satisfactory performance, an issue widely discussed in
the Hough transform literature. The advantage of distributing the votes around adjacent
bins was recognized early [102]. Later the equivalence with M-estimators was also identi-
fied, and the zero-one loss function is often replaced with a continuous function [61], [60],
[80].

In this section we have shown that all the robust techniques popular in computer vision
can be reformulated as M-estimators. In Section 4.4.3 we have emphasized that the scale
has a crucial influence on the performance of M-estimators. In the next section we remove
this dependence by approaching the M-estimators in a different way.

4.4.5 The pbM-estimator
The minimization criterion (4.4.26) of the M-estimators is rewritten as

n

To —
(&, 6] = argmaex)(% 3k (”%) K(w) = c,[1 — p(u)] (4.4.43)
@ i=1

where k(u) is called the M-kernel function. Note that for a redescending M-estimator
k(u) = 0 for |u| > 1 (4.4.27). The positive normalization constant ¢, assures that x(u) is
a proper kernel (4.3.6).

Consider the unit vector 6 defining a line through the origin in R?. The projections of
the n data points y; on this line have the one-dimensional (intrinsic) coordinates x; = yiT 0.
Following (4.3.5) the density of the set of points z;, i = 1,.. ., n, estimated with the kernel
K (u) and the bandwidth hg is

R n T —

Folz) = — yif-z) (4.4.44)

)
nhg = hg
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Figure 4.21. M-estimation through projection pursuit. When the data in the rectangle
is projected orthogonally on different directions (a), the mode of the estimated density is
smaller for an arbitrary direction (b), than for the direction of the normal to the linear
structure (c).

Comparing (4.4.43) and (4.4.44) we can observe that if x(u) is taken as the kernel function,
and hO is substituted for the scale s, the M-estimation criterion becomes

6

argmeax [BO max fg(x)] (4.4.45)

& = argmax fé(w) . (4.4.46)
Given the M-kernel x(u), the bandwidth parameter ile can be estimated from the data
according to (4.3.14). Since, as will be shown below, the value of the bandwidth has a
weak influence on the the result of the M-estimation, for the entire family of redescending
loss functions (4.4.28) we can use

ﬁg =n"% med|y; 0 - m¢dy}0| . (4.4.47)
i j

The MAD estimator is employed in (4.4.47) but its limitations (Section 4.4.3) are of less
concern in this context. Also, it is easy to recognize when the data is not corrupted since the
MAD expression becomes too small. In this case, instead of the density estimation most
often a simple search over the projected points suffices.

The geometric interpretation of the new definition of M-estimators is similar to that of
the LMedS and RANSAC techniques shown in Figure 4.19. The closer is the projection
direction to the normal of the linear structure, the tighter are grouped the projected inliers
together which increases the mode of the estimated density (Figure 4.21). Again a cylin-
der having the highest density in the data has to be located. The new approach is called
projection based M-estimator, or pbM-estimator.

The relations (4.4.45) and (4.4.46) are the projection pursuit definition of an M-estimator.
Projection pursuit was proposed by Friedman and Tukey in 1974 [30] to solve data analy-
sis problems by seeking “interesting” low-dimensional projections of the multidimensional
data. The informative value of a projection is measured with a projection index, such as the
quantity inside the brackets in (4.4.45). The papers [48] [54] survey all the related topics.
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It should be emphasized that in the projection pursuit literature the name projection pursuit
regression refers to a technique different from ours. There, a nonlinear additive model is
estimated by adding a new term to the model after each iteration, e.g., [44, Sec.11.2].

When in the statistical literature a linear regression problem is solved through projection
pursuit, either nonrobustly [20], or robustly [90, p.143], the projection index is a scale
estimate. Similar to the S-estimators the solution is obtained by minimizing the scale, now
over the projection directions. The robust scale estimates, like the MAD (4.4.34) or the
median of the absolute value of the residuals (4.4.38), however, have severe deficiencies
for skewed distributions, as was discussed in Section 4.4.3. Thus, their use as projection
index will not guarantee a better performance than that of the original implementation of
the regression technique.

Projections were employed before in computer vision. In [81] a highly accurate im-
plementation of the Hough transform was achieved by using local projections of the pixels
onto a set of directions. Straight edges in the image were then found by detecting the max-
ima in the numerically differentiated projections. The Lo E estimator, proposed recently in
the statistical literature [92], solves a minimization problem similar to the kernel density
estimate formulation of M-estimators, however, the focus is on the parametric model of the
inlier residual distribution.

The critical parameter of the redescending M-estimators is the scale s, the inlier/outlier
selection threshold. The novelty of the ppM-estimator is the way the scale parameter is ma-
nipulated. The pbM-estimator avoids the need of M-estimators for an accurate scale prior
to estimation by using the bandwidth ﬁg as scale during the search for the optimal pro-
jection direction. The bandwidth being an approximation of the AMISE optimal solution
(4.3.13) tries to preserve the sensitivity of the density estimation process as the number of
data points n becomes large. This is the reason for the n =/ factor in (4.4.47). Since hg
is the outlier rejection threshold at this stage, a too small value increases the probability of
assigning incorrectly the optimal projection direction to a local alignment of points. Thus,
it is recommended that once n becomes large, say n > 102, the computed bandwith value
is slightly increased by a factor which is monotonic in 7.

After the optimal projection direction 6 was found, the actual inlier/outlier dichotomy
of the data is defined by analyzing the shape of the density around the mode. The nearest
local minima on the left and on the right correspond in RP, the space of the data, to the
transition between the inliers belonging to the sought structure (which has a higher density)
and the background clutter of the outliers (which has a lower density). The locations of the
minima define the values a; < as. Together with 0 they yield the two hyperplanes in R?
separating the inliers from the outliers. Note that the equivalent scale of the M-estimator is
§ = as — aq, and that the minima may not be symmetrically located relative to the mode.

The 2D data in the example in Figure 4.22a contains 100 inliers and 500 outliers. The
density of the points projected on the direction of the true normal (Figure 4.22b) has a sharp
mode. Since the pbM-estimator deals only with one-dimensional densities, there is no need
to use the mean shift procedure (Section 4.3.3) to find the modes, and a simple heuristic
suffices to define the local minima if they are not obvious.

The advantage of the ppM-estimator arises from using a more adequate scale in the
optimization. In our example, the §,,44 scale estimate based on the TLS initial fit (to the
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(a) (b)

Figure 4.22. Determining the inlier/outlier dichotomy through the density of the projected
data. (a) 2D data. Solid line: optimal projection direction. Dashed lines: boundaries of
the detected inlier region. (b) The kernel density estimate of the projected points. Vertical
dashed lines: the left and right local minima. The bar at the top is the scale +5,04 COM-
puted with ¢ = 3. The bar below is +h 4, the size of the kernel support. Both are centered

on the mode.

whole data) and computed with ¢ = 3, is about ten times larger than h », the bandwith
computed for the optimal projection direction (Figure 4.22b). When a redescending M-
estimator uses §;,44, the optimization of the objective function is based on a too large
band, which almost certainly leads to a nonrobust behavior.

Sometimes the detection of the minima can be fragile. See the right minimum in Figure
4.22b. A slight change in the projected location of a few data points could have changed
this boundary to the next, much more significant local minimum. However, this sensitivity
is tolerated by pbM-estimator. First, by the nature of the projection pursuit many different
projections are investigated and thus it is probable that at least one satisfactory band is
found. Second, from any reasonable inlier/outlier dichotomy of the data postprocessing of
the points declared inliers (the region bounded by the two hyperplanes in R?) can recover
the correct estimates. Since the frue inliers are with high probability the absolute majority
among the points declared inliers, the robust LTS estimator (4.4.41) can now be used.

The significant improvement in outlier tolerance of the ppM-estimator was obtained at
the price of replacing the iterative weighted least squares algorithm of the traditional M-
estimation with a search in RP for the optimal projection direction 6. This search can be
efficiently implemented using the simplex based technique discussed in Section 4.2.7.

A randomly selected p-tuple of points (an elemental subset) defines the projection di-
rection @, from which the corresponding polar angles 3 are computed (4.2.52). The vector
B is the first vertex of the initial simplex in RP~!. The remaining p — 1 vertices are then
defined as

Br,=B+erxy k=1,...,(p-1) (4.4.48)

where e, € RP~! is a vector of 0-s except a 1 in the k-th element, and ~ is a small angle.
While the value of v can depend on the dimension of the space, using a constant value such
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as v = w/12, seems to suffice in practice. Because 6 is only a projection direction, during
the search the polar angles are allowed to wander outside the limits assuring a unique
mapping in (4.2.52). The simplex based maximization of the projection index (4.4.45)
does not have to be extremely accurate, and the number of iterations in the search should
be relative small.

The projection based implementation of the M-estimators is summarized below.

The pbM-estimator

— Repeat N times:
1. choose an elemental subset (p-tuple) by random sampling;

2. compute the TLS estimate of 0;
3. build the initial simplex in the space of polar angles 3;

4. perform a simplex based direct search to find the local maximum of the projec-
tion index.

— Find the left and right local minima around the mode of the density corresponding to
the largest projection index.

— Define the inlier/outlier dichotomy of the data. Postprocess the inliers to find the
final estimates of « and 6.

4.4.6 Applications

The superior outlier tolerance of the ppbM-estimator relative to other robust techniques is
illustrated with two experiments. The percentage of inliers in the data is assumed unknown
and can be significantly less than that of the outliers. Therefore the LMedS estimator cannot
be applied. It is shown in [107] that MLESAC and MSAC have very similar performance
and are superior to RANSAC. We have compared RANSAC and MSAC with the pbM-
estimator.

In both experiments ground truth was available, and the true standard deviation of the
inliers oy could be computed. The output of any robust regression is the inlier/outlier
dichotomy of the data. Let the standard deviation of the points declared inliers measured
relative to the true fit be 6;,. The performance of the different estimators was compared
through the ratio &;,, /0. For a satisfactory result this ratio should be very close to one.

The same number of computational units is used for all the techniques. A computational
unit is either processing of one elemental subset (RANSAC), or one iteration in the simplex
based direct search (pbM). The number of iterations in a search was restricted to 25, but
often it ended earlier. Thus, the amount of computations attributed to the ppM-estimator is
an upper bound.

In the first experiment the synthetic data contained 100 inlier points obeying an eight-
dimensional linear EIV regression model (4.4.2). The measurement noise was normally
distributed with covariance matrix 52Ig. A variable percentage of outliers was uniformly
distributed within the bounding box of the region occupied in R® by the inliers. The number
of computational units was 5000, i.e., RANSAC used 5000 elemental subsets while the
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Figure 4.23. RANSAC vs. pbM-estimator. The relative standard deviation of the residuals
function of the percentage of outliers. Eight dimensional synthetic data. The employed
scale threshold: RANSAC - 8,,44; MSACm — 31,545 MSACo — 5,p¢. The ppbM-estimator
has no tuning parameter. The vertical bars mark one standard deviation from the mean.

pbM-estimator initiated 200 local searches. For each experimental condition 100 trials
were run. The frue sample standard deviation of the inliers o, was computed in each trial.

The scale provided to RANSAC was the §,,,4, based on the TLS fit to the data and
computed with ¢ = 3. The same scale was used for MSAC. However, in an optimal
setting MSAC was also run with the scale s,,+ = 1.960;. Note that this information is not
available in practice! The graphs in Figure 4.23 show that for any percentage of outliers the
pbM-estimator performs at least as well as MSAC tuned to the optimal scale. This superior
performance is obtained in a completely unsupervised fashion. The only parameters used
by the pbM-estimator are the generic normalized amplitude values needed for the definition
of the local minima. They do not depend on the data or on the application.

In the second experiment, two far apart frames from the corridor sequence (Figures
4.24a and 4.24b) were used to estimate the epipolar geometry from point correspondences.
As was shown in Section 4.2.5 this is a nonlinear estimation problem, and therefore the
role of a robust regression estimator based on the linear EIV model is restricted to selecting
the correct matches. Subsequent use of a nonlinear (and nonrobust) method can recover the
unbiased estimates. Several such methods are discussed in [118].

The Harris corner detector [111, Sec.4.3] was used to establish the correspondences,
from which 265 point pairs were retained. The histogram of the residuals computed as
orthogonal distances from the ground truth plane in 8D, is shown in Figure 4.24c. The 105
points in the central peak of the histogram were considered the inliers (Figure 4.24d). Their
standard deviation was o; = 0.88.

The number of computational units was 15000, i.e., the pbM-estimator used 600 searches.
Again, MSAC was tuned to either the optimal scale s,,; or to the scale derived from the
MAD estimate, §,,,4. The number true inliers among the points selected by an estimator
and the ratio between the standard deviation of the selected points and that of the true inlier
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(a) (b) () (d)
Figure 4.24. Estimating the epipolar geometry for two frames of the corridor sequence. (a)

and (b) The input images with the points used for correspondences marked. (c¢) Histogram
of the residuals from the ground truth. (d) Histogram of the inliers.

noise are shown in the table below.

selected points/true inliers | 65, /0%

MSAC (8mad) 219/105 42.32
MSAC (sopt) 98/87 1.69
pbM 95/88 1.36

The pbM-estimator succeeds to recover the data of interest, and behaves like an opti-
mally tuned technique from the RANSAC family. However, in practice the tuning infor-
mation is not available.

4.4.7 Structured Outliers

The problem of multistructured data is not considered in this chapter, but a discussion of ro-
bust regression cannot be complete without mentioning the issue of structured outliers. This
is a particular case of multistructured data, when only two structures are present and the
example shown in Figure 4.3 is a typical case. For such data, once the measurement noise
becomes significant all the robust techniques, M-estimators (including the pbM-estimator),
LMedS and RANSAC behave similarly to the nonrobust least squares estimator. This was
first observed for the LMedS [78], and was extensively analyzed in [98]. Here we describe
a more recent approach [9].

The true structures in Figure 4.3b are horizontal lines. The lower one contains 60
points and the upper one 40 points. Thus, a robust regression method should return the
lower structure as inliers. The measurement noise was normally distributed with covariance
0215, 0 = 10. In Section 4.4.4 it was shown that all robust techniques can be regarded as
M-estimators. Therefore we consider the expression

(508 =3 p (W’sﬁ + vasinf a) (4.4.49)

; S
=1

which defines a family of curves parameterized in « and 3 of the line model (4.2.54) and
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Figure 4.25. Dependence of €(s; , 3) on the scale s for the data in Figure 4.3b. (a) Zero-
one loss function. (b) Biweight loss function. (c) The top-left region of (a). (d) The top-left
region of (b). Solid line — envelope €,;,,(s). Dashed line — true parameters of the lower
structure. Dotdashed line — true parameters of the upper structure. Dotted line — least
squares fit parameters.

in the scale s. The envelope of this family

€min(8) = miél e(s;a, B) (4.4.50)
[e2)

represents the value of the M-estimation minimization criterion (4.4.26) as a function of

scale.

By definition, for a given value of s the curve €(s; a, ) can be only above (or touching)
the envelope. The comparison of the envelope with a curve €(s; «, 8) describes the relation
between the employed a, 8 and the parameter values minimizing (4.4.49). Three sets of
line parameters were investigated using the zero-one (Figure 4.25a) and the biweigth (Fig-
ure 4.25b) loss functions: the true parameters of the two structures (o = 50,100; 8 = 7/2),
and the least squares parameter estimates (ars, Brs). The LS parameters yield a line sim-
ilar to the one in Figure 4.3b, a nonrobust result.

Consider the case of zero-one loss function and the parameters of the lower structure
(dashed line in Figure 4.25a). For this loss function €(s;50,7/2) is the percentage of
data points outside the horizontal band centered on y» = 50 and with half-width s. As
expected the curve has a plateau around € = 0.4 corresponding to the band having one of
its boundaries in the transition region between the two structures. Once the band extends
into the second structure €(s; 50, 7/2) further decreases. The curve, however, is not only
always above the envelope, but most often also above the curve €(s; ars, Srs). See the
magnified area of small scales in Figure 4.25c¢.

For a given value of the scale (as in RANSAC) a fit similar to least squares will be
prefered since it yields a smaller value for (4.4.49). The measurement noise being large, a
band containing half the data (as in LMedS) corresponds to a scale s > 12, the value around
which the least squares fit begins to dominate the optimization (Figure 4.25a). As a result
the LMedS will always fail (Figure 4.3b). Note also the very narrow range of scale values
(around s = 10) for which €(s; 50, 7/2) is below €(s; args, Brs). It shows how accurately
has the user to tune an estimator in the RANSAC family for a satisfactory performance.

The behavior for the biweight loss function is identical, only the curves are smoother
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due to the weigthed averages (Figures 4.25b and 4.25d). When the noise corrupting the
structures is small, in Figure 4.3a it is ¢ = 2, the envelope and the curve €(s; 50,7/2)
overlap for s < 8 which suffices for the LMedS criterion. See [9] for details.

We can conclude that multistructured data has to be processed first by breaking it into
parts in which one structure dominates. The technique in [8] combines several of the pro-
cedures discussed in this chapter. The sampling was guided by local data density, i.e., it
was assumed that the structures and the background can be roughly separated by a global
threshold on nearest neighbor distances. The pbM-estimator was employed as the estima-
tion module, and the final parameters were obtained by applying adaptive mean shift to a
feature space. The technique had a Hough transform flavor, though no scale parameters
were required. The density assumption, however, may fail when the structures are defined
by linearizing a nonlinear problem, as it is often the case in 3D vision. Handling such mul-
tistructured data embedded in a significant background clutter, remains an open question.

4.5 Conclusion

Our goal in this chapter was to approach robust estimation from the point of view of a
practitioner. We have used a common statistical framework with solid theoretical founda-
tions to discuss the different types and classes of robust estimators. Therefore, we did not
dwell on techniques which have an excellent robust behavior but are of a somewhat ad-hoc
nature. These techniques, such as tensor voting [73], can provide valuable tools for solving
difficult computer vision problems.

Another disregarded topic was the issue of diagnosis. Should an algorithm be able to
determine its own failure, one can already talk about robust behavior. When in the late
1980’s robust methods became popular in the vision community, the paper [28] was often
considered as the first robust work in the vision literature. The special issue [94] and the
book [6] contain representative collections of papers for the state-of-the-art today.

We have emphasized the importance of embedding into the employed model the least
possible amount of assumptions necessary for the task at hand. In this way the developed
algorithms are more suitable for vision applications, where the data is often more complex
than in the statistical literature. However, there is a tradeoff to satisfy. As the model
becomes less committed (more nonparametric), its power to extrapolate from the available
data also decreases. How much is modeled rigorously and how much is purely data driven
is an important decision of the designer of an algorithm. The material presented in this
chapter was intended to help in taking this decision.
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