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This special issue is dedicated to examining the use of techniques from robust statistics
in solving computer vision problems. It represents a milestone of recent progress within a
subarea of our field that is nearly as old as the field itself, but has seen rapid growth over
the past decade. Our Introduction considers the meaning of robustness in computer vision,
summarizes the papers, and outlines the relationship between techniques in computer vision
and statistics as a means of highlighting future directions. It complements the available
reviews on this topic [12, 13].

DEFINING ROBUST ESTIMATION IN COMPUTER VISION

The ultimate goal of computer vision is to make possible systems that can autonomously
interpret the visual environment under almost any operating conditions, that is, to reproduce
the amazing performance of human visual perception. The elusiveness of this goal can be
seen from attempts to define robustness in the context of computer-based image under-
standing. Different definitions emerge at different levels of the hierarchy of techniques
often associated with solutions to computer vision problems.
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2 INTRODUCTION

At the top level, a robust vision system should be able to recognize new objects based
exclusively on previous examples from the same class of functionality. Thus, a piece of fur-
niture should be identified independent of its style, a car independent of its maker, etc. Such
cognitive components, however, are yet to be developed for general purpose vision systems.

Changes in the visual environment due to nonrigid motion of the objects, alteration of
viewpoint, or both are a primary concern in building object descriptions at the intermediate
level of the vision hierarchy. Complex visual events arise for which robust interpretation
requires separating the external causes from the intrinsic properties in the appearance of each
object. This task, roughly equivalent to perceptual constancies in human visual perception,
is currently an active research area in computer vision. Several papers in this special issue
address this topic [1, 3, 6, 8].

Robust statistical methods were first adopted in computer vision to improve the perfor-
mance of feature extraction algorithms at the bottom level of the vision hierarchy. These
methods tolerate (in various degrees) the presence of data points that do not obey the as-
sumed model. Such points are typically called “outliers.” The definition of robustness in
this context often is focused on the notion of thebreakdown point: the smallest fraction
of outliers in a data set that can cause an estimator to produce arbitrarily bad results. The
breakdown point, as defined in statistics, is a worst-case measure. A zero breakdown point
only means that there exists one potential configuration for which the estimator will fail.

The concept of breakdown also implicitly assumes that the absolute majority of the data,
i.e., more than half of the data points, obeys the model whose parameters are sought. This
assumption clearly is not met in many vision problems. For example, multiple instances of a
class of features—e.g., lines or independently moving objects—are often present in the data.
To delineate these features, a single global process will not suffice. Visual data is usually
more complex than the data typically analyzed in statistics, and so often a straightforward
application of robust statistical techniques does not work.

Some of the failings of robust statistical methods are addressed, at least in part, by
robust techniques developed in the computer vision literature. Arguably, the most successful
general vision algorithm is the Hough transform, a 38-year-old patent to detect the trace of
charged subatomic particles in a bubble chamber [9]. The success of the Hough transform
is due to the ability to generate reliable hypotheses about all the significant instances of
the class of features sought. From this viewpoint the Hough transform is more “robust” in
practice than estimators imported from statistics. Various aspects of the Hough transform
are still actively being investigated, and two papers in this issue [4, 7] address such problems.

The RANSAC method [10], although developed 20 years ago in the vision community, has
only recently been widely recognized. This recognition is partially due to its noted similarity
to the high breakdown point least median of squares (LMedS) estimator [11] introduced
into statistics a few years later and adopted by the vision community. RANSAC now often
replaces LMedS in vision algorithms since, having two tuning parameters (the cardinality
of the minimally acceptable set of data points and the amount of noise allowed to corrupt
the model), it can be better adapted to complex data analysis situations. Both RANSAC and
LMedS suffer from the same sensitivity problems, and improving the numerical behavior
of RANSAC is addressed in [8].

PAPERS IN THE SPECIAL ISSUE

The eight papers selected for theRobust Statistical Techniques in Image Understanding
special issue ofComputer Vision and Image Understandingoffer a representative sample of
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the state of the art in robust computer vision. Several common trends can be recognized in
these papers. The concept of robust analysis is extended to semantically more meaningful
problems (higher levels of the visual hierarchy) in [1, 6] and to more realistic operating
conditions in [5]. A second trend is to combine robust estimators with other techniques to
obtain algorithms with increased autonomy and better performance, overcoming some of the
shortcomings outlined above. The combinations include the maximum likelihood paradigm
with RANSAC [8], the minimum description length principle with high breakdown point
estimation [6], and fusion of information from different domains to create, in effect, a
generalized M-estimator [5].

Robust behavior is often achieved in vision applications in spite of employing estima-
tors with theoretically zero breakdown points. The M-estimators of regression are the best
example; their zero breakdown point captures the possibility of failure in the presence
of a severe leverage point. Attributing a nonzero breakdown point to M-estimators of re-
gression is a misconception that shows up occasionally in vision papers, partly due to an
incorrect statement in [12]. Only the more elaborate generalized M-estimators of regression
(GM-estimators) and the multivariate M-estimators have a positive breakdown point. The
satisfactory performance of vision algorithms containing M-estimator-based computational
modules only underlines the worst-case nature of the breakdown point concept. Since image
data is almost always bounded, the conditions for severe leveraging may not be present.
This subject is addressed in [2].

Another issue concerning the zero breakdown point as it applies to the redescending
M-estimators that are commonly used in vision algorithms should be also emphasized.
Breakdown for redescending M-estimators, which can have multiple solutions, means that
at least one of the solutions is bad and not that all of the solutions fail. So it is still possible that
a redescending M-estimator produces a good solution even though theoretically it breaks
down.

Here are some of the highlights of the papers in the special issue.

• The paper by Blacket al.[1] illustrates the role robust estimation can play in developing
techniques to explain complex changes in appearance. The authors employ mixture models
to nonlinearly combine global parametric motion, global illumination changes, local spec-
ular highlights, and iconic motion. To recover the model parameters a robust expectation
maximization (EM) algorithm based ont-distributions instead of normal distributions is
proposed. The technique is validated with a variety of image data sets and combinations of
models.
• The paper by Ben-Ezraet al.[2] shows that often global dominant motion models may

be estimated without the use of complex, expensive search algorithms. In spite of having a
zero breakdown point, M-estimators in general, and the minimization of an L1 error norm
in particular, may suffice. The latter has the advantage of not requiring a reliable prior scale
estimate. The authors use linear programming to efficiently minimize the L1 error norm
and show that it can yield a performance comparable with the high breakdown point least
median of squares. Experiments are based on image registration, transformation estimation,
and mosaicing.
• The paper by Demirdjian and Horaud [3] investigates robust estimation of projective

motion and detection of moving objects from a moving, uncalibrated stereo rig. To minimize
a geometrically meaningful criterion, the high breakdown point RANSAC technique is
combined in an iterative procedure with a reweighted least-squares method. Independent
motion is detected by clustering tracked feature point correspondences that are inconsistent
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with the dominant projective motion (outliers). Robust estimation of the epipolar geometry
is used in feature tracking.
• The paper by Kiryati and Bruckstein [4] applies the Hough transform technique to

estimating the best fitting line in heteroscedastic data, i.e., when the noise (error) distribution
varies at each individual point. A robust voting kernel is derived from the Mahalanobis
distance between a point and the line. A coarse-to-fine grid search is used to reduce the
amount of computation. The resolution of the line detection procedure can be tuned by the
voting kernel. The technique is illustrated with synthetic and real data.
• The paper by Lai [5] addresses the problem of image matching under varying illu-

mination, using intensity constraints, an affine motion model, and low-order polynomial
functions for additive and multiplicative intensity changes. An M-estimator problem for-
mulation is enhanced with a prior weighting function that favors corresponding locations
with similar intensity gradients. The method employs a data sampling technique to in-
crease computational efficiency and a hierarchical nearest-neighbor search to initialize
the M-estimator-based alignment estimation. Results are demonstrated in the context of
printed circuit board inspection.
• The paper by Leonardis and Bischof [6] extends robustness to eigenimage recognition

techniques by introducing a random sampling search that is traditional only in regression
problems. Starting from random subsets of points in the eigenspace, robust representations
are found by iteratively refining the subsets using a least-squares technique at each step. The
minimum description length (MDL) principle is then employed to select the best hypoth-
esis for the corrupted input image. The experimental results show tolerance of occlusions,
cluttered backgrounds, and salt-and-pepper noise.
• The paper by Mataset al. [7] presents an improvement of the randomized Hough

transform. The voting procedure is stopped once the probability that a bin’s count could
be due to a chance distribution drops below a threshold. The points associated with the
delineated line are then removed from the accumulator and the procedure is restarted with
the remaining data. A thorough set of experiments demonstrates the performance of the
algorithm.
• The paper by Torr and Zisserman [8] proposes a novel paradigm for high breakdown

estimation in computer vision by replacing the inlier count of RANSAC methods with
weighted voting based on an M-estimator. The advantages of such an approach are dis-
cussed in detail and motivated in a rigorous maximum likelihood estimation framework.
The chosen application domain is the estimation of the geometry of two uncalibrated cam-
eras as described by models of increasing complexity; homography, fundamental matrix,
and quadratic transformation. The issue of different parametrizations of these models is
also discussed, and the theory is supported by a large number of experiments with real
data.

FUTURE DIRECTIONS OF RESEARCH

An important question arises from the above discussion and from review of the papers in
this issue. The most popular robust vision techniques (the Hough transform and RANSAC)
were developed by the vision community. Similarly, the robust estimators imported from
statistics are often only simple computational modules in complex vision algorithms. Fur-
thermore, there is a significant difference in the nature of the data processed in statistics
and computer vision. In light of this, can the robust paradigm as developed in statistics
be helpful for progress in image understanding? That is, should vision researchers attempt
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to build a robust estimation toolbox exclusively from the standpoint of vision tasks and
without regard to work in statistics?

Whether one answers this question positively or negatively, it is still important to correctly
formulate statistical problems within vision in order to have a basic understanding of the
employed methods and thus to apply the proper technique. In support of this statement
the two concepts that are particularly important to statistical problems in vision should be
discussed: the definition of the residual and the knowledge of scale.

All of the robust methods discussed above, including the Hough transform, RANSAC,
M-estimators, and LMedS, are residual-based. The first step in applying any of these meth-
ods is to have the proper definition of the residuals, i.e., the deviations from an estimated
structure. Unlike classical statistics, in computer vision applications the residual cannot
be viewed as simply due to a stochastic error term within a well-defined model; instead,
it should be defined based on its geometric meaning. The definition affects the invariance
properties of the parameter estimates under transformations of the input and therefore the
optimality of the employed estimation process.

A classic example is the relationship between the Hough transform in computer vision
and linear regression in statistics. In computer vision, the Euclidean distance between a point
and a candidate line is generally more important, whereas in linear regression it is the vertical
listance, i.e., the residual in the direction of the “response.” Thus, the proper analogy of the
Hough transform to regression techniques in statistics is not to classical linear regression
but to orthogonal regression. The differences between linear and orthogonal regression
can be quite large, especially for lower signal-to-noise ratios, a typical situation in feature
extraction.

Once the appropriate definition of a residual is established, the issue of scale has to be
addressed. Methods from computer vision (Hough transform and RANSAC) treat scale as
known or as a tuning constant, while general robust statistical methods such as LMedS and
M-estimators treat scale as unknown and something to be estimated. Viewed in this way,
the computer vision estimators are less general than those from statistics. In effect, vision
methods sacrifice generality to be able to handle the complexities of the data.

The similarities and differences between the methods are revealed by considering all of
them under the unified banner of M-estimators with auxiliary scale. Suppose there aren
observations which are associated withn residualsr i , i = 1, . . . ,n. To estimate the model
underlying the measurements, the expression

n∑
i=1

ρ

(
ri

s

)
(1)

has to be minimized. In (1)s is a measure of scale andρ(·) is a function that is symmetric,
nonnegative, and nondecreasing onR+. The scale may be known a priori or estimated from
the data. In the latter case it may be computed off-line using a scale statistic, or it may be es-
timated simultaneously with the fit. Fits minimizing the criterion (1) are called M-estimates
with auxiliary scale. What distinguishes the various M-estimators with auxiliary scale is
the choice of theρ-function and the choice of the scale statistics.

The robust vision methods, i.e., the Hough transform and RANSAC, use the same special
case of the criterion (1), namely a scales determined a priori and

ρ(x) =
{

1 if |x| ≥1

0 if |x|< 1.
(2)
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In the Hough transform the fits correspond to local minima of (2). Several instances of the
same model can be recovered by identifying these minima in the voting space. In RANSAC,
the fit should correspond to the global minimum of (2), but multiple fits can be obtained by
repeating the voting process. It is important to stress, however, that the objective function is
the same for both the Hough transform and RANSAC. They only differ in the computational
procedure. The clustering used in the Hough transform and the probabilistic resampling in
RANSAC have no theoretical bearing on the estimation.

The least median of squares estimator can also be formulated as minimizing the criterion
(1) withρ defined as in (2), but with the scale term estimated simultaneously from the data as

s2 = min med
i

r 2
i , (3)

where the minimum is taken over all possible fits. This formulation shows not only the sim-
ilarities but also the differences between RANSAC and LMedS: RANSAC uses an a priori
scale whereas LMedS estimates scale. In vision application, this fundamental distinction is
often obscured by stressing the nearly identical nature of the resampling technique used by
RANSAC and LMedS for minimization. By emphasizing a computational issue instead of
the principle behind the estimation, the potential for developing more advanced methods
better suited to image understanding applications can be missed.

One improvement in both RANSAC and the Hough transform is obtained by understand-
ing that using the jumpρ-function (2) can lead to local instability in the fits. This issue
has been recognized in both the computer vision and the statistics literature. In particular,
both RANSAC and LMedS suggest a second reweighting step to increase stability, i.e., to
improve the local robustness behavior. Further improvements are obtained by incorporating
continuousρ functions directly into the original objective functions. This has been done
for the Hough transform, see for example [4], as well as for RANSAC, where the proposed
MLESAC estimator [8] is in fact an M-estimator with a known scale and a nonstandard
search technique. These modifications of the underlying objective functions resulted in
significant performance improvement.

The problem of scale is difficult to solve in computer vision. Prior knowledge of scale
is often not available, and scale estimates are a function of both noise and modeling error,
which are hard to discriminate. On the other hand, outright outlier rejection is very impor-
tant in vision applications. This argues for the use of M-estimators that have a redescending
influence function which in turn need accurate scale estimates. The combination of a large
amount of clutter, unknown scale, and the requirement of stable estimates provides a sub-
stantial challenge for estimation in computer vision. A large body of recent research in
statistics, however, addresses related issues. The proposed methods include simultaneous
M-estimators of scale, S-estimators, MM-estimators, and constrained M-estimators, e.g.,
[14]. These methods should be adapted to problems in computer vision since robust statistics
has still a lot to offer.

We can conclude that vision research has reached a level of maturity where it is ready
for a more formal systematic treatment of its statistical problems. Similarly, the prob-
lems raised by image understanding tasks are complex enough to challenge statisticians. A
closer collaboration between the two communities can be only advantageous for everybody
involved.

Finally, we thank the authors for putting up with several revisions andComputer Vision
and Image Understandingfor hosting this special issue.
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