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Abstract—Robust and fast 3D tracking of deformable objects,
such as heart, is a challenging task because of the relatively low
image contrast and speed requirement. Many existing 2D algo-
rithms might not be directly applied on the 3D tracking problem.
The 3D tracking performance is limited due to dramatically
increased data size, landmarks ambiguity, signal drop-out or
complex nonrigid deformation. In this paper, we present a robust,
fast, and accurate 3D tracking algorithm: prediction based col-
laborative trackers (PCT). A novel one-step forward prediction
is introduced to generate the motion prior using motion mani-
fold learning. Collaborative trackers are introduced to achieve
both temporal consistency and failure recovery. Compared with
tracking by detection and 3D optical flow, PCT provides the best
results. The new tracking algorithm is completely automatic and
computationally efficient. It requires less than 1.5 s to process a 3D
volume which contains millions of voxels. In order to demonstrate
the generality of PCT, the tracker is fully tested on three large
clinical datasets for three 3D heart tracking problems with two
different imaging modalities: endocardium tracking of the left
ventricle (67 sequences, 1134 3D volumetric echocardiography
data), dense tracking in the myocardial regions between the
epicardium and endocardium of the left ventricle (503 sequences,
roughly 9000 3D volumetric echocardiography data), and whole
heart four chambers tracking (20 sequences, 200 cardiac 3D
volumetric CT data). Our datasets are much larger than most
studies reported in the literature and we achieve very accurate
tracking results compared with human experts’ annotations and
recent literature.

Index Terms—Computed tomography (CT), heart, left ventricle,
motion learning, tracking, ultrasound.

I. INTRODUCTION

T HE 3D echocardiography and cardiac computed to-
mography (CT) are emerging diagnostic tools among

modern imaging modalities for visualizing cardiac structure
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and diagnosing cardiovascular diseases. The echocardiography
[1] is real-time, noninvasive imaging modality which is less
expensive than CT and magnetic resonance imaging (MR).
Ultrasound normally produces noisy images with poor object
boundaries. Compared with other imaging modalities (such as
ultrasound and MR), cardiac CT can provide detailed anatomic
information about the heart chambers, large vessels, and coro-
nary arteries [2].
Recently, the problem of automatic detection, segmentation

and tracking of heart chambers in 3D radiological imaging, such
as ultrasound and CT, have received considerable attentions. A
multiple-template based tracking approach is proposed in [3]
for tracking cardiac structure in MRI. A new deformable model
technique based on a snake-like approach and Fourier shape de-
scriptors parameterization is used in [4] for MRI, and a statis-
tical point distribution model based deformable model is pro-
posed in [5] for both MRI and CT. A 3D slice cut algorithm is
proposed in [6] which transfers the 3D segmentation problem
into several 2D segmentation problems in orthogonal planes.
Marginal space learning [7] and collaborative trackers [8] are
proposed for fast and robust segmentation and tracking of heart
chambers, in 3D CT and ultrasound, respectively. The accurate
tracking of the human’s heart motion has clear clinical signif-
icance for radiologists to evaluate dangerous cardiac disease,
such as acute myocardial infarction. Compared with traditional
2D tracking applications, one of the major considerations for
developing a practically useful 3D tracking algorithm is speed,
as the computational demand is much higher for 3D volumetric
data compared with 2D.
The widely used 2D tracking algorithms [9] would not pro-

vide good results if directly applied on 3D tracking applications.
In order to achieve robust tracking in 3D radiology images,
learning based detector and boundary classifiers are proposed
to robustly track the boundary of the heart in each frame. This
tracking by detection strategy can avoid accumulating errors
and is proven to be quite effective in recent literature [10]–[12].
However, it still has several problems.
• The boundary classifiers are sensitive to initial positions
[13] and good initializations have to be provided because
we can not exhaustively search all the possible configura-
tions in the whole 3D volume due to speed consideration.

• Tracking by detection applies a universal description of
the objects without considering any temporal relationship,
which leads to temporal inconsistence between adjacent
frames.
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Fig. 1. The flow chart of the PCTs using one step forward prediction, marginal
space learning, motion manifold learning, and detection/template trackers.

In this paper, we propose a fast and novel automatic 3D
tracking algorithm called prediction based collaborative
trackers (PCTs), which addresses these difficulties. PCT ap-
plies a motion prior learned on a low dimensional manifold
to constrain the collaborative trackers including a detection
tracker and a template tracker. Robust information fusion is
applied to generate the joint posterior probability. Motion pre-
diction is performed using registration guided one step forward
prediction. The whole procedure is performed periodically. A
flowchart of the PCT is shown in Fig. 1.
The contributions of this paper are as follows.
• A novel one-step forward prediction using motion mani-
fold learning, which respects the geodesic distances of both
the shape and motion of the heart. The motion priors can
provide good initial positions for the boundary classifiers.

• A collaborative 3D template tracker is applied to erase the
temporal inconsistence introduced by 3D detection tracker.

• A rectangle filter is used to reject outliers and achieve
robust data fusion. Smooth boundary tracking is obtained
by projecting the tracking points in each frame to the
constrained principal component analysis (PCA) shape
boundary.

• The algorithm can process a 3D volume, e.g.,
208 voxels, in pless than 1.5 s and we obtain subvoxel
tracking accuracy.

• The algorithm is a general framework which can be ap-
plied to diverse tracking applications in different imaging
modalities, as we shown in the experimental part.

To our knowledge, this is the first report to illustrate the
usage of motion manifold learning to provide the one step
forward motion prior for a set of collaborative trackers in
heart chamber’s tracking. This is also a novel and critical step
which increases not only the accuracy but also the tracking
speed. The paper is organized as follows. Section II intro-
duces the Bayesian tracking framework. The learning methods
and tracking algorithm are described in Sections III and IV,
respectively. Section V provides the experimental results
for endocardium tracking, dense myocardial region tracking
between endocardium and epicardium, and the whole four
chambers tracking. Section VI concludes the paper.

II. BAYESIAN TRACKING FRAMEWORK

Define as the true position of each 3D boundary point of
the heart at time and let represent the measurement. The
tracking problem can be formulated as an estimation of a pos-
teriori probability , where rep-
resents the past measurements. Sequential Bayesian tracking
based on Markovian assumption is performed recursively in a
prediction

(1)

and updating step

(2)

Bayesian tracking assumes that the following densities are
known. The denotes the distribution of the 3D left ven-
tricle (LV) surface points in the first frame. In our algorithm

is automatically calculated using the trained detector
and boundary classifiers. The represents the motion
prior (state model) and is predicted for the next frame. The

represents the measurement density.
Both the Kalman filter and particle filter [14], [15] assume

a Markov model, which only considers the previous state
to estimate the density of current state . In real tracking prob-
lems, the motion prior (state model) may not
follow a Markovian assumption and it could be of any form. In
our algorithm, we model the to be dependent
on both and . One-step forward prediction usingmo-
tion manifold learning is applied to estimate this critical motion
prior.
For themeasurement densities , we select two collab-

orative trackers: the detection tracker and the template tracker,
which can mutually benefit each other. The detection tracker
can discriminate the 3D target from background in low image
quality and noisy environment. The template tracker respects
the local image information and preserves the temporal consis-
tence between adjacent frames. The trackers are modeled as ,

for the detection tracker and for the template
tracker, then

(3)

Substituting (3) in (2) and replacing with
in (1), the final posterior probability

is obtained from the robust data fusion and the
.

III. MOTION LEARNING AND CLASSIFIERS TRAINING

The proposed PCT is not restricted to any specific heart
chamber. It can be used for the endocardium of the left ven-
tricle, the myocardial region between the endocardium and
epicardium, the right ventricle (RV), the left atrium (LA),
and right atrium (RA), or the arbitrary combination of four
heart chambers. In the experimental part, we will report three
applications: tracking of the endocardium of the left ventricle,
dense tracking of the myocardial region of the left ventricle,
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Fig. 2. Manifold embedding for heart motion patterns. (a) Two left ventricle surface mesh sequences. (b) 11 sequences embedded in a 2D subspace. Note: The
ED phase has larger volumes and represented as stars in (b), while the ES phase has smaller volumes and represented as squares in (b).

and the four chambers tracking in 3D cardiac CT, using the
proposed collaborative tracking and motion learning algorithm.
For illustration purpose, tracking the endocardium of the left

ventricle is utilized as an example to describe the proposed
method. The tracking of the myocardial region and the other
chambers follow the same training and testing procedures. Fur-
thermore, in the algorithm description part, although we just use
the endocardium of the left ventricle as an example, we refer to
left ventricle tracking throughout the paper for simplicity.
Each left ventricle training sequence contains a heart motion

cycle which starts from the end-diastolic (ED) phase, passes
through the end-systolic (ES) phase, and comes back to ED. The
learning contains three steps. First the motion modes are learned
using manifold learning and hierarchical K-means. Next, an ED
detector is trained to locate the position of the object in the first
frame. Finally, two boundary classifiers (one for ED and one for
ES) are trained using the annotated sequences to delineate the
boundary.

A. Learning the Motion Modes

In this section we explain the learning steps using the LV as
an example. After motion alignment, multiple motion modes
are learned using motion manifold learning and hierarchical
K-means.
1) Motion Alignment Using 4D Generalized Procrustes

Analysis: The training sequences contain 11–25 time frames
from one cardiac cycle, and each sequence is resampled to 16
frames using interpolation along the timeline. In this way we
generate 4D motion vectors containing the same dimension-
ality , where , is the number of
boundary points and three represents , , and dimensions.
Generalized procrustes analysis (GPA) is used to align all re-

sampled motion vectors to remove the translation, rotation and
scaling [16, ch. 5]. Please be aware that the shape variations and
motion patterns inside the motion vectors are still kept, GPA
just removed the difference of the training motion vectors in the
global coordinate systems. After the 4D GPA, these aligned mo-
tion vectors are decomposed into separated 3D shapes. All the

following learning steps are performed on the aligned 3D shape
vectors.
2) Motion Manifold Learning: Because the actual number

of constraints that control the LV motion are much less than its
original dimensionality, the aligned 3D shape vectors lie on a
low-dimensional manifold, where geodesic distance has to be
used to measure the similarities. Given the whole set of 3D
training shape vectors, where

, there exists a mapping which represents in
the low-dimensions as

(4)

where is the sampling noise and denotes
the original th shape in the low-dimensional manifold. The
nonlinear mapping is the transformation from the low-dimen-
sional manifold to the original space.
Unsupervised manifold learning is capable of discovering

the nonlinear degrees of freedom that underlie complex natural
observations. We apply ISOMAP [17] to embed the nonlinear
manifold into a low-dimensional subspace. We start by finding
the seven closest neighbors (seven was found to be the best) of
each point in the original space and connect the neigh-
bors to form a weighted graph . The weights are calculated
based on the Euclidean distance between each connected pair
of vectors. We then calculate the shortest distance
between any pair of points and in the graph . The
final step is to apply the standard multiple dimensional scaling
(MDS) to the matrix of graph distance . In this way,
the ISOMAP applies a linear MDS on the local patch but
preserves the geometric distance globally using the shortest
path in the weighted graph .
Fig. 2(a) shows two annotated LV motion sequences. Fig.

2(b) shows several LV motion representations in a low-dimen-
sional manifold. An interesting but expected observation is il-
lustrated in Fig. 2(b). The LV motion is almost periodic because
one cycle of heart beat starts from ED and returns to ED. In total
we applied manifold learning on 36 annotated LV motion se-
quences from the total 67 sequences. In order to make the figure
readable, we only show 11 sequences in Fig. 2(b).
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3) Hierarchical K-Means Clustering: Given all the mo-
tion cycles shown on the embedded subspace, a hierarchical
K-means clustering method is proposed to learn the motion
modes. First, we apply K-means on all the training ED shapes.
After this step, we align all the trained motion sequences by
moving their motion vectors to their own cluster center based
on the ED clustering results. In this way we cancel the trans-
lation among training motions with similar ED shapes, and
different cluster center represents the difference among the ED
shapes of the left ventricle. In the second round of K-means, the
learning procedure focuses on separating those left ventricles
with similar ED shapes, but different motion patterns. Each
aligned motion sequence is transformed to a dimensional
vector, where represents the reduced dimensionality and 16
represents the number of frames. K-means is applied again
within each group, and the K-means cluster center in this round
represents a learned motion mode. Each motion mode is a
weighted sum of all sequences that are clustered into the same
group. The weights are proportional to their Euclidean distance
from the cluster center. The geodesic distance in the original
space is modeled by Euclidean distance in this embedded
low-dimensional manifold. In the left ventricle tracking, we
tested different dimensions, such as two, three, and four as the
dimensionality in the low dimensional manifold, and no big
difference is discovered regards to the performance. Therefore,

is chosen as the reduced subspace dimensionality for
the left ventricle tracking in 3D echocardiograpy. For the
twist motion tracking in the myocardial region which contains
large degree of freedoms, we performed the motion manifold
learning on a manifold with higher dimension . The
dimensionality of the embedded manifold depends on the
application and can be determined heuristically. We want to
clarify that low dimensional nonlinear motion manifold is just
used in the training stage to cluster the motion patterns. After
the clustering is done, we will record the clustering index of
each motion, and the averaged motions with original dimen-
sionality (e.g., for left ventricle) are used as the
learned motion patterns. The one-step forward motion prior is
generated by nonlinear registration between the learned motion
patterns and the testing data (shown in details in Section IV-B).

B. Learning the ED Detector

In this step we train a 3D detector to locate the pose of the
LV in the motion sequence. We first calculate a mean shape by
averaging all the left ventricles in the ED frames of the anno-
tated training sequences. A PCA shape space is calculated for
all the ED shapes at the same time and the first 100 components
are kept. In order to automatically initialize the tracker, we need
to find the similarity transformation from the mean shape to the
LV in the ED frame for each sequence as the testing volume can
have arbitrary pose. Discriminative learning based approaches
have proven to be efficient and robust for 2D object detection
[18]. The object is found by scanning the classifier over an ex-
haustive range of possible locations, orientations, and scales in
an image. However, it is challenging to extend them to 3D ob-
jection detection problems since the number of hypotheses in-
creases exponentially with respect to the dimensionality of the

parameter space. As the posterior distribution is often clustered
in a small region, it is not necessary to search the parameter
space exhaustively.
Recently, we proposed marginal space learning (MSL) [7],

[19] to efficiently detect a 3D anatomic structure in various
medical imaging modalities. Here, we apply MSL to learn an
ED detector to locate the LV in the first frame efficiently. The
idea for MSL is to incrementally learn classifiers on projected
marginal spaces. We split the estimation into position detection,
position-orientation detection and full similarity transformation
detection. The MSL reduces the number of testing hypotheses
by six orders of magnitude in our applications, which makes the
directly training of the detector on 3D volumetric data a feasible
procedure.

C. Learning the Boundary Classifiers

After we obtain the pose of the LV in the ED frame, we need
to segment its boundary to automatically start the trackers.
The active shape model (ASM) [13] is used to deform an
initial estimate of a nonrigid shape. The nonlearning based
boundary classifier in the original ASM does not work in our
application due to the complex background and weak edges
in 3D ultrasound. Learning based methods can exploit image
evidences to achieve robust boundary detection. Boundaries
with different orientation are usually detected on pre-rotated
images [20]. Since 3D volume rotation is very time consuming,
we use steerable features [7] for boundary detection and avoid
rotating the 3D volume. For each boundary point (289 in total),
we sample several points from the volume around it under a
special pattern, which embed the orientation information into
the distribution of the sampling points. A few local features at
each sampling point, such as voxel intensity and gradients, etc.,
are calculated. The advantages of steerable features are that
they combine the advantages of both local and global features.
Two boundary classifiers, one for LV motion close to the ED

phase and the other for LV motion close to ES, are trained using
the probabilistic boosting tree (PBT) [21]. The PBT ensembles
many strong classifiers into a tree structure. The widely used
cascade boosting [18] can be treated as a special case in PBT.
The learned boundary classifiers are used to automatically seg-
ment the boundary of the LV, to initialize the trackers, and also
used as the detection tracker for the following frame. In Fig. 3,
we show some positive and negative training samples used for
training both the detector and the boundary classifiers.

IV. TRACKING PROCEDURE

The tracking procedure on a testing sequence contains four
steps. The is initialized using the learned ED detector and
the ED boundary classifier. At time , registration based re-
verse mapping and one-step forward prediction are used to esti-
mate the next state . We then apply two col-
laborative trackers and robust data fusion to estimate the mea-
surement density . In order to obtain smooth tracking of
the LV, each boundary point is mapped to a shape constrained
3D boundary. The final results are obtained by maximizing the
posterior probability in (2). These prediction (1) and updating
(2) steps are performed recursively for each frame in a sequence.
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Fig. 3. The positive (a), (c) and negative samples (b), (d) used for training. (a)
and (b) Training samples for the detector. (c) and (d) Training samples for the
boundary classifiers.

A. Initialization of Tracking

In order to initialize the boundary tracking of the LV in an
automatic manner, we need to automatically detect and seg-
ment the LV in the ED frame of a testing sequence. Given the
ED frame, all positions are scanned by the trained position de-
tector. The top 100 candidates , are
kept. Each candidate is then expanded using 1000 hypothesis
on orientations , . The trained
position-orientation detector is applied for each candidate and
the best 50 are kept. These 50 candidates are expanded using
1000 scale hypothesis ,

. Evaluated by the position-orientation-scale de-
tector, the best 100 candidates are averaged to produce the final
similarity transformation estimation.
After the similarity transformation is calculated, the LV

mean shape is registered and superimposed on the ED frame of
the testing sequence as the initial position. For each boundary
point we search 12 mm range on the normal directions of the
boundary. (The value 12 mm was set considering both speed
and accuracy.) The learned boundary classifier is used to move
each boundary point to its optimal position where the estimated
boundary probability is maximized. Fig. 4 shows the tracking
initialization result.

B. One Step Forward Prediction

In this step we calculate the motion prior (state model)
using the learned motion modes. At time

, we first transform the current 3D shape
to the corresponding frame of each motion mode in the 4D
GPA coordinate system. Thin plate spline (TPS) transformation
[22] is applied to perform this mapping. The TPS is a nonrigid
transformation between two 3D point sets. The transformation
contains an affine mapping plus a warping coefficient matrix.

We used 72 uniformly sampled points from 289 boundary

Fig. 4. The four canonical views and a 3D representation of the segmentation
result (automatic tracking initialization) of LV.

points to estimate the TPS transformation by minimizing

(5)

where denotes the 3D mesh point on the learned motion
modes and denotes the point on the testing object’s boundary.
The is a function containing a kernel which represents the
internal structure relationship of the point set. The regularization
parameter is chosen as 1.5. We refer the readers to [22] for
more details.
The prediction is applied on the motion mode which mini-

mizes the previous 1 to accumulated TPS registration er-
rors

(6)

where represents the number of motion modes.
The is the th motion mode in the th frame and the

is the registration error.
After we found the correct motion mode using (6), the

final prediction result in the real world coordinate system of
the is obtained using the reverse mapping

. A motion mode generated by reverse mapping using TPS
is shown in Fig. 5.
There could be motion mode changes during the prediction

when the prediction starts from one motion mode and jumps
to another mode during tracking. This corresponds to the LV
motion which starts from an ED shape in one learned motion
mode, but has a motion trajectory close to another mode. This
is the reason we calculated the accumulated TPS registration
error, and just perform one-step forward prediction instead of
calculating the whole cycle motion prior one time. The one-step
forward prediction step (illustrated in Fig. 6) provides accurate
motion prior in PCT.
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Fig. 5. The LV boundaries in 3D world coordinates of a motion mode. The
results are calculated using TPS reverse mapping and superimposed in the 2D
reduced motion manifold.

Fig. 6. The procedure for one step forward prediction in PCT.

C. Collaborative Trackers

Given the motion prior learned using
one-step forward prediction on the motion manifold, for each
boundary point the learned boundary classifiers are used to
search in its 12 mm range on the normal direction. The
optimal position is found by maximizing the boundary proba-
bility. The ED boundary classifier is used when the frame index
is close to ED and the ES boundary classifier is used when
it is close to ES. The final position using detection tracker is
obtained by maximizing in (3).
In order to compensate the disadvantages of detection

tracking mentioned in the introduction, a 3D template tracker
is also applied. Given a 3D boundary point and its neigh-
borhood , let denotes the transformation
of the template. (The neighborhood was chosen to be a cube
of voxels based on experiments.) The goal is to
search the best transformation parameters which minimize
the error between and

(7)

Because there is only a small change of parameter between
adjacent frame, the minimization of (7) can be solved by lin-
earizing the expression

(8)

At the end the result is obtained.
Although the template matching algorithm is not robust and

only works under the assumption of small inter-frame motions,
it preserves temporal consistence and its disadvantages can be
compensated by the one-step forward prediction and the de-
tection tracker. Template updating is a key issue in template

Fig. 7. The prior for detection tracker (red solid line) and for
template tracker (blue dotted line). The ED phase has frame index zero and ES
phase is around frame six.

tracking. If we update the template in each frame only based
on the previous template tracking result, the error will be in-
evitably accumulated and finally results in the template drifting
[23], [24]. Generally it is difficult for template tracking to re-
cover from drifting without special processing. In our method
we update the template using the previous collaborative tracking
result. Because the learned motion prior is enforced and detec-
tion is used, this updating scheme can help the template tracker
to recover from the template drifting. As shown in [25]–[27],
learned motion prior is quite effective to help tracking to re-
cover from failures. Collaborative kernel trackers are also suc-
cessfully used in [28].

D. Data Fusion

Fusion of the collaborative tracking is obtained by defining
prior distribution , in (3). Based on domain expert’s
knowledge, both priors were designed as the exponential func-
tions of , which is illustrated in Fig. 7. We show only one
heart beat cycle which contains 16 frames. In order to reject
outliers and achieve robustness, we apply a rectangle filter of

mm on the final data fusion results to erase the motion
replacements which are larger than this size between adjacent
frames. The corresponding position of the eliminated boundary
point is recalculated based on the bicubic interpolation of its
neighbors. After this step we obtained the .

E. Postprocessing and Projection

Due to speed considerations, the detection tracker is designed
tosearchonthenormaldirectionof theboundary,andthetemplate
tracker is searching along the direction of the gradients. Both of
them can not provide smooth tracking results. Let denotes
the 3D boundary point-set after the data fusion step. We project
onto the PCA shape space calculated from the training stage,

and obtain a smooth boundary point set . Please be aware that
here the PCA shape model indicates the heart chamber models
built for theASMbased boundary classifier in Section III-C. The
first100componentsaresavedtokeepenoughdetailsandprovide
smooth boundaries aswell.A surface of the smooth boundary
is constructed using the 3D triangulation. Each boundary point
on is projected onto the smooth surface byfinding the triangle

which minimize the square
distance

(9)
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Fig. 8. The working flow chart of the automatic endocardium tracking of the left ventricle and the measurement of the ejection fraction and volume-time curve.

TABLE I
PTM ERRORS MEASURED IN MILLIMETERS USING

THREE TRACKING ALGORITHMS

where with
. Here, is one vertex in the triangle

and and represent two edges. In this way, wemaintain both
the tracking accuracy and the mesh smoothness.

V. EXPERIMENTAL RESULTS

The proposed PCT is a general framework which can be ap-
plied to track individual heart chamber, the combination of heart
chambers, the epicardium and endocardium or the myocardial
region, etc. In this section, we demonstrate the experimental re-
sults applying PCT on endocardium tracking, the myocardial
region dense tracking, and four chambers whole heart tracking.

A. Endocardium Tracking of the Left Ventricle

In total 67 3D ultrasound endocardium motion sequences are
collected. Each subject contributes one sequence, therefore we
have 67 different subjects. Each 4D motion sequence
contains from 11 to 25 3D frames from one cardiac cycle. In
total we have 1143 ultrasound 3D volumetric data. Our dataset
is much larger than those reported in the literature, e.g., 29 cases
with 482 3D frames in [5], 21 cases with about 400 3D frames in
[29], and 22 cases with 328 3D frames in [30], etc. The working
procedure is shown in Fig. 8.
The imaging protocols are heterogeneous with different cap-

ture ranges and resolutions along each dimension. The dimen-
sionality of 27 sequences is and the other 40
sequences is . The , , and resolution ranges
are [1.24 1.42], [1.34 1.42], and [0.85 0.90] mm. In our exper-
iments, we randomly select 36 sequences for training and the
rest are used for testing.
The accuracy is measured by the point-to-mesh (PTM) error.

All 3D points on each frame of the testing sequence are pro-
jected onto the corresponding annotated boundary of the test set.
In order to make the measurement symmetric we also calculate
the reverse mapping distance. The average projection distance
from the point to boundary is recorded as the PTM error, .
For a perfect tracking, the should be equal to zero for each
3D frame. In Table I, we compared the quantitative using
the proposed PCT with tracking by 3D optical flow and tracking
by detection.
The 80% column in Table I represents the 80th percentile of

the sorted , and is commonly used by doctors to evaluate

the usability of the system. For example, if the doctor can tol-
erate an error of 1.5 mm, they normally expect 80% of the errors
to be smaller than this number. The mean we obtained is
1.28 mm with a 80% error below 1.47 mm. In this experiment
we show that collaborative trackers is obviously superior to each
individual detection or template tracker.
In Table II we list the quantitative comparison results with

other eight algorithms. PCT provides one of the best results in
the recent heart segmentation/tracking literature. Although the
algorithm in [31] reports better mean PTM errors, there are sev-
eral differences between these two studies: 1) PCT is completely
automatic including the initialization step while [31] initializes
the tracker in a semi-automatic manner; 2) PCT is roughly three
times faster than [31]; 3) PCT contains 67 patients which is two
times larger; 4) The best resolution of the data that PCT had is

mm while the data in [31] had resolution
mm; 5) The accuracy reported in PCT is based on a

random half training, half testing manner while [31] reports the
leave-one-out result.
The systolic-diastolic function can be visualized using the

volume-time curve which represents continuous endocardium
volume change over the time . It is an important diagnosis term
to evaluate the health condition of the heart. In Fig. 9, we il-
lustrate one heart cycle of two systolic-diastolic functions. The
curves for all three tracking algorithms and the ground-truth an-
notation are shown. Our algorithm (PCT) provides themost sim-
ilar functions to the ground truth curves. Given the systolic-di-
astolic functions, we had calculated the ejection-fraction (EF)
rate compared with the ground-truth annotations and the re-
sults are listed in Table III. The ejection fraction is defined as

, where and represent the vol-
umes of the left ventricle at the ED and ES phase, respectively.
A normal LV ejection fraction is 55%–70%. The decreased ejec-
tion fraction may indicate problems such as weakness of heart
muscle, problem with heart’s valves or long-standing, uncon-
trolled high blood pressure, etc.
Two types of errors are frequent in tracking endocardium in

3D ultrasound. The first type is the leakage error, , which
often happens on the mitral valve region. This is introduced by
the similar appearance of the mitral valve compared to the en-
docardium boundary. A good left ventricle boundary tracking
algorithm should not follow the motion of the leaflets of the
mitral valve. Tracking by detection failed on frame 8 [row 3,
columns 3 and 4 in Fig. 10(b)] because it always searches for
what it learned in the training stage, but ignores all the local
image information and temporal consistency.
The second type is the shrinkage error, , which often

happens on the apex region. The 3D optical flow failed on frame
6 [row 2, columns 5 and 6 in Fig. 10(c)] because of the low
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TABLE II
PTM ERRORS OF PCT COMPARED WITH EIGHT DIFFERENT SEGMENTATION AND TRACKING ALGORITHMS. EMPTY FIELD MEANS THE INFORMATION IS NOT
AVAILABLE. BY DEFAULT THE ERROR IS MEASURED WITH MILLIMETERS. IN [32] THE AUTHOR ONLY REPORTS VOXEL ERROR WITHOUT RESOLUTION

INFORMATION AVAILABLE, AND IT WAS TEST ON 10 SCANS FROM THE SAME SUBJECT, DENOTED. AS 1(10) IN THE TABLE

Fig. 9. Two volume-time curves demonstrate the whole cardiac cycle, which
includes the systole stage and the diastole stage.

TABLE III
EF RATE ESTIMATION ERRORS (%) AND LEFT VENTRICLE VOLUME

ESTIMATION ERROR (ml) USING PCT COMPARED WITH THE GROUND-TRUTH

image quality around the apex region. This proves that motion
prior is necessary to obtain enough shrinkage for endocardium
tracking in the 3D echocardiography because of the low quality
of ultrasound imaging.
Using our algorithm, shown in Fig. 10(a), neither of the er-

rors are observed. Therefore we achieve more accurate tracking
results both visually and quantitatively.
The most important practical consideration for 3D tracking

is computational complexity. One of the major reasons to pro-
pose marginal space learning, steerable features, registration
based reverse mapping and one-step forward prediction in PCT
is the speed consideration. The currently C++ implementation
of PCT requires 1–1.5 s to process one 3D volume containing

voxels. It takes about 20 s for the
whole motion sequence. PCT is at least two times faster than the
slice-cut algorithm presented in [6] which is even not directly
working on 3D volumetric data, three times faster than [31], and

about hundreds of times faster than [32] which reported using a
MATLAB implementation.

B. Dense Myocardial Region Tracking of the Left Ventricle

In this section, we demonstrate the performance of the pro-
posed tracking algorithm for dense tracking in myocardial re-
gion. The extension of the endocardium tracking to myocardial
region tracking is straightforward. In the starting frame (typ-
ically the end-systole or end-diastole cardiac phase), we ini-
tialize the tracking process automatically by detecting the en-
docardial and epicardial boundary of the LV, the same tracking
procedure described in Section IV is followed to track the epi-
cardium, endocardium, and the myocardial region of the left
ventricle. The final dense tracking results are achieved by tes-
sellating the whole myocardium into a 3D dense mesh. The pro-
cedure is shown in Fig. 11.
In the myocardial region dense tracking, high frame-rate 3D

ultrasound motion sequences were acquired with the average
volume size of . The average temporal resolution
is 44 frames/s.
1) In Vitro Study: To evaluate the accuracy of PCT for dense

myocardial region tracking, we performed an in vitro experi-
ment on animals. The ground-truth motion was generated by a
rotation device and a water pump controlling the stroke volume.
Two crystals were implanted in the apical and middle regions
of the left ventricle, respectively, to measure the myocardial
movement. The average distance between two crystals is 30
mm. Four volumetric ultrasound sequences were acquired with
10, 15, 20, and 25 rotation degrees, respectively, and three se-
quences with different stroke volumes. As reported in Table IV,
our tracking results are consistent with the ground-truth mea-
surements on both rotation and displacement data. The displace-
ments in Table IV(b) were computed based on a 30 mm refer-
ence length.
Furthermore, to evaluate the PCT tracking results for my-

ocardial strain estimation, we compare them against the crystal
measurements for the same subjects in the in vitro study. The
ground-truth longitudinal Lagrangian strain [37] can be com-
puted based on the displacement reported in Table IV(b), where
the two crystals were implanted in the apical and middle re-
gions of the left ventricle, respectively. Table V reports the com-
parison between our estimated strain values and the ones from
crystal measurements. The two crystals were implanted in the
apical and middle regions of the left ventricle, such that the lon-
gitudinal Lagrangian strain can be computed based on the dis-
placement as the ground-truth measurement in the top row. The
estimation results in the middle row are computed based on the
proposed tracking method. The low difference values in Table V
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Fig. 10. Comparative tracking results on a testing sequence with 12 frames. (a) Tracking results using the proposed method. (b) Tracking by detection. (c) Tracking
using 3D optical flow. The rows correspond to frame indices 1, 6, 8, and 10, respectively.

Fig. 11. Example initializations of the endocardial and epicardial boundary of the LV. From left to right, the endo- and epi-cardial mesh shown in multi-planar
reformatted planes (MPRs): apical four chamber plane, apical three chamber plane, apical two chamber plane, and short axis middle plane. The last subfigure
shows the resulting tessellated 3D mesh.

TABLE IV
IN VITRO EXPERIMENTS ON BOTH (A) ROTATION AND (B) DISPLACEMENT DATA

TABLE V
COMPARISON OF THE LONGITUDINAL STRAIN ESTIMATION BETWEEN OUR
METHOD AND THE CRYSTAL MEASUREMENTS IN THE In Vitro STUDY

show clearly that the results from our method are consistent with
the clinical measurements.
2) In Vivo Study: To evaluate the robustness of the algorithm,

we tested it on a large data set including 503 volumetric ultra-
sound sequences from human subjects. The data set was ran-

TABLE VI
PERFORMANCE ANALYSIS OF MYOCARDIUM TRACKING ON A LARGE
DATA SET INCLUDING 503 3D+T ULTRASOUND MOTION SEQUENCES

domly split into a training set and a testing set, where the training
set was used to train the detectors, generate the shape model
and produce the motion priors in Section III, while the testing
set reflected the performance of the algorithm for unseen data.
The results on both the training and testing sets are reported in
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Fig. 12. Many clinically relevant measurements can be calculated after myocardium tracking, including: (a) strain, (b) velocity, and (c) displacement values in
the longitudinal, radial, and circumferential direction, respectively.

Fig. 13. The heart mesh models for the four chambers (a) The mesh model for the LV, with green for the LV endocardium and magenta for the LV epicardium.
(b) The mesh model for the LA. (c) The combined LV and LA mesh. (d) The mesh model for the RV. (e) The mesh model for the RA. (f) The combined mesh
model for both RV and RA.

Fig. 14. The four chambers tracking results on a testing 3D CT sequence with 8 frames. (a)–(h) The 1–8 frame index of the whole sequence.

Table VI. In the first experiment, the data set was evenly split
into a training set with 239 sequences and a testing set with the
remaining 264 sequences, while in the second experiment the
training set (434) and the testing set (69) were not balanced. The
error measurements were computed as the PTM error, defined in

Section V-A, between our estimated mesh and the ground-truth
annotations provided by experts. The low error values on both
the training and testing data demonstrate the high accuracy and
robust performance of the proposed tracking algorithm on both
seen and unseen data. An example of strain, velocity and dis-
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placement estimation results is shown in Fig. 12. In the top row,
the left picture in each pair shows the estimated values mapped
to the endocardial boundary of the left ventricle, while the right
one shows the direction and magnitude of the dense velocity
field. The apical, middle, and basal regions are marked in red,
green, and blue, respectively. The bottom row shows the plot on
each region, where the horizontal axis is time, and the vertical
axis is the estimated mechanical parameter value. The vertical
blue bar indicates the time stamp of the frame displayed in the
top row. Please note that in Fig. 12(c) the recovered rotation mo-
tion in the apical and basal regions are in opposite directions,
which shows that our method can recover the twist motion of
the left ventricle.

C. Four Chambers Tracking of the Heart

In order to show the generality of PCT in handling different
imaging modality, we also tested it on four chambers tracking in
3D cardiac CT. The same procedures described in Section IV are
applied on each heart chamber separately, and the whole heart
mesh is a tessellation of each individual heart chamber’s mesh.
The ED detector and boundary classifier were trained on 323

static cardiac CT volumes from 137 patients with various car-
diovascular diseases. The cardiac motion model was trained on
additional 20 sequences (each with 10 frames). Our dataset is
much larger than those reported in the literature, e.g., 13 in [38],
18 in [5], 27 in [39], and 30 in [40].
The data was collected from 27 institutes over the world

(mostly from Germany, the USA, and China) using Siemens
Somatom Sensation or Definition scanners. The imaging pro-
tocols are heterogeneous with different capture ranges and
resolutions. A volume may contain 80–350 slices, while the
size of each slice is the same with 512 512 pixels. The
resolution inside a slice is isotropic and varies from 0.28 to
0.74 mm for different volumes. The slice thickness (distance
between neighboring slices) is larger than the in-slice resolution
and varies from 0.4 to 2.0 mm for different volumes.
The four chambers mesh models are shown in Fig. 13. The

left ventricle, including both epicardium (magenta) and endo-
cardium (green), is shown in Fig. 13(a). The left atrium is rep-
resented by an open mesh separated by a mitral valve, shown in
Fig. 13(b). The combined left heart mesh is shown in Fig. 13(c).
The right ventricle has a more complicated shape and its model
is represented by an open mesh, shown in Fig. 13(d). The mesh
model for the right atrium and the combined mesh are shown
in Fig. 13(e) and (f), respectively. The detailed mesh modeling
can be found in [41].
The motion model for each chamber in Fig. 13 is learned

using the same motion manifold learning method described
in Section III-A. Object detector and boundary classifier are
trained for each heart chamber, respectively. In the tracking
stage, the same one step forward prediction procedure de-
scribed in Section IV is utilized to provide motion prior during
the tracking procedure. The robust data fusion is applied to
calculate the final motion displacement. The 3D cardiac CT
four chambers (LV-epicardium, LV-endocardium, LA, RV,
and RA) tracking results for each frame in a CT sequence
containing eight frames are shown in Fig. 14.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we presented a robust, fast and accurate PCT
and tested in both 3D ultrasound and CT. PCT can process
a 3D volume in less than 1.5 s and provides subvoxel accu-
racy.We demonstrated that PCT increases the tracking accuracy
and especially speed dramatically. The final accurate results are
achieved by introducing the one-step forward prediction motion
prior. The robustness to complex background and weak edges is
obtained from the learned discriminative detector and boundary
classifiers. The temporal consistency is preserved by the tem-
plate tracker in the collaborative trackers.
Instead of building specific models manually, all the shape

priors and motion patterns in PCT are based on learning. The
algorithm is therefore general enough to be extended to other
3D medical tracking problems. The generality of PCT is already
proven by a diverse and extensive experiments using three chal-
lenging heart tracking applications. Currently, we are working
on extending PCT to other tracking applications, such as lung
tumor tracking in continuously acquired fluoroscopic video se-
quences.
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