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Unbiased Estimation of Ellipses
by Bootstrapping

Javier Cabrera and Peter Meer, Senior Member, IEEE

Abstract—A general method for eliminating the bias of nonlinear
estimators using bootstrap is presented. Instead of the traditional mean
bias we consider the definition of bias based on the median. The
method is applied to the problem of fitting ellipse segments to noisy
data. No assumption beyond being independent identically distributed
(i.i.d.) is made about the error distribution and experiments with both
synthetic and real data prove the effectiveness of the technique.

Index Terms—Implicit models, curve fitting, bootstrap, low-level
processing.
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1 INTRODUCTION—CONIC FITTING

IMAGE formation is a perspective projection of the 3D visual envi-
ronment. Features extracted from a 2D image can be useful only if
they preserve some of the geometric properties of the 3D object
they correspond to. Collinearity and conicity are such properties,
and therefore line and conic segments are widely used as geomet-
ric primitives in computer vision.

Let f(u, 8) = 0 be the implicit model of a geometric primitive

in the image. The vector u = (x y 1) represents the image coordi-
nates, and the vector 6 the parameters of the model. For a conic,
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and note that the matrix A is symmetric.

The image points available for estimating the model are v, i =
1, ..., n. The coordinates of these points are often corrupted by noise
and have only integer values since the image is defined on a discrete
lattice.

Assume that u; is the closest point on the curve to the image
point v;, and thus

flu,, =0, i=1 .., n 2)
The Euclidean distance between the two points is
42 = (u, —v,) (u, - v,). 3)

To estimate the parameters of the model the following minimiza-
tion problem has to be solved

i
minz di2 subject to f(u,, 8) =0, i=1,.., n (4)
L e

i

Using the method of Lagrange multipliers we can define

Lu)y=d"-2Af(u,6), i=1,..,n 5
and setting
e 6)
du
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results in
u; ~v, = AVf(u,, 6), @)

where Vf(u,, 8) is the gradient of f(u,, 8) with respect to u;.

The quantity f(v,, 8) is known as the algebraic distance of the
point v; from the curve represented by the implicit model. The
first order Taylor expansion of f(v;, 6) around u, is

f(v;, 0) = f(u;, 0) + (w, - v,)' Vf(u,, 6) (8)
and from (2), (7), and (8) we have
fv;, 6) = AV, o), ©

where HVf(ui, 9)”2 is the Euclidean norm of the gradient vector.

Combining (3), (7), and (9) we obtain the expression
2
(v;, 6)
i’ = __f’—z (10)
77w, o)
Note that (10) already includes a linear approximation for the al-
gebraic distance. An additional approximation, however, is also
required since the norm of the gradient is computed in the un-
known point u; on the curve. To make the computation possible,
instead of u; the corresponding point in the image v, must be
used. Thus, the minimization problem to be solved is

t v, 8

min - (11)
0 zl Vi, o)

In line fitting the denominator is a constant and the solution can be
found as an eigenvalue problem ([10], sec. 11.7.2). Recently, Ka-
natani [14], and Kanazawa and Kanatani [15] have shown that a
similar approach, using eigenmatrices, can be used for conics as
well. For a conic, the expression (11) is nonlinear in the parame-
ters, and to find the solution iterative methods are required. An
extensive discussion of the minimization, involving the use of a
second order approximation for the algebraic distance is given in
([10], sec. 11.10).

The conics of interest in image analysis are the ellipses, but
most often only a part of the ellipse can be recovered from the data
(edge points). Instability of the fit for short noisy conic segments is
a serious practical problem [19]. Another important and related
issue is the bias of the fit.

The algebraic distance of a point from an ellipse is proportional
to the ratio between two Euclidean distances. The distance from
ellipse center to a corrupted point is divided by the distance
measured along the same direction from the center to its corre-
spondent on the ellipse [1]. The influence of a corrupted image
point on the estimated parameters thus depends on the position of
that point relative to the ellipse. For example, at the high curvature
regions of the ellipse the points on the curve are farther from the
center and the influence of the noisy image points is down
weighted. The obtained fit will be biased toward smaller ellipses.
When the ellipse is estimated from relatively small segments the
magnitude of the bias can be significant. Weighting of the alge-
braic distance with the gradient magnitude, as in (11), does not
eliminate the bias; Kanatani [14], and Kanazawa and Kanatani [15]
provide a theoretical proof, while Rosin [20] shows the depend-
ence of the distance measure on the relative position of a point.

The difficulty of reliably estimating ellipses yielded a large
number of methods. See [21] for a review. However, the problem
of bias elimination has not been considered until recently. Porrill
[19] proposed an extended Kalman filter formulation incorporat-
ing second order information about the implicit model. The Kal-
man filter assumes Gaussian noise which for integer point coordi-
nates may not hold. The initial values of the filter and the variance
of the noise must be provided. The method was also used in [6].
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Kanatani [14], and Kanazawa and Kanatani [15] proposed an it-
erative renormalization method for bias elimination. The weights
of a least squares minimization procedure are updated based on
the smallest eigenvalue of the current conic matrix (1) estimate.
Werman and Geyzel [23] proposed a resampling technique for
unbiased estimation of the conic parameters. The average values
of determinants derived from ordered five-tuples of image points
are used to compute the parameters. Unbiased estimation of the
fifth conic parameter requires that the nature of the noise is
known, i.e., that it can be .assumed to be Gaussian. Werman and
Geyzel considered only asymptotic unbiasedness and thus the
property may not hold for practical sample sizes. A simple empiri-
cal iterative procedure for unbiased estimation of circular arcs is
described in [12].

Optimum least squares estimation of an unknown 3 x 3 matrix
A by solving

min Y w,(x{Ay,)’ (12)
is a generic problem in computer vision. It appears in 3D motion
estimation, recovery of 3D structure from uncalibrated cameras,
etc. As in the case of conics the estimation is biased, e.g., ([13], sec.
10.2.1), [16], and having a general method for bias reduction is of
importance.

In this paper, we propose such a general, numerical method
that belongs to the class of resampling techniques. The method is
nonparametric, it is based on bootstrap [7], and can be applied to
almost any estimator. Since it is nonparametric, no specific
(parametric) assumption about the errors is required beyond the
usual ones of being centered at zero and independent identically
distributed (i.i.d.). The latter, however, can be relaxed [18]. Section
2 starts with a short review of bootstrap and the definition of a less
used type of bias, median bias, which is more adequate for com-
puter vision applications. The proposed bias reduction method,
Section 3, employs median bias. In Section 4, the new technique is
applied to ellipse fitting, both for synthetic and real data.

2 A GENERAL METHOD FOR BIAS REDUCTION

In this section the main result of the correspondence is presented.

2.1 Bootstrap

Bootstrap is a method for estimating the sampling distribution of a
statistic from the available data, and was introduced in statistics
by Efron in 1979. For an excellent monograph see [7], for more
recent discussions [17], [24]. Bootstrap is yet to be employed for
computer vision problems; its only related application is in pattern
recognition [11].

The idea of bootstrap is simple. Let the observed sample be
vy, ..., v,. Under the errors in variables model [9] the sample points
are corrupted versions of the points q, ..., q, satisfying a con-
straint f(q, 6) = 0, and thus the observations v; are modeled by
(13)

v, =q,+¢€ subject to f(q, 8)=0 i=1 .., n;

where €, ..., €, areiid. error terms with distribution F. Whenever
the noise does not belong to a known parametric family, the dis-
tribution F is unknown. In such a case the underlying model (13)
of the data is called semiparametric.

Let the empirical distribution of the observed residuals

&, ..., & be F. The estimator of 6 is defined by a statistic T(F)
and the observed value of the statistic is § . To obtain the sam-
pling distribution of 6 knowledge of F would be required. The
plug-in bootstrap principle ([7], ch. 4) substitutes F by F and the
distribution of @ is simulated by generating N bootstrap samples

of size 1 from F . Sampling from F is the same as sampling with
replacement from the set €, ..., €,. The value of the statistic is

, é:\,, and the boot-

strap estimator of the sampling distribution of d is the empirical

calculated for each bootstrap sample, é; P

distribution of é;, ey éN The statistical characteristics of § are
derived from this empirical distribution.

The above described technique is known as bootstrapping re-
siduals [7], and it is the method used in this paper. The details of
the implementation are discussed in Section 3.1.

2.2 Median Bias

For a given 8, the bias of the estimator is defined as the difference
between the center of the distribution T(ﬁ) and 0 . The definition
of center can be either the mean or the median. If the distribution
of T(F) given 6 is skewed or it has long tails, the median is a bet-
ter definition of center than the mean. The problem of estimating
the ellipse parameters with a least squares estimator belongs to
this category. An estimator of 8 is called median unbiased if the
median of T(F) given 0 is 6,

Med, [T(F)] = 6.
Suppose that T(F) is a biased estimator of 8 under the semi-
parametric model (13). To reduce the median bias of T(F) a new

estimator is derived through a procedure called target estimation
[2], [3]. The median function g(8 ) is defined as

$(6) = Med, [T(E)]. (15)

This is a function which for each value of 8 provides the value of
the median of the corresponding sampling distribution of T(F).

(14)

Therefore, the target estimator 6 of 0 is

6=g"0, (16)
given that giI(O) exists. The target estimator is median unbiased if
8(0) is a strictly monotonic function of 8 . The proof is by simple

manipulations
Med,[6] = Med, [ (0)] = ¢ (Med,[0]) = g (g@®) = 6. (17)

The necessary and sufficient condition for (17) to hold is the inter-
changeability of gﬁl(B) and the median operator. The condition of
monotonicity of g(6) is a stronger one, but it has the advantage that
is easier to check.

To derive a target estimator for the mean bias case, the median
function must be replaced by the mean function

) = E,[T(F)1, (18)

but the obtained target estimator may not be unbiased. A sufficient
condition for mean unbiasedness is that #(8) is a linear function, in
which case a proof similar to (17) holds. Most of the time, how-
ever, the target estimator has less bias than the original estimator.
The bias reduction algorithm described in the next section is valid
for either definition of the bias.

2.3 Bias Reduction Algorithm

To obtain the reduced bias target estimator 6 of  the inverse of
the median function has to be computed (16). The analytical ex-
pression of g(6) is in general not known, and will be estimated
through bootstrapping. For the sake of clarity we present the algo-

rithm for a one-dimensional parameter ¢, and then indicate how to
apply it in the general, multidimensional case.

Assume that an interval (;, 6;;) can be found that contains the

solution 6 . This assumption is common for root finding tech-
niques, and it is relatively easy to satisfy by taking a large enough
interval. If the direction of the bias is not known, the interval can

be centered on 8 . In this interval m points (6, ..., 6,) are selected,
equally spaced or at random.
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The model (13) is simulated by bootstrapping the residuals N

times at each Gj,j =1, ..., m, and the values é;i, ey é]‘\, of the

estimator are obtained. The initial estimate go(6)) of the median
function at point 6j is then the median of é;k, k=1, .., N The
number of simulations N can be relatively small since the

smoothing operation required in the following step will use the
neighboring values to improve the estimation.

The function g(6) is estimated by applying a smoother to the
points [Gj, gO(Bj)] which produces the points [9]-, g(Oj)]. Employing
smoothing splines is a simple and efficient method which can be
found in many program packages [4]. The set [8;, g(8)] gives the

numerical approximation of the function g(6). This function is
almost always monotonic but it is important to check its mono-
tonicity at this stage. The value of the reduced bias target estima-

tor  can now be obtained through interpolation from the set of
points [6]», g(éj)] at ordinate 8 . If 8 is needed with higher accuracy

(16) can be solved by a root finding algorithm [22].
The bias reduction algorithm can summarized as follows.

1) Calculate 6 from the data.
2) Define m points in an interval around 6 . The interval should

~

be chosen large enough to contain the target estimator 6.
3

=

Bootstrap the model N times at each point and compute the
initial values of the median function.

Calculate the median function by smoothing the initial esti-
mates.

4

funr

5) Obtain 6 by interpolation.

When the dimension of the parameter is greater than one, i.e.
we have a vector 6, the algorithm has a straightforward extension.
The m points required in the estimation of the median function are
obtained by sampling values of the parameter near 6 . Any defi-
nition of the multivariate median suffices as long as the conditions
for (17) hold. For smoothing, multivariate techniques must used,
for example MARS [8]. To reduce the amount of computations a
trade-off can be made, in which case the median function is esti-
mated component-wise and the smoothing is performed in one-
dimension. The accuracy of estimation is however reduced.

The validity of the bias reduction algorithm is limited to those
cases where the bootstrap is theoretically applicable. A sufficient
condition is n consistency of the estimator [7], and thus the bias
reduction algorithm can be applied in conjunction with both least
squares and most robust estimation techniques.

=

3 MEDIAN BIAS ELIMINATION IN ELLIPSE ESTIMATION

In Section 1, several methods for unbiased least squares estimation
of noisy conic segments were discussed. All these methods consid-
ered the case of mean bias and ii.d. Gaussian noise. The general
bias reduction algorithm described in the previous section is now
applied to the estimation of ellipses by the least squares estimator
(11). The median bias definition is used, and no assumption beside
ii.d. is necessary about the nature of the noise.

3.1 The Procedure

The available data are a sample of n = 40 points v; additively cor-
rupted from the points q; on the ellipse:

19

The two-dimensional error vectors ¢ are independent and identi-
cally distributed, but their distribution is unknown. Note that due to
this noise process the two points, both on the ellipse, g; (the uncor-
rupted version of v;) and u; (the point closest to v;), are distinct.

v,=q;tg i=1,..,n.

y-axis
2
]

X-axis

Fig. 1. An example of the noisy data points overlapping the true ellipse.

The ellipse is parametrized by the five-dimensional vector
0=(a,b, o1, c), whose components are the minor axis (), major axis
(b), angle of rotation (¢), and center of the ellipse (r, ¢). The angle of
rotation is defined relative to the vertical axis and is expressed in
radians. The transformation from the general form (1) to this, more
intuitive representation, is immediate, e.g., ([10], vol. 1, App. A).

The n = 40 points q; were chosen equally spaced on a conic arc
covering half of an ellipse having the parameters

(14,2.32,-0.39,0.25, 1.65).

Both coordinates of a data point q; were corrupted with zero-mean
Gaussian noise (19) having a standard deviation of 0.16. An exam-
ple is shown in Fig. 1. Note that the Gaussian nature or the stan-
dard deviation of the noise is not needed at any stage of the bias
reduction algorithm. From the noisy points v; the parameter vector
6 was obtained by least squares (11).

A total of m = 300 points ?j/ j=1, ..., m, were chosen in the five-
dimensional space around 6 . The point u;; is defined on the el-
lipse characterized by 6, as being the closest to v;. The residuals are
then defined as

Ei,j = Vi — uz.‘}., (20)
From the residuals the bootstrap samples can be generated,
V1 =u;+ é'*,' , (21)

] 7 E

where él ; is obtained by sampling with replacement from the set
of &;. For each 6;, N = 20 bootstrap samples of size n = 40 were

used. From the bootstrap samples the parameter vectors

A

0 ik k=1, ..., N were obtained. The median of these vectors pro-
vides the initial value [6;, g,(6)]. The median function was proc-

essed component-wise.

In Fig. 2, the five components of the median function are shown
with m = 300 points in each plot. Should the estimator 6 be unbi-
ased, the points should spread around the zero intercept, unit
slope line. The estimated median function, however, is signifi-
cantly different. Note that the function is monotonic as required by
the algorithm.
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Fig. 2. The five components of the median function. In each plot, the
median function is the smooth curve, the straight line corresponds to
an unbiased estimator.

3.2 Experimental Results

To analyze the statistical properties the above procedure was re-
peated 300 times. Fig. 3 shows the comparison between the sam-
pling distributions of the five parameter estimates before and after
median bias correction. The boxplots of the five components of the
least squares estimated parameter vectors are shown at the left
and the bias corrected estimates at the right of each pair. The hori-
zontal line represents the true value of the parameters, the dot the
median of the sampling distribution, and the box is bounded by
the 25th and 75th percentiles. The skewness and the median bias
of the distribution of the least squares estimators is significant for
all parameters except o.

As Fig. 3 shows, after application of the bias reduction algo-
rithm, the median bias has disappeared and the variance of the
estimates has also been reduced. The reduction in the variance
depends on the shape of the median bias function. The effect of
bias reduction on the estimated ellipses can be observed in Fig. 4
Fig. 4a shows a random subset of 40 ellipses fitted by least squares
and Fig. 4b shows the corresponding corrected ellipses. The darker
line represents the original ellipse.

In order to evaluate the effectiveness of the nonparametric
bootstrap a second simulation was performed in which the same
procedure was repeated except that instead of generating the er-
rors from the empirical distribution of the residuals the true error
distribution was used. (The technique is known as parametric
bootstrap.) The performance was indistinguishable from that of
the nonparametric bootstrap. We can conclude that for a sample
size of n = 40 the empirical distribution of the errors is as good as
the true distribution for estimating the sampling distribution of
the estimator.
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The obtained results also compare favorably with those pub-
lished in the literature, and obtained under stricter assumptions.
Kanatani [14] provides eccentricity-area scatter diagrams to char-
acterize the behavior of the bias corrected estimator, Porrill [19]
presents results as in Fig. 4.

To investigate the behavior of the bias reduction algorithm for
real data an image similar to those used in [14], [15], [19] was gen-
erated. Only a few edge pixels from the rim of a coffee mug were
used to estimate the whole ellipse (Fig. 5a). The results obtained
with least squares estimation and corrected for bias are shown in
(Fig. 5b), and the latter is close to the correct result in spite of not
using any assumption about the noise (which is severely corre-
lated due to quantization).
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Fig. 3. Boxplots of the sampling distribution of the least squares esti-
mator of the five ellipse parameters before (left) and after bias correc-
tion. The true value of each parameter is shown by a horizontal line.
The median bias is the difference between the line and the dot.
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Fig. 4. Examples of the estimated ellipses before and after bias correc-
tion. The darker line corresponds to the true ellipse.
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Fig. 5. (a) The coffee mug image with the data points used in the el-
lipse estimation marked as black; (b) The least squares estimate of the
ellipse (inner curve) and the bias corrected one.
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4 CONCLUSION

We have described a general methodology for bias and median
bias reduction of nonlinear estimators. Such estimators arise fre-
quently in computer vision problems and reduction of the bias of
the estimates is of importance. The method is not based on a priori
(parametric) assumptions about the error distribution and its per-
formance compares favorably with the case in which these distri-
butions are available. Application of bootstrap to computer vision
problems is not restricted to bias reduction. The sampling distri-
bution of the output, derived from the available single input, can
also be used to define the confidence in the obtained result [5].
Any resampling method is computer intensive but easily paral-
lelizable, in which case a significant performance improvement is
obtained at the expense of relative small overhead.
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