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Abstract—In an errors-in-variables (EIV) model, all the measurements are corrupted by noise. The class of EIV models with

constraints separable into the product of two nonlinear functions, one solely in the variables and one solely in the parameters, is

general enough to represent most computer vision problems. We show that the estimation of such nonlinear EIV models can be

reduced to iteratively estimating a linear model having point dependent, i.e., heteroscedastic, noise process. Particular cases of the

proposed heteroscedastic errors-in-variables (HEIV) estimator are related to other techniques described in the vision literature: the

Sampson method, renormalization, and the fundamental numerical scheme. In a wide variety of tasks, the HEIV estimator exhibits the

same, or superior, performance as these techniques and has a weaker dependence on the quality of the initial solution than the

Levenberg-Marquardt method, the standard approach toward estimating nonlinear models.

Index Terms—Nonlinear least squares, heteroscedastic regression, camera calibration, 3D rigid motion, uncalibrated vision.

Ç

1 MODELING COMPUTER VISION PROBLEMS

SOLVING most computer vision problems requires the
estimation of a set of parameters from noisy measure-

ments using a statistical model. A statistical model provides a
mathematical description of a problem in terms of a
constraint equation relating the measurements to the
parameters and of a noise model which characterizes the
errors affecting the measurements [12, Section 1.1]. Under
its most general form, the constraint can be multivariate,
nonlinear, and with an implicit relationship between the
ideal values of the measurements zzzzio and the ideal value of
a parameter ����o

ffffðzzzzio; ����oÞ¼ 0 i¼ 1; . . . ; n ffffð�Þ 2 IRm zzzzio 2 IRs ����o 2 IRq:

ð1Þ

In computer vision problems, an additive measurement
noise can usually be assumed. In the most general case of
additive noise, the characteristics of the noise depend on the
data point, i.e., the noise is heteroscedastic

zzzzi ¼ zzzzio þ �zzzzi �zzzzi � GIð0; �2
�CziÞ i ¼ 1; . . . ; n zzzzio 2 IRs;

ð2Þ

where GIð�Þ stands for a general, symmetric, and indepen-
dent distribution whose first two central moments are
available. The subscript “o” is used in the paper to distinguish
the ideal, noise-free value of a quantity from its noisy
measurement. The covariance matrices are assumed to be
known only up to a common factor, the noise variance �2

� .

A statistical model in which the noise affects all the
elements of the data vector zzzzi is called an errors-in-variables
(EIV) model. The EIV model includes the situation when
some of the variables are not corrupted, i.e., their ideal
value is available. Since these measurements are determi-
nistic, the covariances �2

�Czi become singular.
As will be shown later in the paper, in numerous

3D computer vision problems, the constraint (1) can be
factorized into two parts. In general, these factors are
nonlinear functions, the first depending only on the measure-
ments and the second only on the parameter vector

ffffðzzzzio; ����oÞ ¼ �ðzzzzioÞ����ð����oÞ ¼ 0 �ð�Þ 2 IRm�p ����ð�Þ 2 IRp: ð3Þ

Such a constraint is called a separable parameter. Note that (3)
can also be seen as linear in ���� if the dependence on ���� is not
considered during the estimation process

ffffðzzzzio; ����oÞ ¼ �ðzzzzioÞ����o ¼ 0 ����o ¼ ����ð����oÞ : ð4Þ

The estimation method proposed in the paper exploits this
observation. Furthermore, many computer vision problems
can already be solved without using an explicit reparame-
terization in ����.

It can be demonstrated that (4) can be generalized to
account for the gauge matrix H 2 IRp�p [21], [22], [31]

�ðzzzzioÞHH�1����o ¼ 0 ð5Þ

when the gauge matrix is orthonormal, H>H ¼ Ip. The
constraint (4) also has an ambiguity to multiplication with a
nonzero constant. To remove this ambiguity, an additional
restriction has to be imposed on ����o. Most often, ����o is
assumed to have unit norm or one of its elements is set to a
known value. The nature of the vision problem can impose
additional constraints on either ����o or ����o. We will discuss
such problems in Section 5.

The ideal values of the measurements, zzzzio, i ¼ 1; . . . ; n, are,
in general, unobservable and are called in the statistical
literature nuisance parameters to distinguish them from ����o, the
main parameter of interest. The estimates of the nuisance
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parameters, ẑzzzi, are the corrected values of the measurements
and, often, finding them is the main goal of the computer
vision task. Though the nuisance parameters can be treated as
stochastic, such as is done in structural statistical models, in
computer vision problems, it is difficult to make valid
assumptions about their distribution, hence, we will treat
them as fixed and unknown, as assumed in functional
statistical models. The difference between structural and
functional affects models more their respective statistical
analysis, rather than the manner in which the estimates of
parameters are obtained [36].

Numerous estimation techniques are available in the
literature depending on the objective function selected, the
manner in which the objective function is minimized, or on
how the intrinsic constraints in the parameter are treated.
Often, the objective functions are derived using the
maximum-likelihood estimation theory; however, their
actual minimization varies vastly due to simplifications
made in order to make a problem tractable or the actual
way in which the statistical properties of the noise are
handled. Linear(ized) algorithms have the appeal of
yielding close form solutions; however, they are notoriously
sensitive in practice to errors in the measurements and
result in biased solutions [19], [20]. Nonlinear objective
functions have a better performance, however, they result in
iterative algorithms which may not converge if initialized
far away from the correct solution. A rigorous study on
various choices made for the objective functions applied to
solve 3D computer vision problems (structure from motion,
triangulation) was published by Ma et al. [24] using
optimization on Riemannian manifolds [9].

The task of direct calibration provides a simple example
illustrating the importance of a correct treatment of the
statistical model selected. Since, in this paper, we are not
concerned with the issue of outlier tolerance, we will
assume that all the data points obey the model. Robust
techniques, especially developed for the employed class of
models, exist, e.g., [43], [4], and can be easily integrated into
the proposed estimator.

In direct calibration, the relation between a 3D point mmmmio

on a calibration grid and its 2D projection in the image plane,
zzzzio¼½z1io z2io�> (Fig. 1), is exploited to compute the intrinsic
and extrinsic parameters of the camera [16, Chapter 6]. The
ideal affine coordinates MMMMio¼½mmmm>io 1�> of the 3D points (not
in the plane at infinity) are related to the ideal affine
image coordinates ZZZZio ¼ ½zzzz>io 1�> through P, an unknown
3� 4 projection matrix

ZZZZio / PMMMMio i ¼ 1; . . . ; n; ð6Þ

where / means projective equivalence. The relation (6) can
be rewritten as

MMMM>
io 0> �z1ioMMMM

>
io

0> MMMM>
io �z2ioMMMM

>
io

2
4

3
5pppp ¼ Aðzzzzio;mmmmioÞpppp ¼ 0; ð7Þ

where pppp ¼ vecðP>Þ is the 12-dimensional column vector
obtained by stacking up the rows of the matrix P. See the
Appendix for the definition and properties of the vec
operator.

In camera calibration, it is assumed that the available
3D coordinates of the calibration points mmmmio are accurate,
while the image points zzzzi are measured with independent
and identically distributed (i.i.d.) and zero-mean errors. The
goal of the estimation process is to find p̂ppp, the vector
containing the elements of the projection matrix, from where
the camera parameters can be derived.

The linear solution of the estimation problem is the
simplest approach, sometimes used exclusively in text-
books, e.g., [39, Section 6.2]. It is also called the direct linear
transformation (DLT) algorithm [16, p. 167] and is based on
minimizing the algebraic errors. The algebraic error is
computed by replacing the ideal image point coordinates zzzzio
in (7) with the available measurements zzzzi and minimizing

J ðp̂pppÞ ¼
Xn
i¼1

p̂ppp>A>ðzzzzi;mmmmioÞAðzzzzi;mmmmioÞp̂ppp
kp̂pppk2

: ð8Þ

The normalization factor kp̂pppk2 appearing at the denominator
of each term is required to explicitly account for the gauge
constraint and to avoid a zero trivial solution. The linear
solution to (8) is the total least squares (TLS) estimate p̂pppTLS ,
proportional to the “smallest” right singular vector (corre-
sponding to the smallest singular value) of the 2n� 12 matrix

B ¼
Aðzzzz1;mmmm1oÞ

..

.

Aðzzzzn;mmmmnoÞ

2
64

3
75: ð9Þ

A TLS estimate, however, is optimal only if the measurement
noise associated with every row of the matrix B has the same
covariance �2I [42, p. 227]. In the direct calibration task, this
condition is violated since, in each pair of rows of B, the noisy
image coordinates z1i or z2i are multiplied by a different
vector MMMMio, as seen in (7). For such a noise process, the TLS
estimate becomes biased [28] and should only be used as the
initial solution in a nonlinear estimation procedure minimiz-
ing geometric distances, i.e., the distance between a measured
image point and the unknown projection of the correspond-
ing 3D calibration point [16, p. 170]. We will return to the
problem of camera calibration in Section 5.1.

We can conclude that, in spite of a linear dependence on
the parameter pppp, the model of camera calibration is more
complex due to the presence of products between measured
quantities. A similar situation arises in numerous computer
vision tasks, in which information about the 3D environ-
ment is sought. Indeed, the fundamental property of
projective geometry, the incidence relation, implies the
presence of such products. The goal of this paper is to
provide, in the context of computer vision problems, a
unified approach for estimating models nonlinear, either in
the measurements, in the parameter, or in both.
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Fig. 1. Direct calibration of a camera. The coordinates of a 3D point mmmmio

on a calibration grid are assumed known. Its projection zzzzi on the image
plane is measured with error.



In Section 2, we present the linearization approach for
solving EIV problems with separable parameters. In Sec-
tion 3, the solution to the HEIV problem, together with
statistical properties and numerical implementation, are
discussed. The relationship of the HEIV estimator with other
techniques proposed in the literature is analyzed in Section 4.
Applications of the HEIV algorithm to 3D computer vision
problems which translate in multivariate constraints are
presented in Section 5. Finally, a discussion of other
applications of the HEIV is given in Section 6.

2 AN APPROACH THROUGH LINEARIZATION

The parameters of the separable EIV model are estimated by
solving the following problem. Given that the noise-free,
unobservable data zzzz1o; . . . ; zzzzno and the unknown parameter
vector ����o satisfy the constraint (3), find from the measure-
ments zzzzi, affected by additive heteroscedastic noise (2), the
estimates ẑzzz1; . . . ; ẑzzzn and �̂��� obeying

ffffðẑzzzi; �̂���Þ ¼ �ðẑzzziÞ ����ð�̂���Þ ¼ 0 k����ð�̂���Þk ¼ 1 i ¼ 1; . . . ; n;

ð10Þ

�ð�Þ 2 IRm�p ����ð�Þ 2 IRp ���� 2 IRq:

The covariance matrices Czi of the noise are known, but the
value of the constant �2

� is unknown. The constraint
k����ð�̂���Þk ¼ 1 is required only to eliminate the scale ambiguity.

The estimates are obtained by minimizing the objective
function

J ð�̂���; ẑzzz1; . . . ; ẑzzznÞ ¼
1

2

Xn
i¼1

ðzzzzi � ẑzzziÞ>Cþziðzzzzi � ẑzzziÞ; ð11Þ

i.e., the sum of squared Mahalanobis semidistances between
a measurement and its unknown corrected value. To account
for the case of rank deficient covariance matrices, the
pseudoinverse denoted with the superscript “+” has to be
used in (11). The common term �2

� can be dropped since it has
no influence on the minimum of the objective function J . Its
estimate �̂2

� will be found after the main estimation
procedure. The estimation process belongs to the class of
maximum likelihood if the measurement noise is known to be
normally distributed.

To account for the constraints (10), we will introduce the
Lagrange multipliers ����i 2 IRm and seek to minimize

J ð�̂���; ẑzzz1; . . . ; ẑzzznÞ ¼
1

2

Xn
i¼1

ðzzzzi � ẑzzziÞ>Cþziðzzzzi � ẑzzziÞ

þ
Xn
i¼1

����>i ffffðẑzzzi; �̂���Þ: ð12Þ

We show next that by treating the separable EIV model
(10) as linear in the parameter ����, an efficient minimization
of (12) can be done by iteratively solving a generalized
eigenvalue problem. The most general case of solving
explicitly in the parameter ���� is addressed in Section 3.3.

Our goal is to obtain the estimates ẑzzz1; . . . ; ẑzzzn and �̂��� by

minimizing the objective function J ð�̂���; ẑzzz1; . . . ; ẑzzznÞ obtained

from (12) by substituting �̂��� for �̂��� and letting ffffðzzzzi; �̂���Þ ¼ �ðzzzziÞ�̂���.
Note that, since we did not require the parameter �̂��� to be a unit

vector, a gauge freedom up to multiplication with a nonzero

constant is present.

The main and nuisance parameter estimates must obey

JJJJJ j�̂ð�̂���; ẑzzz1; . . . ; ẑzzznÞ ¼ 0 ð13Þ

JJJJJ jẑið�̂���; ẑzzz1; . . . ; ẑzzznÞ ¼ 0 i ¼ 1; . . . ; n; ð14Þ

where JJJJJ ju denotes the gradient of the scalar objective
function with respect the vector uuuu.

From (14), using vector calculus chain rules (A.17),
(A.18), we obtain

Cþziðzzzzi � ẑzzziÞ ¼ Jf jẑiðẑzzzi; �̂���Þ����i: ð15Þ

Note that a singular covariance matrix Czi implies that some
of the elements of the measurement vector zzzzi may not be
corrupted by noise. For these elements, the measured value
and an unbiased estimate are identical, i.e., their difference is
zero. This observation allows us to express (15) after simple
manipulations with an orthogonal projector into the range of
the covariance matrix [14, p. 75] as

ẑzzzi ¼ zzzzi � CziJf jẑiðẑzzzi; �̂���Þ����i: ð16Þ

Let �zzzzi be an available estimate of zzzzio. Initially, in the
absence of any prior information, we can assume that
�zzzzi ¼ zzzzi. In the following, we use �zzzzi to discriminate between
an available estimate of the unknown ideal point zzzzio and the
measured value zzzzi. The first order Taylor expansion of
ffffðẑzzzi; �̂���Þ around �zzzzi, for a given �̂���, yields

ffffðẑzzzi; �̂���Þ ¼ ffffð�zzzzi; �̂���Þ þ Jf jẑið�zi; �̂���Þ
>ðẑzzzi � �zzzziÞ: ð17Þ

We will now make the assumption that the Jacobian matrix
does not change significantly when computed in �zzzzi instead
of ẑzzzi. Then, (16) can be written as

ẑzzzi � �zzzzi ¼ zzzzi � �zzzzi � CziJf jẑið�zi; �̂���Þ����i: ð18Þ

From (17), we obtain

ffffðẑzzzi; �̂���Þ � ffffð�zzzzi; �̂���Þ ¼ Jf jẑzzzið�zi; �̂���Þ
>ðzzzzi � �zzzziÞ

� Jfjẑið�zzzzi; �̂���Þ
>CziJfjẑið�zzzzi; �̂���Þ����i

ð19Þ

and, taking into account (10), we have

ffffð�zzzzi; �̂���Þ þ Jf jẑið�zzzzi; �̂���Þ
>ðzzzzi � �zzzziÞ¼ Jfjẑið�zzzzi; �̂���Þ

>CziJfjẑið�zzzzi; �̂���Þ
h i

����i:

ð20Þ

In a first order approximation, the left-hand side of (20) is
the Taylor expansion of ffffðzzzzi; �̂���Þ around �zzzzi, hence, the
Lagrange multipliers can be expressed as

����i ¼ Jf jẑið�zzzzi; �̂���Þ
>CziJf jẑið�zzzzi; �̂���Þ

h iþ
ffffðzzzzi; �̂���Þ: ð21Þ

One can recognize in the brackets the first order approxima-
tion of the covariance of the expression ffffðzzzzi; �̂���Þ, i.e., the result
of error propagation from zzzzi to ffffðzzzzi; �̂���Þ, computed in �zzzzi

Cfð�zzzzi; �̂���Þ ¼4 Jf jẑið�zzzzi; �̂���Þ
>CziJf jẑið�zzzzi; �̂���Þ: ð22Þ

The rank r � m of the covariance of the constraint Cfð�zzzzi; �̂���Þ
is called the rank of the constraint. When r < m, the
constraint is called singular [20, pp. 131-133]. Thus, the
estimate of the ideal value zzzzio is obtained from (16) as
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ẑzzzi ¼ zzzzi � CziJf jẑið�zzzzi; �̂���ÞCfð�zzzzi; �̂���Þþffffðzzzzi; �̂���Þ: ð23Þ

Note that (23) represents the first order approximation of the
projection of the measurement zzzzi onto the manifold defined
by the multivariate constraint ffffðzzzz; �̂���Þ under the metric
induced by the covariance matrix Czi . Using (18), after some
simple manipulations, the objective function (11) can be an
expressed function of the previous estimate of the corrected
measurement �zzzzi and the current parameter estimate �̂��� as

J HEIV ð�̂���Þ ¼
1

2

Xn
i¼1

ffffðzzzzi; �̂���Þ>Cfð�zzzzi; �̂���Þþffffðzzzzi; �̂���Þ: ð24Þ

Assuming that �zzzzi ¼ zzzzi, we can express the cost function (24),
only function of the noisy measurements zzzzi and the value of
the parameter estimate �̂���.

Expression (24) is a sum of squared Mahalanobis semi-
distances, where each term is associated with the correspond-
ing error propagated covariance matrix. In the particular case
of univariate constraints, fðzzzzi; �̂���Þ becomes the algebraic
distance from the solution surface.

We have

JJ j�̂ð�̂���; ẑzzz1; . . . ; ẑzzznÞ ¼
Xn
i¼1

Jf j�̂ðẑzzzi; �̂���Þ����i ¼
Xn
i¼1

�ðẑzzziÞ>����i

¼
Xn
i¼1

ð����>i � IpÞ’’’’ðẑzzziÞ ¼ 0;

ð25Þ

where ’’’’ðẑzzziÞ ¼ vecð�ðẑzzziÞ>Þ with the vectorization operation
vecð�Þ and the Kronecker product � being defined in the
Appendix. Relation (25) is obtained by applying (A.13) for
the p�m matrix �> and the m-dimensional vector ����i. The
first order expansion of ’’’’ðẑzzziÞ around �zzzzi yields

’’’’ðẑzzziÞ ¼ ’’’’ð�zzzziÞ þ J’jẑið�zzzziÞ
>ðẑzzzi � �zzzziÞ ð26Þ

which can be written using (18) as

’’’’ðẑzzziÞ ¼ ’’’’ð�zzzziÞ þ J’jẑzzzið�ziÞ
>½zzzzi � �zzzzi � CziJf jẑið�zzzzi; �̂���Þ����i�: ð27Þ

Recalling that ’’’’ð�zzzziÞ is the vector obtained by stacking up
the rows of the matrix �ð�zzzziÞ and the definition of the
Kronecker product (A.2), we have

ffffð�zzzzi; �̂���Þ ¼ �ð�zzzziÞ�̂��� ¼ ðIm � �̂���Þ>’’’’ð�zzzziÞ ð28Þ

from where, after applying the Jacobian (A.2) results,

Jf jẑið�zzzzi; �̂���Þ ¼ J’jẑið�zzzziÞðIm � �̂���Þ ð29Þ

and, therefore,

’’’’ðẑzzziÞ ¼ ’’’’ð�zzzziÞ þ J’jẑið�zzzziÞ
>ðzzzzi � ẑzzziÞ

� J’jẑið�zzzziÞ
>CziJ’jẑið�zzzziÞðIm � �̂���Þ����i:

ð30Þ

The covariance of ’’’’ðzzzziÞ approximated through error
propagation in �zzzzi is

C’ð�zzzziÞ ¼4 J’jẑið�zzzziÞ
>CziJ’jẑið�zzzziÞ ð31Þ

and, after recognizing in the first two terms the linear
approximation of ’’’’ðzzzziÞ around �zzzzi, and using (A.13) for the
vectors �̂��� and ����>i , (30) becomes

’’’’ðẑzzziÞ ¼ ’’’’ðzzzziÞ � C’ð�zzzziÞð����i � IpÞ�̂���: ð32Þ

Since the Jacobian JJ j�̂ must vanish at the solution, it
follows from (32) that (25) can be written as

Xn
i¼1

ð����>i � IpÞ’’’’ðzzzziÞ ¼
Xn
i¼1

ð����i � IpÞ>C’ð�zzzziÞð����i � IpÞ�̂���; ð33Þ

where we made use of (A.4). The left side of (33) can be
rewritten after taking into account (21) and (22) as

Xn
i¼1

ð����>i � IpÞ’’’’ðzzzziÞ ¼
Xn
i¼1

�ðzzzziÞ>����i

¼
Xn
i¼1

�ðzzzziÞ>Cfð�zzzzi; �̂���Þþ�ðzzzziÞ�̂���:
ð34Þ

The gradient of the cost function with respect to �̂��� from (25)
can finally be written as

JJ j�̂ð�̂���Þ ¼ ½Sð�̂���Þ � Cð�̂���Þ� �̂��� ¼4 Nð�̂���Þ�̂��� ¼ 0; ð35Þ

where the weighted scatter matrix Sð�̂���Þ is

Sð�̂���Þ ¼
Xn
i¼1

�ðzzzziÞ>Cfð�zzzzi; �̂���Þþ�ðzzzziÞ ð36Þ

and the weighted covariance matrix Cð�̂���Þ is

Cð�̂���Þ ¼
Xn
i¼1

ð����i � IpÞ>C’ð�zzzziÞð����i � IpÞ: ð37Þ

Note that several first order approximations were employed
while deriving the expressions of the matrices Sð����Þ and
Cð����Þ. All these approximations were linearizations around
�zzzzi, the previous value of the corrected measurements, and �̂���,
the current value of the parameter estimate.

Since both matrices Cfð�zzzzi; �̂���Þ and C’ð�zzzziÞ are positive
semidefinite, Sð�̂���Þ and C ð�̂���Þ are also positive semidefinite.
The connection between the covariance matrices Cfð�zzzzi; �̂���Þ
and C’ð�zzzziÞ is obtained by substituting (29) into (22)

Cfð�zzzzi; �̂���Þ ¼ ðIm � �̂���Þ>C’ð�zzzziÞðIm � �̂���Þ: ð38Þ

Using the expression of the constraint and (36), the objective
function (24) can be written as

J ð�̂���Þ ¼ 1

2
�̂���> Sð�̂���Þ �̂���: ð39Þ

Solving (35) can be expressed as a generalized eigenpro-
blem type equation

Sð�̂���Þ�̂��� ¼ Cð�̂���Þ�̂��� ð40Þ

called the heteroscedastic errors-in-variables (HEIV) equation.

The gauge freedom up to multiplication of �̂��� with a

nonzero constant is preserved due to the special structure

of the two matrices, since, for any a 6¼ 0, Sða�̂���Þ ¼ a�2Sð�̂���Þ
and Cða�̂���Þ ¼ a�2Cð�̂���Þ.

The HEIV equation (40) generalizes for multivariate

constraints with a separable parameter the scalar case

described in [23], which is also equivalent to the funda-

mental numerical scheme (FNS) of Chojnacki et al. [7].

Being the most general expression for solving separable EIV

models linear in the parameter ����, the HEIV equation plays a

central role in many computer vision problems. In Section 4,
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we will show that different particular cases of (40) appear in

several techniques used in computer vision: the generalized

total least squares (GTLS) [18], the Sampson method [35],

[16, p. 97], and the renormalization method of Kanatani [20].

3 SOLVING THE HEIV EQUATION

The HEIV equation (40) is nonlinear since the unknown �̂���

also appears in the matrices Sð�̂���Þ and Cð�̂���Þ. An iterative

solution can be found by iteratively solving the generalized

eigenvalue problem

Sð�����Þ �̂��� ¼ �Cð�����Þ�̂��� ð41Þ

and, at each step, the already available previous estimate of the

parameter ����� is changed to the current value �̂��� obtained as the

smallest generalized eigenvector of (41), i.e., the generalized

eigenvector corresponding to the smallest generalized

eigenvalue. Such an estimation technique was proposed in

an equivalent form by Fuller [12, p. 217].

The Rayleigh quotient

�ð����Þ ¼ ����>Sð�����Þ����
����>Cð�����Þ����

ð42Þ

satisfies [14, p. 465]

�ð����Þ ¼ argmin
�
kSð�����Þ����� �Cð�����Þ����k2

C; ð43Þ

where k����k2
C is the squared Mahalanobis norm defined as

k����k2
C ¼ ����>Cþ����. The smallest generalized eigenvalue �min of

(41) satisfies �min ¼ min���� �ð����Þ and, thus, the corresponding

eigenvector is the solution of the update equation.

The matrices Sð�����Þ and Cð�����Þ are symmetric and positive

semidefinite and, thus, the eigenvalues of (41) are non-

negative, i.e., �min 	 0. We restrict ourselves for the moment

to positive definite Sð�����Þ matrices, i.e., �����>Sð�����Þ����� 6¼ 0. Then,

from (B.1) at every iteration, we have

�ð��Þ ¼
�����>Sð�����Þ�����
�����>Cð�����Þ�����

¼ 1 ð44Þ

and, thus, 0 < �min � 1. At convergence, ����� ¼ �̂��� up to the
allowed tolerance, which implies �min ¼ 1, thus Sð�̂���Þ�̂��� ¼
Cð�̂���Þ�̂���. A similar argument was used in [20, p. 283], though in a
somewhat different context.

The second order Taylor expansion of the objective
function (39) around ����� yields

J ð�̂���Þ ¼ J ð�����Þ þ JJ j�̂ð�����Þ
>ð�̂���� �����Þ þ 1

2
ð�̂���� �����Þ> @

2J ð�����Þ
@��@��

ð�̂���� �����Þ

¼ J ð�����Þ þ ð�̂���� �����Þ>Nð�����Þ�����þ 1

2
ð�̂���� �����Þ>Nð�����Þð�̂���� �����Þ

¼ J ð�����Þ þ 1

2
�̂���>Nð�����Þ�̂���;

ð45Þ

where we used the expression of the gradient (35)
computed for �����. From this expression, the Hessian matrix
was approximated as Nð�����Þ by disregarding the dependence
of Sð�����Þ and Cð�����Þ on �����. We also took into account that
�����>Nð�����Þ����� ¼ 0. Then,

J ð�̂���Þ � J ð�����Þ ¼ 1

2
�̂���> Sð�����Þ � Cð�����Þ
� �

�̂���

¼ 1

2
�̂���> �minCð�����Þ�̂���� Cð�����Þ�̂���
h i

¼ 1

2
ð�min � 1Þ�̂���>Cð�����Þ�̂��� � 0

ð46Þ

since Cð�����Þ is a positive semidefinite matrix. We conclude

that the value of the objective function decreases with

the iterations and convergence is reached when the

smallest eigenvalue of the generalized eigenproblem (41)

becomes one.

Note that, during the HEIV update equation, we select

the smallest generalized eigenvector at each step, as

opposed to the one which is closest to one. This choice

was experimentally validated through numerous simula-

tions. An insight can be obtained from (46) which shows

that the cost function decrease is highest when �min � 1 is

the smallest. Similarly, the HEIV is shown in Section 4.1 to

generalize the GTLS algorithm which also employs the

smallest generalized eigenvalue of a similar eigenproblem.

There is an exception to this convergence rule, that

of uncorrupted data. Then, the weighted covariance

matrix Cð�����Þ vanishes and the weighted scatter matrix

Soð�����Þ becomes singular, where the subscript “o” makes

explicit the fact that the scatter matrix is evaluated at

the noise-free values of the measurements. Thus, we

have Soð�����Þ�̂��� ¼ 0 and the estimate �̂��� is the eigenvector

corresponding to the eigenvalue � ¼ 0 for any ����� 2 IRp.

In our implementation of the algorithm, we detect

whether the TLS estimate yields very small residuals, i.e.,

the noise of the data is very small. In this case, any linear

estimate TLS, GTLS, and HEIV will yield the same solution.

This is a singularity of the algorithm in which the Rayleigh

quotient converges to zero instead of one.

In all the experiments, convergence was reached in a few

(typically, two or three) iterations. The iterations toward

solving the HEIV equation have some similarity (though, are

certainly not identical) to the method of Rayleigh quotient for

solving generalized symmetric eigenproblems. The latter is

known to have cubic convergence [14, Section 8.2.4] related

to the fast convergence of our method.

3.1 Implementation Using Generalized Singular
Value Decomposition

A numerically robust scheme to solve (41) is based on the

generalized singular value decomposition (GSVD) [14,

Section 8.7.3]. Leedan and Meer [23] solve for the case of

scalar constraints, where a more detailed description of

GSVD can be found.

The square root of the positive semidefinite matrix

Cfðẑzzzi; �����Þþ (22) can be computed with regular SVD which,

though more computationally intensive than the Cholesky

decomposition, has the advantage of handling singular

matrices. The square root is the matrix �ð�zzzzi; �����Þ 2 IRm�m such

that

Cfð�zzzzi; �����Þþ ¼ �ð�zzzzi; �����Þ>�ð�zzzzi; �����Þ: ð47Þ
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The matrix Kð�����Þ 2 IRmn�p is defined as

Kð�����Þ ¼
�ð�zzzz1; �����Þ�ðzzzz1Þ

..

.

�ð�zzzzn; �����Þ�ðzzzznÞ

2
64

3
75 ð48Þ

and, from (36), results

Sð�����Þ ¼ Kð�����Þ>Kð�����Þ: ð49Þ

Similarly, the square root of Cð�����Þ (37) is the matrix Lð�����Þ 2
IRp�p such that

Cð�����Þ ¼ Lð�����Þ>Lð�����Þ: ð50Þ

The GSVD of the matrix pair Kð�����Þ and Lð�����Þ is obtained by
simultaneous diagonalization with the help of two ortho-

gonal matrices U 2 IRmn�mn, V 2 IRp�p, and a nonsingular
matrix Y 2 IRp�p. That is,

U>Kð�����ÞY ¼ diagðdK1
; . . . ; dKp

Þ 2 IRmn�p dKi
	 dKiþ1

	 0;

ð51Þ

V>Lð�����ÞY ¼ diagðdL1
; . . . ; dLpÞ 2 IRp�p 0 � dLi � dLiþ1

;

ð52Þ

where d2
Ki
þ d2

Li
¼ 1, i ¼ 1; . . . ; p. The generalized singular

values are defined as

�i ¼
dKi

dLi
i ¼ 1; . . . ; p ð53Þ

and the corresponding generalized singular vector is yyyyi, the
ith column of Y. The solution �̂��� of (41) is the generalized

singular vector corresponding to the smallest generalized
singular value.

The use of GSVD instead of eigendecomposition has

several advantages. It can handle the rank deficiency of the
involved matrices, the square root matrices are better

conditioned than their source, and, thus, the GSVD assures

a better numerical behavior for the iterative procedure.

3.2 Statistical Properties

To assess the accuracy of the HEIV estimates, the first two

moments can be computed in first order approximation. In
[25], it is shown that the HEIV estimate is consistent for linear

functions �ðzzzziÞ and heteroscedastic measurements and that

the parameter �̂��� is unbiased in the first order approximation.
The theoretical covariance of the parameter �̂��� is

C�̂ ¼ �
2
�Soð����oÞ

þ k����ok ¼ 1: ð54Þ

Note that (54) requires that the gauge freedom of the
parameter must be removed by imposing the norm one on

����o. We have used the pseudoinverse of the scatter because, for
uncorrupted data, the scatter is singular, having a rank p� 1.

It can be shown [25] that an estimate of C�̂, after the
convergence of the algorithm, is

Ĉ�̂ ¼ �̂
2
� Sð�̂���Þ � �minCð�̂���Þ
h iþ

: ð55Þ

The estimate �̂2
� of the noise variance �2

� (for the proof, see

[25]) is

�̂2
� ¼

�̂���>Sð�̂���Þ�̂���
nr� pþ 1

; ð56Þ

where r � m is the rank of the covariance of the

constraint ffffðzzzzi; ����Þ expressed in (22).
Assuming that the noise affecting the measurements has

zero mean and �̂��� is unbiased in the first order approxima-

tion, the estimates ẑzzzi are also unbiased in the first order

approximation [25].

3.3 Handling Additional Constraints

The parameter estimate may be required to satisfy an

additional constraint

				ð�̂���Þ ¼ 0; 				ð � Þ 2 IRt: ð57Þ

For example, the fundamental matrix must have rank two,

the ellipse must be a positive definite form, etc. The

nonlinear additional constraints 				ð � Þ usually preclude the

use of (generalized) eigenproblems in directly finding the

solution �̂��� which satisfies (10) and (57) simultaneously. A

special case of scalar additional constraints, homogeneous

of degree 
, 	ðt�̂���Þ ¼ t
	ð�̂���Þ, was explored in the CFNS

algorithm [41], [8], which showed that the constraint can be

elegantly included in the optimization scheme.

The approach proposed in the paper is generally applic-

able to multivariate constraints which are not necessarily

homogeneous in the parameter ����. We first find an estimate �̂���

by imposing no other constraints than (10) and then force the

additional constraint (57) to obtain
^̂
���� which obeys 				ð^̂����Þ ¼ 0.

The additional constraints are imposed by projecting the �̂���

onto the manifold (59) under the metric induced by C�̂, as

shown in Fig. 2. A similar solution was proposed in [20,

pp. 286-289].
Formally,

^̂
���� ¼ arg min

�
ð�̂���� ����Þ>Cþ

�̂
ð�̂���� ����Þ ð58Þ

subject to

				ð^̂����Þ ¼ 0: ð59Þ

Introducing the Lagrange multiplier ���� 2 IRt, the solution
^̂
����

is found from
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Fig. 2. The additional constraints are obtained by projecting the solution �̂���

onto the manifold 				ð����Þ ¼ 0 in the metric induced by the covariance of the

parameter, C�̂.



@J
@

^̂
����
¼ 0 J ¼ 1

2
�̂���� ^̂

����
� �>

Cþ
�̂
�̂���� ^̂

����
� �

þ ����>				ð^̂����Þ ð60Þ

from where we obtain

^̂
���� ¼ �̂���� C�̂

@				ð^̂����Þ>

@
^̂
����

����: ð61Þ

A first order Taylor expansion yields

				ð�̂���Þ ¼ 				ð^̂����Þ þ @				ð^̂����Þ>

@
^̂
����

" #>
�̂���� ^̂

����
� �

ð62Þ

or

				ð�̂���Þ ¼ @				ð^̂����Þ>

@
^̂
����

" #>
C�̂

@				ð^̂����Þ>

@
^̂
����

" #
����; ð63Þ

thus

���� ¼ @				ð^̂����Þ>

@
^̂
����

" #>
C�̂

@				ð^̂����Þ>

@
^̂
����

" #8<
:

9=
;
þ

				ð�̂���Þ: ð64Þ

The solution sought is

^̂
���� ¼ �̂���� C�̂

@				ð^̂����Þ>

@
^̂
����

@				ð^̂����Þ>

@
^̂
����

" #>
C�̂

@				ð^̂����Þ>

@
^̂
����

" #8<
:

9=
;
þ

				ð�̂���Þ: ð65Þ

Equation (65) doesn’t have a close form solution; thus, the
following update may be employed:

^̂
����
½jþ1�¼ ^̂

����
½j� �C�̂

@				ð^̂����½j�Þ>

@
^̂
����
½j�

@				ð^̂����½j�Þ>

@
^̂
����
½j�

" #>
C�̂

@				ð^̂����½j�Þ>

@
^̂
����
½j�

" #8<
:

9=
;
þ

				ð�̂���½j�Þ:

ð66Þ

Since

C�̂ / N�ð�̂���Þþ N�ð�̂���Þ ¼ Sð�̂���Þ � �minCð�̂���Þ; ð67Þ

(66) can be finally written as

^̂
����
½jþ1� ¼ ^̂

����
½j� �N�ð�̂���Þþ

@				ð^̂����½j�Þ>

@
^̂
����
½j�("

@				ð^̂����½j�Þ>

@
^̂
����
½j�

#>
N�ð�̂���Þþ

"
@				ð^̂����½j�Þ>

@
^̂
����
½j�

#)þ
				ð�̂���½j�Þ:

ð68Þ

Equation (68) must be iterated two or three times until (59)

is satisfied since the manifold 				ð�Þwas approximated locally

by a hyperplane. Enforcing the ancillary constraints can be

incorporated into the main HEIV algorithm summarized in

Section 3.5 such that, at each HEIV iteration step, the

estimate satisfies (57).

3.4 Nonlinear EIV Model with Separable Parameter

In this section, we present a solution for solving the

nonlinear EIV model (4) in its most general form when

there is a nonlinear dependency on the parameter ����o. In the

linearized algorithms, a solution can be obtained by finding

the minimum of the cost function in the linearized space

(i.e., on the manifold k�̂���k ¼ 1), followed by estimating the

solution �̂��� which best approximates ����ð�̂���Þ 
 �̂���. However, in

some cases, minimizing the unconstrained objective func-

tion can lead to convergence to the incorrect solution as

shown by Matei et al. in the case of trifocal tensor estimation

[26]. Instead, the HEIV algorithm derived in Section 2 can be

extended to allow enforcing the constraint ����ð�̂���Þ 
 �̂��� at each

iteration of the HEIV algorithm.

Expressing (39) in the parameter �̂���, the cost function

which we want to minimize is

J HEIV ð�̂���Þ ¼
1

2
����ð�̂���Þ>Sð�̂���Þ����ð�̂���Þ; ð69Þ

where Sð�̂���Þ ¼ Sð����ð�̂���ÞÞ is the weighted scatter matrix defined

in (36). Using the chain rule, the gradient of (69) must

satisfy

@����ð�̂���Þ>

@�̂���
Sð�̂���Þ � Cð�̂���Þ
h i

����ð�̂���Þ ¼ 0: ð70Þ

Using the Taylor expansion of ����ð����Þ around the current

estimate �����,

����ð�̂���Þ ¼ ����ð�����Þ þ @����ð
�����Þ

@�����>
ð�̂��� � �����Þ; ð71Þ

and, by combining (70) and (71), the update equation becomes

�̂��� � ����� ¼ � @����ð�̂���Þ>

@�̂���
Nð�̂���Þ @����ð

�����Þ
@�����>

" #þ
@����ð�̂���Þ>

@�̂���
Nð�̂���Þ����ð�����Þ

Nð�̂���Þ ¼ Sð�̂���Þ � Cð�̂���Þ:

ð72Þ

Since both @����ð�̂���Þ>

@�̂���
and Nð�̂���Þ are unknown, the following

update rule can be employed:

�̂��� � ����� ¼ � @����ð�����Þ>

@�����
N�ð�����Þ

@����ð�����Þ
@�����>

" #þ
@����ð�����Þ>

@�����
N�ð�����Þ����ð�����Þ; ð73Þ

N�ð�����Þ ¼ Sð�����Þ � �minCð�����Þ; ð74Þ

where �min is the smallest generalized eigenvalue solution

of (41). Note that the Hessian matrix used in (74) is different

than the one used in the least squares estimates.
Equation (73) has a different interpretation than (58).

Suppose that we are given an estimate ����� and we are initially

doing a minimization of the cost function over the parameter

���� 2 IRp. Then, given ����� ¼ ����ð�����Þ, the updated estimator �̂��� is

obtained by solving the HEIV equation (41). To find the best

approximation of �̂��� ¼ ����ð�̂���Þ, we minimize the cost function

J ¼ 1

2
�̂���� ����ð�̂���Þ
� �>

Ĉ
þ
�̂ �̂���� ����ð�̂���Þ
� �

; ð75Þ

estimating the covariance C�̂ of the estimator �̂��� similarly
to (67).

3.5 The HEIV Estimator

The HEIV estimator is summarized next.

1. Compute an initial solution �̂���½0�, for example, the

TLS estimate obtained assuming i.i.d. noise. Note
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that a random initial value, however, suffices in

most case to achieve convergence. If needed, find

the corresponding �̂���½0� by minimizing (75) and let
^̂
����
½0� ¼ ����ð�̂���½0�Þ. Let j ¼ 0.

2. Compute the current projection ẑzzzi of zzzzi onto the

manifold solution
^̂
����
½j�

and estimate the Lagrange

multipliers ����i using (21).
3. Compute the weighted scatter matrix Sð^̂����½j�Þusing (36)

and the weighted covariance matrix Cð^̂����
½j�
Þ using (37).

4. Find the update estimate �̂���½jþ1� by solving the

generalized eigenvalue problem (41) using general-

ized eigen(singular) value decomposition as dis-

cussed in Section 3.1. Update j ¼ jþ 1.

5. If it is necessary, estimate �̂���½j� from �̂���½j� by imposing

(75) and recompute
^̂
����
½j� ¼ ����ð�̂���½j�Þ.

6. Iterate through Steps 2 to 5 until �min 
 1, up to a

tolerance. Convergence is achieved usually in two or

three iterations.

4 RELATIONSHIP OF THE HEIV EQUATION TO

OTHER TECHNIQUES

The relationship of the HEIV algorithm with other estimators

proposed in the literature for parameter estimation for

constraints linear in the parameter ���� is established next. We

prove that the HEIV estimator is the most general estimator

which is optimal in the first order. In particular, the

renormalization algorithm of Kanatani, the Sampson meth-

od, and the GTLS algorithm can be obtained from the general

HEIV equation by making various simplifying assumptions.

4.1 GTLS Algorithm

Assume that the constraint is univariate and linear in both
the measurements and parameter, i.e., ffffðzzzzio; ����oÞ ¼ zzzz>io����o.
Assume furthermore that the noise affecting the measure-
ments is anisotropic, but homogeneous Czi ¼ Cz. From
�ðzzzzioÞ ¼ zzzz>io and ’’’’ðzzzzioÞ ¼ zzzzio, we have Jf jẑi ð�zzzzi; �̂���Þ ¼ �̂���, thus

Sð�̂���Þ ¼
Xn
i¼1

zzzzizzzz
>
i

�̂���>Czi �̂���
¼ 1

�̂���>Cz�̂���

Xn
i¼1

zzzzizzzz
>
i : ð76Þ

Using J�jẑið�zzzziÞ ¼ Ip,

Cð�̂���Þ ¼
Xn
i¼1

�2
i Cz ¼

Xn
i¼1

�2
i

 !
Cz: ð77Þ

Thus, the HEIV equation Sð�̂���Þ�̂��� ¼ Cð�̂���Þ�̂��� can be written as

SGTLS�̂��� ¼ �CGTLS�̂��� SGTLS ¼
Xn
i¼1

zzzzizzzz
>
i

CGTLS ¼ Cz � ¼ ð�̂���>Cz�̂���Þ
Xn
i¼1

�2
i

ð78Þ

and the solution �̂��� sought is taken as the smallest general-
ized eigenvector of (78).

4.2 Sampson Method

In the Sampson method, we minimize the same objective
function (12) when the constraint ffff is ffffðzzzzio; ����oÞ ¼ �ðzzzzioÞ����o.

A key difference in the Sampson method is the assumption
that the gradient of the cost function JJ j�̂ð�̂���Þ can be
computed by discarding the dependence of the scatter
matrix Sð�̂���Þ on the unknown value of �̂���. Thus, by assuming
Sð�̂���Þ 
 Sð�����Þ, where ����� is an already available estimate
assumed constant, it is easy to see that the gradient becomes

JJJJJ SN j�ð�̂���Þ ¼ Sð�����Þ�̂���; ð79Þ

thus the solution sought is obtained by the smallest
eigenvector of

Sð�����Þ�̂��� ¼ ��̂���: ð80Þ

Therefore, the Sampson method is obtained as a particular
case of the HEIV equation obtained by substituting Cð�����Þ ¼ Ip.
Discarding the dependency of the scatter matrix S in (79) on
the current value of the parameter �̂��� leads to a simplified
calculation of the gradient, however, the solution obtained
will be biased, even for �̂��� ¼ ����o

E½JJJJJ SN j�ð����oÞ� ¼ E½Sð����oÞ� ����o 6¼ 0: ð81Þ

We show next that any linearization of the constraint
function �ðzzzzioÞ����o ¼ 0 involving the parameter �̂��� will result
in a scheme equivalent with the Sampson method. Indeed, a
first order approximation of the constraint ffffðẑzzzi; �̂���Þ around
the current estimates ðzzzzi; �����Þ yields

ffffðẑzzzi; �̂���Þ ¼ ffffðzzzzi; �����Þ þ Jfjẑiðzi; �����Þ
>ðẑzzzi � zzzziÞ þ �ðzzzziÞð�̂���� �����Þ:

ð82Þ

From (12) and (82) and imposing JJJJJ jẑzzzi ¼ 0, one obtains,
after some manipulations,

ẑzzzi ¼ zzzzi � CziJfjẑiðzzzzi; �����ÞCfðzzzzi; �����Þþ�ðzzzziÞ�̂���; ð83Þ

resulting in the cost function

J SNð�̂���Þ¼
1

2
�̂���>
Xn
i¼1

�ðzzzziÞ>Cfðzzzzi; �����Þþ�ðzzzziÞ�̂��� ¼
1

2
�̂���>Sð�����Þ�̂���; ð84Þ

which has the gradient expressed in (79), resulting in the
Sampson solution (80).

4.3 Renormalization Method

The renormalization method is an iterative method used to
eliminate the bias present in the least squares solution by
solving a generalized eigenvalue problem. The renormali-
zation was proposed by Kanatani [20, pp. 267-295] and
applied to a wide range of computer vision problems: conic
fitting, optical flow, and rigid motion estimation. Kanatani
[20] contains numerous applications of the renormalization
together with a complete estimation framework.

We assume now that

�ðzzzziÞ ¼ Zi Zi ¼
zzzz
ð1Þ>
i

..

.

zzzz
ðmÞ>
i

2
64

3
75 zzzz>i ¼ zzzz

ð1Þ>
i � � � zzzzðmÞ>i

h i
ð85Þ

and note that ’’’’ðzzzziÞ ¼ zzzzi. Let �2
�C
ðklÞ
zi
¼ covðzzzzðkÞ>i ; zzzz

ðlÞ>
i Þ be the

ðklÞth block of the covariance �2
�Czi of the measurements zzzzi,

where �2
� is a common factor, the noise variance, assumed

unknown, which can be estimated after the main estimation
process using (56). The covariance of the constraint (38) can
be written as
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Cfið�̂���Þ ¼
4 ðIm � �̂���Þ>CziðIm � �̂���Þ ð86Þ

function only on the covariance of the measurements and
on the estimate �̂���. The scatter (36) has the simpler
expression

Sð�̂���Þ ¼
Xn
i¼1

Z>i Cfið�̂���Þ
þZi: ð87Þ

The expected value E½Sð����oÞ�����o can be expanded using (87) as

E½Sð����oÞ�����o ¼ E
Xn
i¼1

Z>i Cfið����oÞ
þZi

" #
����o

¼ E
Xn
i¼1

ðZ>io þ �Z>i ÞCfið����oÞ
þðZio þ �ZiÞ

" #
����o;

ð88Þ

which can be written as

E½Sð����oÞ�����o ¼ Soð����oÞ����o þ
Xn
i¼1

Cfið����oÞ
þE½�Zi�Z>i �����o

¼ �2
�

Xn
i¼1

Xm
k;l¼1

�
ðklÞ
i CðklÞzi

����o 6¼ 0;

ð89Þ

where �
ðklÞ
i is the ðklÞth element of the matrix Cfið����Þ

þ. In the
renormalization method, the bias of the gradient of the
objective function is removed by defining the unbiased
scatter matrix

NKð����oÞ ¼ Sð����oÞ � �2
�

Xn
i¼1

Xm
k;l¼1

�
ðklÞ
i CðklÞzi

¼
Xn
i¼1

Xm
k;l¼1

�
ðklÞ
i zzzz

ðkÞ
i zzzz

ðlÞ>
i � �2

�C
ðklÞ
zi

� �
:

ð90Þ

Let

CKð�̂���Þ ¼
Xn
i¼1

Xm
k;l¼1

�
ðklÞ
i CðklÞzi

NKð�̂���Þ ¼ Sð�̂���Þ � �2
�CKð�̂���Þ: ð91Þ

An unbiased least squares estimation can be obtained when
the objective function (84) is replaced by the objective
function

J Kð�̂���Þ ¼
1

2
�̂���>NKð�����Þ�̂���; ð92Þ

which is minimized under the constraint k�̂���k ¼ 1. The
renormalization seeks a solution by iteratively solving the
following eigenvalue equation

NKð�����Þ �̂��� ¼ ��̂���: ð93Þ

We prove next that the renormalization equation approx-
imates the HEIV equation on average. Since the scatter matrix
expression Sð�̂���Þ is identical in both HEIV and the renorma-
lization, we will show that Cð�̂���Þ is proportional with CKð�̂���Þ.
Indeed, from (21), we have

����i����
>
i ¼ Cfið�̂���Þ

þðIm � �̂���Þ>zzzzizzzz>i ðIm � �̂���ÞCfið�̂���Þ
þ

having the expected value

E½����i����>i �¼Cfið�̂���Þ
þðIm � �̂���Þ>E½zzzzizzzz>i �ðIm � �̂���ÞCfið�̂���Þ

þ¼�2
�Cfið�̂���Þ

þ:

ð94Þ

We have assumed unbiased parameter estimates, zero-
mean noise, and have discarded moments higher than two.
Thus, E½�ik�il� ¼ �2

��
ðklÞ
i . The coefficients multiplying C

ðklÞ
i in

the renormalization process are proportional to the ex-
pected values of the coefficients used in the HEIV equation,
the proportionality factor being given by the equivalent
noise variance �2

� .

4.4 The Fundamental Numerical Scheme

Chojnacki et al. proposed [5], [6], [7] a different approach
called Fundamental Numerical Scheme (FNS) as an alternative
for solving (11). The FNS was derived only for scalar
constraints, m ¼ 1. Assuming that, in the objective function
from (12), we add the Lagrange multiplier corresponding to
the constraint k�̂���k ¼ 1

J ð�̂���; ẑzzz1; . . . ; ẑzzznÞ ¼
1

2

Xn
i¼1

ðzzzzi � ẑzzziÞ>Cþziðzzzzi � ẑzzziÞ

þ
Xn
i¼1

����>i ffffðẑzzzi; �̂���Þ � ��̂���>�̂���;

we similarly obtain from the derivation in Section 2 that the
gradient of the objective function is

JJ j�̂ð�̂���Þ ¼ ½Sð�̂���Þ � Cð�̂���Þ� �̂���� ��̂���:

Hence, in order to obtain a minimum of the objective
function at �̂���, we have to find the solution to the equation

Sð�����Þ � Cð�����Þ
� �

�̂��� ¼ � �̂���: ð95Þ

The refined solution �̂��� corresponds to the smallest in absolute
value eigenvalue of the matrix Sð�����Þ � Cð�����Þ, which most
closely approximates the null space of Sð�����Þ � Cð�����Þ. It is
assumed that, with each step of (95), a better estimate of this
null space is obtained. When convergence is reached, the
smallest eigenvalue of (95) must necessarily be zero. The
initial solution employed in the FNS is the total least squares
solution.

A comparison between the FNS and HEIV scheme reveals
the close relationship between the two estimates. The
methods employ different numerical solutions (ordinary
eigenproblem versus generalized singular value decomposi-
tion) to find a solution to the same cost function. Experimental
results showed that FNS and HEIV, when initialized from the
same solution, yield very close numerical results [7], with the
HEIV estimate being slightly better. It was also noted that the
HEIV scheme is more robust to the initial solution (conver-
gence to the same solution is obtained by starting with
random parameter) than the FNS. On the other hand, the FNS
scheme it is not affected by the singularity posed by the
perfect measurements as the HEIV scheme is.

4.5 Levenberg-Marquardt Method

A widely employed optimization technique for least squares

problems is the Levenberg-Marquardt (LM) method [34,

pp. 683-689]. An excellent review of the topic is done by

Triggs et al. in [38]. Assume that the ideal values of the

measurements yyyyio 2 IRq, xxxxio 2 IRm, i ¼ 1; . . . ; n obey the

constraint

yyyyio ¼ ggggðxxxxio; ����oÞ i ¼ 1; . . . ; n ð96Þ
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and that only yyyyio was corrupted by noise

yyyyi ¼ yyyyio þ �yyyyi �yyyyi � GIð0; �2
�CCCCyiÞ:

In the least squares method, the estimate �̂��� of ����o is found by
minimizing the sum of the squared Mahalanobis distances

J ð�̂���;¼ 1

2

Xn
i¼1

yyyyi � ggggðxxxxio; �̂���Þ
� �>

Cþyi yyyyi � ggggðxxxxio; �̂���Þ
� �

: ð97Þ

Define

�YYYY ð�̂���Þ ¼4
yyyy1 � ggggðxxxx1o; �̂���Þ

..

.

yyyyn � ggggðxxxxno; �̂���Þ

2
664

3
775 �YYYY ð�̂���Þ 2 IRmn;

Cy ¼ bdiagðCy1
; . . . ;CynÞ Cy 2 IRmn�mn:

The gradient vector is

@J ð�̂���Þ
@�̂���

¼ JJ j�̂Cþy �YYYY ð�̂���Þ

JJ j�̂ ¼ �
@ggggðxxxx1o; �̂���Þ>

@�̂���
; . . . ;

@ggggðxxxxno; �̂���Þ>

@�̂���

" #
2 IRp�mn:

ð98Þ

The Hessian matrix becomes

@2J ð�̂���Þ
@�̂���@�̂���>

¼ JJ j�̂Cþy J>J j�̂

þ
Xn
i¼1

Xm
j¼1

@2giðxxxx1o; �̂���Þ
@�̂��� @�̂���>

Cþyi yyyyi � ggggðxxxxio; �̂���Þ
� �h i

j
;

ð99Þ
where gið�Þ is the ith component of gð�Þ and ½x�j is the
jth component of the vector xxxx. In practice, the approximation

@2J ð�̂���Þ
@�̂���@�̂���>


 JJ j�̂���Cþy J>J j�̂���

is used. This approximation is valid for small errors �yyyyi in the
metric defined by Cyi or for functions ggggðxxxxio; �̂���Þ which are
quasi-linear in the parameter �̂���. During the LM iterations, the
update ��̂��� is computed by solving the following linear
system:

JJ j�̂Cþy J>J j�̂ þ 
W
� �

��̂��� ¼ �JJ j�̂Cþy �YYYY ð�̂���Þ; ð100Þ

where W is chosen most often to be the identity matrix Ip and

is a constant which is used to switch between a Gauss-
Newton step, obtained for small
 and a gradient descent step
when
� 0 depending on the error surface encountered. The
exact path followed in the error surface to reach the final
solution depends on the initial value �̂���½0� and on the heuristics
employed to modify the dampening factor 
.

The LM algorithm requires a good initialization to
converge to the correct solution. On the other hand, the
HEIV is less dependent on the initialization and converges
in fewer steps to the final solution. In order to assess the
relative performance of the LM and HEIV, we have
performed a synthetic experiment for a linear problem yio ¼
x>ioo þ �o ¼ 0, ����o ¼ ½o; �o�> 2 IR3 in which the ideal values
zzzzio ¼ ½xxxxio; yio�>, satisfying zzzz>io����o ¼ 0, were affected by hetero-
scedastic noise

�zzzzi � GI 0; 0:22R>i diag ½zio�21; ½zio�
2
2; ½zio�

2
3

� �
Ri

� �
;

where Ri is a rotation matrix randomly chosen. The
experiments employed 30 measurements randomly selected
for ����o¼ ½1 1 1�> with ½xxxxio�1;2 2 ½�10; 10�. For LM, we had
employed the implementation provided by the optimiza-
tion toolbox in Matlab and, for HEIV, we had employed our
own implementation in Matlab. In Fig. 3, the convergence
steps (denoted by dots) for the HEIV and LM in a typical
trial show the path toward convergence. While the LM
requires, in general, about 20-30 iterations, the HEIV
converges in two to three iterations.

5 APPLICATIONS

In this section, we describe applications of the HEIV
estimator and compare it with estimators such as total least
squares (TLS), Levenberg-Marquardt solutions, etc. The
HEIV estimator is obtained from the linearized algorithm
followed by the application of additional constraints if it is
necessary. In each case, the constraint can be written as
separable in the parameter �̂���.

5.1 Camera Calibration

Camera calibration was discussed in Section 1. The solution
has to satisfy (7)

Aðẑzzzi;mmmmioÞp̂ppp ¼ �ðẑzzziÞ�̂��� ¼ 0 k�̂���k ¼ 1 i ¼ 1; . . . ; n; ð101Þ

where �ðẑzzziÞ is a 2� 12 matrix and �̂��� is a 12-dimensional
vector with �̂��� having norm one to remove the scale
ambiguity. The projection matrix P̂ is computed by
reshuffling the vector �̂��� and the intrinsic and extrinsic
camera parameters K̂, respectively, R̂, t̂ttt are obtained from
the QR decomposition of P̂

P̂ ¼ K̂ R̂ t̂ttt
� �

; ð102Þ

with K̂ being an upper triangular matrix and R̂, t̂ttt the
rotation and translation of the camera with respect to the
world coordinates. Further additional constraints on K̂, like
known aspect ratio of the pixels, can also be imposed. In
general, it can be assumed that k̂12 ¼ 0.

The calibration error is defined as the norm of the
10-dimensional error vector of the four intrinsic and six
extrinsic parameters. For each measure, 500 trials of 50 points
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Fig. 3. Comparison between the convergence of the (a) HEIV algorithm

and (b) LM algorithm. Dots represent iterations steps on the error

surface. Note the more sinuous path of the LM when initialized from

further away from the ideal solution denoted by a cross.



were performed with the ideal camera parameters being
f ¼ 117, kx ¼ ky ¼ 1, Ox ¼ 250, and Oy ¼ 250.

The TLS solution is biased because each row in (9) has a
different covariance matrix. In Fig. 4, the increased error norm
is clearly shown in the TLS case. When the data is normalized,
as is recommended for TLS [16, p. 170], its performance
improves significantly but remains slightly biased.

The Levenberg-Marquardt algorithm starts with the total
least squares solution and, subsequently, refines it by
minimizing the following cost function:

J ðP̂Þ ¼
Xn
i¼1

kzzzzi � ẑzzzik2 subject to ẑ1i ¼
qqqq>1 MMMMio

qqqq>3 MMMMio
ẑ2i ¼

qqqq>2 MMMMio

qqqq>3 MMMMio
;

ð103Þ

where qkqk
> is the kth row of the matrix P. Because the image

points have i.i.d. covariance matrices, the optimization
function is without weights. The output of the LM algorithm
is shown after 150 and 300 function evaluations in Fig. 4. The
LM algorithm requires about 300 function evaluations to
converge. The HEIV algorithm starts with a random initial
solution and converges in about three iterations. The LM
and HEIV estimates require about the same amount of
computation.

5.2 Three-Dimensional Rigid Motion

Estimating the rigid motion transformation between two
3D point clouds is a fundamental problem in 3D scene
reconstruction from unregistered 3D data acquired by range
sensors or stereo heads. Two popular closed-form estimators
are based on the SVD method proposed originally by Arun
et al. [1] and refined later by Umeyama [40], respectively,
using the quaternion method proposed by Horn et al. [17].
Both estimators were shown to numerically yield the same
results [10], [30] since they utilize different representation for
the same constraint solved by the SVD and the eigenvalue
decomposition. The SVD and quaternion-based representa-
tion are optimal only when the 3D measurements are affected
by i.i.d. noise. When this assumption is violated, both
algorithms yield estimates having a significant bias even
when a large number of points are available. In practice, the
recovered 3D measurements are affected by strong hetero-
scedastic noise. For example, for range data, the 3D data is
acquired by emitting a radiation pulse (e.g., laser) toward the
target and measuring the time elapsed between sending and
receiving the pulse. Thus, the noise affecting the data is

mainly along the line of sight between the sensor and the

scene. Also, when stereo heads are employed, the triangu-

lated 3D points are affected also by errors along the viewing

direction with noise increasing with the distance between the

points and the stereo head.
Let the two sets of ideal, noise-free matched 3D measure-

ments be Uo ¼ uuuu1o; uuuu2o; . . . ; uuuunof g and Vo ¼ vvvv1o; vvvv2o; . . . ; vvvvnof g.
The available 3D measurements uuuui, vvvvi are

uuuui ¼ uuuuio þ �uuuui vvvvi ¼ vvvvio þ �vvvvi
�uuuui � GIð0; �2

�CuiÞ �vvvvi � GIð0; �2
�CviÞ:

ð104Þ

The ideal values must obey the rigid motion constraint

vvvvio ¼ Rouuuuio þ tttto; ð105Þ

where Ro is the 3� 3 rotation matrix and tttto is the

translation vector. The estimate R̂ of Ro must satisfy the

constraint R̂R̂
> ¼ I3.

An elegant rotation parametrization is obtained by

using quaternions, which are four-dimensional unit

vectors qqqq ¼ ½ q0 q1 q2 q3 �>. It can be shown [33] that

the constraint (105) is equivalent to

Zioqqqqo þ ����o ¼ 0; ð106Þ

where Zio 2 IR3�4 is the matrix of the carriers

Zio ¼
v1io � u1io 0 �v3io � u3io v2io þ u2io

v2io � u2io v3io þ u3io 0 �v1io � u1io

v3io � u3io �v2io � u2io v1io þ u1io 0

2
4

3
5

ð107Þ
and the intercept

����o ¼ Qotttto Qo ¼
�q0o �q3o q2o

q3o �q0o �q1o

�q2o q1o �q0o

2
4

3
5: ð108Þ

The matrix Qo is nonsingular as long as q0o is different from

zero since the determinant of Qo is equal to �q0o. Because

q0o ¼ 0 represents a discontinuity in the quaternion repre-

sentation, the application of this approach is not recom-

mended for cases when the rotation angle is close to �� [27].

Note that (106) is of the form (4) with z>i ¼ ½uuuu>i vvvv>i � and ����>o ¼
½qqqq>o ����>o � and that �ðzzzzioÞ is linear in the measurements zzzzi.

The quaternion method is a TLS estimator in which the

quaternion q̂qqq is obtained as the smallest eigenvector of the

matrix

M ¼
Xn
i¼1

~Z
>
i

~Zi

~Zi ¼
~v1i � ~u1i 0 �~v3i � ~u3i ~v2i þ ~u2i

~v2i � ~u2i ~v3i þ ~u3i 0 �~v1i � ~u1i

~v3i � ~u3i �~v2i � ~u2i ~v1i þ ~u1i 0

2
64

3
75;

where

~u~u~u~ui ¼ uuuui � ~uuuu ~uuuu ¼ 1

n

Xn
i¼1

uuuui ~vvvvi ¼ vvvvi � ~vvvv ~vvvv ¼ 1

n

Xn
i¼1

vvvvi ð109Þ

are the centered measurements. The rotation estimate R̂ is

obtained uniquely from q̂qqq, kq̂qqqk ¼ 1, using the equation,
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Fig. 4. Histogram of calibration error norms. �� ¼ 0:5.



R ¼
q2

0 þ q2
1 � q2

2 � q2
3 2ðq1q2 � q0q3Þ 2ðq1q3 þ q0q2Þ

2ðq2q1 þ q0q3Þ q2
0 � q2

1 þ q2
2 � q2

3 2ðq2q3 � q0q1Þ
2ðq3q1 � q0q2Þ 2ðq3q2 þ q0q1Þ q2

0 � q2
1 � q2

2 þ q2
3

2
4

3
5:

ð110Þ

The translation estimate is t̂ttt ¼ ~vvvv� R̂~uuuu. By exploiting the
relationship between (106) and (4), the HEIV estimator can
be applied directly.

5.2.1 Experiments with Synthetic Data

The simulated setting used in our experiments consists of a
stereo head moved around a fixed scene. The cameras had
zero vergence and focal distance f ¼ 536, yielding a field of
view of 50 on both x and y axes. The baseline of the stereo
head was 100 and the image planes were 500� 500, all values
being in pixel units. The n ¼ 50 three-dimensional points
were uniformly generated inside a cube with the side length
800 placed at 1,300 in front of the cameras. The 3D points are
projected onto the image planes, corrupted by adding normal
noise with�2

� ¼ 1, and then allocated to the nearest lattice site.
The 3D information is recovered using Kanatani’s triangula-
tion method [20, pp. 171-186]. For this type of triangulation,
there are closed, form expressions for Cvi and Cui . Alterna-
tively, the bootstrap method described in [27] can be used.

The performance evaluation of the quaternion and HEIV-
based estimators was done using Monte Carlo trials and the
bootstrap using sampling of residualszzzzi � ~zzzzi, whitened by the
corresponding covariance of the residuals. Note that the
Monte Carlo analysis assumes that the ideal values of the
estimates (Ro and tttto) are known, while the bootstrap does not.
We had employedB ¼ 200 samples for both Monte Carlo and
bootstrap methods. For each Monte Carlo trial b, the estimates
aredenotedby R̂b; t̂tttb,while, for thebootstrap, theestimatesare
denoted by R̂�b; t̂ttt�b.

Fifty trials, each having the motion parameters randomly
generated (chosen such that the scene remains in the field of
view of the cameras) and different 3D point configurations
were performed. For each trial, the translation error �2t is
estimated as the average of kt̂tttb � ttttok for the Monte Carlo and
the average of kt̂ttt�b � t̂tttk, b ¼ 1; . . . ; B for the bootstrap. The
rotation forms a multiplicative group, thus, the rotation
estimation error �2R is defined as the angle-axis representation
of the rotation matrix R̂R>o . In the angle-axis representation,
using the notations from [19, pp. 100-103], R is represented by
the vector rrrr ¼ � llll, rrrr 2 IR3, where

� ¼ krrrrk ¼ arcos
traceðRÞ � 1

2

� �
and

llll ¼ llll0

kllll0k llll0 ¼
R32 �R23

R13 �R31

R21 �R12

2
64

3
75: ð111Þ

We denote this operation by rrrr ¼4 axðRÞ. It follows that
the Monte Carlo rotation error is the average of
kaxðR̂bR>o Þk, while the bootstrap rotation error is the
average of kaxðR̂�bR̂>Þk.

In Fig. 5, the translation and rotation error for each 50 trials
defined as above are plotted for the HEIV and quaternion
algorithms using the bootstrap and the Monte Carlo
estimates. Note the excellent agreement between the boot-
strap and Monte Carlo error estimates and the larger
translation and rotation error yielded by the quaternion
method compared with the HEIV algorithm.

5.2.2 Experiments with Real Data

To evaluate the HEIV base’s rigid motion estimator, the
quaternion method, and renormalization, we have used two
sequences for which ground truth information was avail-
able, the Castle sequence from the CIL-CMU database which
has a significant translation but a relatively small rotation,
and the PUMA sequence, which has a dominant rotation
component. Typical frames for the Castle sequence and the
PUMA sequence are shown in Fig. 6.

From each experiment we have performed, four frames
were selected. Since the motion between the frames is known,
two “virtual” stereo-heads can be defined using the first two
and the last two frames. For each pair, 3D measurements are
obtained using triangulation and the uncertainty of the
triangulated points extracted using bootstrap. The relative
pose between the locations of the two stereo-heads is
subsequently estimated from the two sets of 3D points. The
information flow is summarized in Fig. 7, with a specific
motion estimator applied to the 3D data to estimate the
rotation and translation between the two stereo-heads.

For the HEIV, quaternion, and renormalization methods,
the bootstrapped covariance matrices of t̂ttt and R̂ are used to
define the average estimation error as

�̂2t ¼ traceðĈtÞ �̂2R ¼ traceðĈRÞ: ð112Þ

The average estimation error for the rotation and
translation using the frames 5, 7, 9, and 11 from the Castle
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Fig. 5. Comparison between the bootstrap (BT) and Monte Carlo (MC) error estimates for HEIV and the quaternion method. (a) Translation.

(b) Rotation. “�” MC estimate for HEIV, “” BT estimate for HEIV, “þ” MC estimate for quaternion, and “x” BT estimate for quaternion.



sequence are presented in Table 1. There were 93 points
matched across the four frames using [44].

The estimation errors for the HEIV are much smaller

than for the quaternion method which is heavily biased

under heteroscedastic noise. The HEIV errors are also

smaller than the renormalization method, which failed to

converge in few trials. The bootstrapped covariance

matrices of the estimates R̂, t̂ttt for the quaternion and

HEIV methods are plotted in Fig. 8. As expected, the

quaternion-based algorithm has a much larger variability

than the HEIV since it assumes i.i.d. data.

For the PUMA sequence, the frames 9, 10, 12, and 13

were used and 79 matched points retained. The results are

shown in Table 2 and illustrate the superior performance of

the HEIV algorithm. The renormalization method failed to

converge to the correct solution.

6 DISCUSSION

We next discuss several applications of the HEIV algorithm
proposed in the literature. The origin of the algorithm,
derived for univariate constraints, can be traced to Leedan
and Meer [23]. In [23], a slightly simplified version of the
approach described was applied to fundamental matrix
estimation and to conic fitting. The authors reported
improved behavior of the algorithm compared to other
known techniques.

The HEIV estimator, in a form similar to the one described

in this paper, was presented originally in [28] and applied to

camera calibration and fundamental matrix estimation. The

authors reported improved behavior of the HEIV-based

estimator compared with techniques based on the Leven-

berg-Marquardt algorithm initialized by the linearized

solution obtained using the total least squares estimator.

It is important to point out that the HEIV provides a

different optimization approach for handling nonlinear

constraints of a particular type �ðxxxxÞ>����o ¼ 0 relating the

parameter ����o to the measurements compared to the usage of

generic tools such as the fmincon function from the optimiza-

tion toolbox within MATLAB. This translates into a particular

expression of the gradient, which can be solved through the

eigenvalue or singular value decomposition. The nature of

the the constraint and the manner in which the optimization

is carried out result in a large numerical robustness of the

HEIV algorithm to the quality of the initial solution. The

usage of fmincon function involves implicitly extending the

parameter space to include the nuisance parameters, similar

to the Gold Standard Method proposed by Hartley. More-

over, in order to achieve convergence to the correct solution,

generally, a good initialization would be required. Rather

than increasing the dimensionality of the problem, the HEIV

relies on factoring out the nuisance parameters and solving

for the parameter only. Thus, the resulted dimensionality of

the space over which the HEIV seeks the parameter estimate

is constant and independent on the number of measure-

ments. Employing out of the box optimization packages, such

as fmincon without addressing the sparseness of the Hessian

matrix induced by the nuisance parameters would result in

inefficient and slow execution time.

In [29], the HEIV algorithm was applied to conic fitting.

Simulations with synthetic and real data showed signifi-

cantly improved performance compared with the direct

least squares (DLS) method and was more numerically

robust compared with the minimization of geometric
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Fig. 7. Information flow in the experimental setup for estimating rigid

motion using real data obtained from a stereo head. Covariance of the

recovered 3D measurements is obtained using error propagation or

bootstrap.

Fig. 6. Typical frames from the sequences with the matched points labeled. (a) and (b) Castle frames from the CIL-CMU database. (c) and (d) Frames

from the PUMA sequence.

TABLE 1
Performance Evaluation: Castle Sequence



distances with the LM algorithm initialized from the DLS

solution. Confidence regions derived from the estimated

covariance matrices of the HEIV estimator were showed to

be in close correspondence with the bootstrapped con-

fidence regions using resampling of residuals.
The HEIV algorithm was applied for trifocal tensor

estimation in [26]. The authors demonstrated the robustness

of the HEIV algorithm for different sequences with respect

to the choice of the initial solution. For hard cases, the HEIV

was shown to be superior compared with the Gold-

Standard approach which failed to converge to the correct

solution in five out of 500 trials due to the bad initialization

provided by the linearized solution yielded by the TLS

algorithm. For stable configurations of the scene and

camera, the HEIV solution and the Gold Standard method

were shown to be numerically very close, with the HEIV

providing a faster convergence.
In [3], the HEIV estimator was applied to 2D rigid motion

between two images. The approach was further extended by

Nestares and Fleet for affine motion estimation [32]. The

authors reported a significant improvement of the accuracy of

the optical flow estimated with the HEIV scheme due to the

non i.i.d. nature of the noise affecting the measurements.

Förstner published an optimal algorithm for 3D points or

3D lines recovery from 2D points or 2D lines [11]. The

recovery of lines was achieved with Plücker coordinates.

The author followed the HEIV algorithm presented by

Matei and Meer in [28], however, he obtained an ordinary

eigenvalue problem instead of a generalized one. Uncer-

tainty of the estimated quantities was also obtained in terms

of covariance matrices.

The HEIV algorithm was used by Georgescu and Meer to

initialize the bundle adjustment of parameters for the

recovery of 3D structure and camera motion from uncali-

brated video sequences [13]. Experiments using simulated

and real sequences showed the improved behavior of the

final estimates when the HEIV was employed at various

stages, such as trifocal tensor estimation, camera resection-

ing, in terms of faster convergence of the bundle adjustment

when initialized with the HEIV estimates, and no instances

of failed convergence to the correct solution.

Subbarao et al. [37] employed the HEIV algorithm for

estimating the camera pose for 3D tracking within an

augmented reality application. The authors reported super-

ior accuracy compared to using the Levenberg-Marquardt

optimization.
We encourage the readers to apply the HEIV algorithm

for all the tasks in which linearized algorithms are typically

employed, since the final bundle adjustment of parameters

can benefit from a more accurate and numerically robust

initial solution. Implementations of the HEIV algorithm in

C++ and Matlab are freely available to download at http://

www.caip.rutgers.edu/riul/research/hetero.html.

APPENDIX

The Kronecker product and the vec operator provide an

elegant mathematical framework for vector calculus and are

extensively used throughout the paper. The survey [2] or

the book [15] contain all the necessary background and also

cover vector calculus.
Given a matrix A 2 IRp�q, the vectorization of A is

defined as the pq-dimensional vector

A ¼ aaaa1 aaaa2 � � � aaaaq½ � aaaai 2 IRp vecðAÞ ¼
aaaa1

..

.

aaaaq

2
64

3
75: ðA:1Þ

The Kronecker product between the matrices A and B 2
IRs�t is defined as the ps� qt matrix

A� B ¼
A11B � � � A1qB
� � � AijB � � �
Ap1B � � � ApqB

2
4

3
5: ðA:2Þ

The ijth block AijB is called the ij partition of the

matrix A� B.
Let the following elements have the dimensions

A;H2 IRp�q B;R2 IRs�t C 2 IRr�l D 2 IRq�s F 2 IRq�u

G 2 IRt�u M 2 IRm�m N 2 IRn�n Q 2 IRs�p zzzz 2 IRs
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Fig. 8. Uncertainty of the translation and rotation estimates for the quaternion and HEIV methods evaluated by bootstrap. (a) and (c) Translation and
rotation for the quaternion method. (b) and (d) Translation and rotation for the HEIV-based estimator. The ellipsoids assure a 0.95 coverage for the
ideal rotation and translation.

TABLE 2
Performance Evaluation: PUMA Sequence



“traceð�Þ” stand for the trace, “detð�Þ” for the determinant,
“rankð�Þ” for the rank of a matrix, and Ip 2 IRp�p for the
identity matrix.

1.1 Properties of the Kronecker Product

ðA� BÞ � C ¼ A� ðB� CÞ; ðA:3Þ
ðA� BÞ> ¼ A> � B>; ðA:4Þ
ðAþ HÞ � ðBþ RÞ ¼ A� BþA� R

þH� Bþ H� R; ðA:5Þ
ðA� BÞðD�GÞ ¼ AD� BG; ðA:6Þ
traceðN�MÞ ¼ traceðNÞtraceðMÞ; ðA:7Þ
detðN�MÞ ¼ detðNÞ½ �m detðMÞ½ �n; ðA:8Þ
rankðA� BÞ ¼ rankðAÞrankðBÞ; ðA:9Þ
ðIs � zzzzÞB ¼ B� zzzz: ðA:10Þ

1.2 Properties of the vec Operator

vecðzzzzÞ ¼ vecðzzzz>Þ; ðA:11Þ
vecðAþ HÞ ¼ vecðAÞ þ vecðHÞ; ðA:12Þ
vecðADÞ ¼ ðIs �AÞvecðDÞ ¼ ðD> � IpÞvecðAÞ

¼ ðD> �AÞvecðIqÞ; ðA:13Þ
traceðA>HÞ ¼ ½vecðAÞ�>vecðHÞ: ðA:14Þ

1.3 Vector Calculus

The Jacobian of a vector valued function ffffðzzzzÞ 2 IRm in the
variable zzzz 2 IRs is the s�m matrix

Jf jz ¼
4 @ffffðzzzzÞ>

@zzzz
¼

@f1

@z1
� � � @fm

@z1

..

. ..
.

@f1

@zs
� � � @fm

@zs

2
664

3
775 ¼ @ffffðzzzzÞ

@zzzz>

� 	>
: ðA:15Þ

For a scalar valued function fðzzzzÞ, the Jacobian becomes
Jfjz ¼ rf , the gradient with respect to zzzz. The Jacobian of the
composite function ffffðzzzzðyyyyÞÞ, yyyy 2 IRq, is computed using the
chain rule

Jfjy ¼ JzjyJfjz: ðA:16Þ

Let ggggðzzzzÞ 2 IRm be another vector valued function, then

hðzzzzÞ ¼ ffffðzzzzÞ>ggggðzzzzÞ Jhjz ¼ rh ¼ JgjzffffðzzzzÞ þ JfjzggggðzzzzÞ: ðA:17Þ

Define the rows of the matrix AðzzzzÞ as A> ¼ ½aaaa01ðzzzzÞ � � � aaaa0pðzzzzÞ�,
aaaa0jðzzzzÞ 2 IRq, and the q-dimensional vector bbðzzzzÞ, then

ffffðzzzzÞ ¼ AðzzzzÞbbðzzzzÞ Jfjz ¼ Ja01jzbbðzzzzÞ � � � Ja0pjzbbðzzzzÞ
h i

þ JbjzAðzzzzÞ>:

ðA:18Þ

The particular cases

ffffðzzzzÞ ¼ Azzzz Jf jz ¼ A> and fðzzzzÞ ¼ zzzz>Azzzz

Jfjz ¼ rf ¼ ðAþA>Þzzzz ðA:19Þ

are frequently used throughout the paper.
We can show that ���� and JJ j�ð����Þ are orthogonal, i.e.,

����>JJ j�ð����Þ ¼ 0 8����: ðB:1Þ

Indeed, using one of the Moore-Penrose conditions of a

pseudoinverse [14, p. 257],

����> Cð����Þ ���� ¼
Xn
i¼1

����>ð����i � IpÞ>C’ð�zzzziÞð����i � IpÞ����

¼
Xn
i¼1

����>i ðIm � ����Þ
>C’ð�zzzziÞðIm � ����Þ����i

¼
Xn
i¼1

����>i Cfð�zzzzi; ����Þ����i

¼
Xn
i¼1

ffffðzzzzi; ����Þ>Cfð�zzzzi; ����ÞþCfð�zzzzi; ����ÞCfð�zzzzi; ����Þþffffðzzzzi; ����Þ

¼ ����> Sð����Þ ����:
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