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Abstract—Breast cancer accounts for about 30% of all cancers
and 15assisted analysis hold promise for classifying subtypes
of disease and improving prognostic accuracy. We introduce a
Grid-enabled decision support system for performing automatic
analysis of imaged breast tissue microarrays. To date, we have
processed more than 100,000 digitized specimens (1200 × 1200
pixels each) on IBMs World Community Grid (WCG). As part
of the Help Defeat Cancer (HDC) project, we have analyzed
the data returned from WCG along with retrospective patient
clinical profiles for a subset of 3744 breast tissue samples and
the results are reported in this paper. Texture based features
were extracted from the digitized images and isometric feature
mapping (ISOMAP) was applied to achieve nonlinear dimension
reduction. Iterative prototyping and testing were performed to
classify several major subtypes of breast cancer. Overall the
most reliable approach was gentle AdaBoost using an eight node
classification and regression tree (CART) as the weak learner.
Using the proposed algorithm, a binary classification accuracy
of 89% and the multi-class accuracy of 80% were achieved.
Throughout the course of the experiments only 30% of the
dataset was used for training.

Index Terms—Tissue Microarray, Texton, Grid Computing,
AdaBoost

I. INTRODUCTION

BREAST cancer is one of the leading cancers for women.
It is the second most common cause of cancer death

in white, black, Asian/Pacific Islander and American In-
dian/Alaskan native women [1], [2]. Early detection and im-
proved therapy planning are crucial for increasing the survival
rates of cancer patients.

Tissue microarray (TMA) technology makes it possible to
extract small cylinders of tissue from pathology specimens
and arrange them on a recipient paraffin block such that
hundreds can be assessed simultaneously [3], [4]. Although
TMA technology is still evolving, the underlying methods have
already been tested extensively and validated for use in several
key areas of cancer research. Recently, several leading research
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Fig. 1. A screenshot of Help Defeat Cancer (HDC) clinet running on IBM
world community grid (WCG).

groups participated in efficacy studies in which they compared
the accuracy of TMA-based analysis with assessments, which
had been rendered using traditional whole tissue sections or
cDNA microarrays. These findings were reported for a range
of disorders including breast cancer [5], [6], prostate cancer [7]
and gastric cancer [8]. It is now generally accepted that two to
four samples taken from different regions of each donor tissue
block provides enough information to allow reliable evaluation
of the specimen.

One of the advantages of TMA arrays is that they allow
for amplification of limited tissue resources by providing the
means for producing large numbers of small core biopsies,
rather than generating one single specimen section. Using
TMA technology, a carefully planned array can be constructed
such that a 20 years survival analysis can be performed on a
cohort of 600 or more patients using only 100−200 microliters
of antibody. Another major advantage of the TMA technique
is that each constituent disc within a given array is treated
in an identical manner in terms of incubation times, tempera-
tures and washing conditions. Currently, the primary methods
used to evaluate tissue arrays involve interactive review of
specimens which are subjectively evaluated and scored. An
alternate, but less utilized approach is to sequentially digitize
each specimen for subsequent semi-quantitative assessment.
Both strategies ultimately involve interactive evaluation of
TMA samples, which is a slow, tedious process which is prone
to error. Reducing the amount of time and effort to process
TMA could potentially lead to acceleration of the pace of
cancer research.
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Fig. 2. Two staining examples. On the left is a hematoxylin stained tissue
and on the right is hematoxylin & eosin stained tissue.

Although strides have been made towards automating some
aspects of the analysis [9], [10], the full promise of TMA has
not yet been realized, in part, because of a lack of reliable
methods for performing large-scale quantitative comparative
analysis. We recently undertook a collaborative project with
IBM, the ”Help Defeat Cancer” (HDC) [11] project, which
enabled us to utilize the massive computational power of
the World Community Grid (WCG). A screenshot of one
of the thousands of distributed client computers participating
in the HDC is shown in Figure 1. The WCG enabled us
to demonstrate the feasibility of using spectral and spatial
signatures to characterize staining characters of imaged cancer
specimens. In this paper, we report a Grid-enabled frame-
work and efficient classification algorithm for high-throughput
analysis of digitized breast cancer specimens. We analyzed a
subset of the data returned from WCG along with the patients’
retrospective clinical profiles to discriminate among benign
breast tissues and two other subtypes of breast cancer. More
background information can be found on the HDC project
though Wikipedia using the keyword ”Help Defeat Cancer”
[12].

The remainder of the paper is organized as follows: Section
2 introduces background information on the World Community
Grid. In Section 3, we introduce the data generation and sys-
tem framework. Section 4 explains the data analysis methods,
including feature extraction, dimension reduction and classifi-
cation. Section 5A provides comparative experimental results
of nine binary classifiers. Section 5B shows the performance of
extending the binary gentle AdaBoost algorithm to the multi-
class problem. Section 6 concludes the paper.

II. WORLD COMMUNITY GRID

IBM World Community Grid [13] (WCG) is a philanthropic
project which utilizes otherwise unused CPU cycles from
personal computers around the world and aggregates the com-
bined computational power. WCG was established to address
challenging large scale non-profit research projects which
can benefit humanity. It takes advantage of otherwise wasted
energy and at the same time creates a virtual supercomputer
that by some measures exceeds the capacity of traditional
supercomputers. The result is that some otherwise impractical
or intractable research projects can be brought to successful
completion. Investigators can submit a research proposal for
consideration by the WCG project committee. If approved
by the advisory board, the project is run at no cost to the

research team. Findings are subsequently placed in the public
domain. Suitable research areas include, but are not limited
to biomedical, climatology, environment, conservation and
emergency preparedness.

WCG enabled the most computationally intensive compo-
nents of the Help Defeat Cancer (HDC) project to run at
optimal speed, thereby increasing the accuracy and sensitivity
with which expression calculations and pattern recognition
procedures were conducted. By harnessing the collective com-
putational power of WCG, we were able to analyze a larger
set of cancer tissue specimens than what would be possible
using traditional computer resources. This added level of speed
and sophistication led to improved capacity to detect subtle
changes in measurable parameters, and prognostic clues which
are difficult to observe by visual inspection alone.

The research proposal for the HDC project was originally
submitted in August 2005. By May, 2006, the research team
composed of researchers from The Cancer Institute of New
Jersey, Robert Wood Johnson Medical School, Rutgers Uni-
versity and the University of Pennsylvania School of Medicine
delivered test programs to the technical support team of WCG
for review. The IBM team subsequently performed a thorough
security review of the code and modified it for use on the
Grid. The changes included footprint reductions, incorporation
of robust checkpointing and Grid I/O modifications.

Imaged pathology specimens were generated using a high-
throughput whole slide scanner and transferred from laborato-
ries within Robert Wood Johnson Medical School (RWJMS)
and The Cancer Institute of New Jersey (CINJ) to the secure
Boulder Colorado IBM hosting site where World Community
Grid servers reside. As results were computed, they were
returned to the servers at RWJMS and CINJ. The total of
the transfers approached one terabyte of data. About 2909
years of run-time in the form of slightly more than 5 million
work packages were harvested from the personal computers
contributed to World Community Grid. This includes an
approximate 3 times redundancy of work to ensure that the
computations were not in error or tampered with. Because of
the fairly large working set memory required for the program,
only machines with over 1 GB of RAM were selected to run
the project.

III. DATA GENERATION AND SYSTEM FRAMEWORK

The Tissue microarrays (TMA) used in the HDC project
were collected from The Cancer Institute of New Jersey, Yale
University, University of Pennsylvania and Imagenex Corpo-
ration (San Diego, CA). To date over 300 slides containing
cohorts of hundreds of tissue discs each and originating from
45 TMAs were digitized at 40× resolution using a Trestle
MedMicro virtual microscopy system. The output images
typically contain 1-3 billions of pixels and were stored as a
compressed tiled TIFF file sized at 0.5 to 2 Gigabytes. Our
registration protocols [14] were applied to the scanned images
to identify rows and columns of the tissue arrays. Any tissue
cores that suffered from exceedingly pronounced artifacts were
excluded from the study. Images of each tissue core were
systematically extracted from the archive and packaged as



SUBMITTED TO IEEE TRANS. ON INFORMATION TECHNOLOGY IN BIOMEDICINE 3

Fig. 3. Two staining examples. On the left is a hematoxylin stained tissue
and on the right is hematoxylin & eosin stained tissue.

workunits for the HDC project. The dimension of each image
was 1200× 1200. The specimens under study had previously
been stained with hematoxylin and hematoxylin & eosin. Two
staining examples are shown in Figure 2. A texton extraction
algorithm was applied on the staining maps of the two dyes
which were generated using color decomposition [14]. Each of
the resulting staining maps as well as the luminance measure
generated from the original color image were uploaded as
separate workunits to the WCG. The work-flow and logical
units are shown in Figure 3.

IV. DATA ANALYSIS

As TMA is being utilized increasingly in cancer research,
the development of accurate and efficient method to evaluate
TMA specimens remains a major goal. The individual tissue
discs comprising a given TMA contain complex, heteroge-
neous tissue components, which renders most straight forward
quantification methods ineffective. Furthermore, as researchers
design experiments using different staining techniques which
target specific proteins, the methods used for interpreting these
specimens must vary accordingly.

In this section, we explain the methods used to generate
and analyze the image features for automatic classification of
breast tissue specimens. Textures and intensities were used as
feature measures to classify the staining profiles of the imaged
tissues. Because the feature vectors lie in a high dimensional
space, we applied a nonlinear dimension reduction method
to decrease the dimensionality. Through iterative experiments
we determined that among several different classification algo-
rithms, the gentle AdaBoost classifier provided the best overall
performance in the reduced subspace.

A. Texton and Features

Figure 2 shows two breast cancer specimens. It can be found
that the difference in texture can be used as the discriminative
features to separate different types of breast tissues. Traditional
texture analysis includes Law’s moment [15], cooccurrence
matrices [16], run length matrices [17] and autoregressive
models [18] et. al.

In recent studies, texture has been represented using texton.
Textons are defined as conspicuous repetitive local features

Fig. 4. The LM filter bank used to generate the texture features.

that humans perceive as being discriminative between textures.
Unlike many other texture features that describe each texture
as a constant relationship – a number, a data vector or a set of
model parameters – between each pixel and its surroundings,
the concept of a texton supports the existence of numerous
distinct textual components in each texture. Therefore, it has
advantages in describing textures that have high-level compo-
nents. Texton based texture analysis has been widely used in
many fields of texture related research, including classification
[19], [20], [21], segmentation [22] and synthesis [23].

Based on texton theory, we set out to establish a large
reference library which could be used as the fundamental vo-
cabulary for distinguishing between cancer and benign tissues.
This is referred to as the ”bag of visual words” model and has
been widely used in recent object recognition literature [22],
[24], [25]. In our approach each work unit was first filtered
with a texton filter bank. Subsequently, the cluster modes
were extracted from the resulting filter responses to generate
a universal reference library. The filtering responses collected
across all imaged discs can be considered as typical words that
describe the underlying histology and staining pattern of the
specimens. Thus far, over 100,000 imaged tissue discs have
been processed on the Grid.

In our experiments, four different types of filter banks were
compared.

1) Gabor filter bank: The basic even-symmetric Gabor filter
bank is a set of 2D Gaussian function with variances σx

and σy which are modulated by a complex sinusoid. The
sinusoid has center frequencies u and v along x and y-
axes, respectively.

2) The Leung-Malik (LM) Filter Bank [26]: The LM filter
bank are a set of first and second derivatives of 2D
Gaussian function at six orientation and three scales,
coupled with eight Laplacian of Gaussian (LoG) and
four Gaussian function.

3) The Schmid filter bank [27] : The Schmid filter bank
is composed of 13 orientation invariant filters. It is best
suited for orientation insensitive texture segmentation.

4) The Maximum Response (MR) Filter Banks [20]: The
MR filter bank is quite similar to the LM filter bank.
However, in order to achieve the orientation invariance,
only the maximum response is chosen as the feature
for each scale of the first and second derivatives of the
Gaussian. The LoG and Gaussian are chosen as another
two features. All combined the dimension of the feature
space is eight.

Systematic analysis did not show significant differences
among these filter banks in performance and ultimately de-
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Fig. 5. The five-fold cross validation error over the dimensionality using
ISOMAP for nonlinear dimension reduction.

cided to utilize the 49 × 49 LM filter bank to compute the
filter responses. The feature vector is composed of eight LoG
filter responses with σ = 1,

√
2, 2, 2
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2, 3, 3
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2, 6, 6

√
2, four

Gaussian filtering responses with σ = 1,
√

2, 2, 2
√

2 and the
bar and edge filtering response within six different directions,
θ = 0, π/6, π/3, π/2, 2π/3, 5π/6, σ = 1,

√
2, 2. In total,

each image pixel was represented by a 48 dimensional feature
vector. Figure 4 shows the LM filtering bank in our system.

The image filtering response generated using the collective
computation power of the World Community Grid were gath-
ered together and clustered using K-means, where K was set
to 4000 in our experiments. The cluster centers, called textons,
were used to generate the texton library. The appearance of
each breast tissue image was modeled by a compact quantized
description called texton histograms. Texton histograms are
created by assigning each pixel filter response in the image to
its closest texton in the generated texton library, which was
calculated using

h(i) =
∑
j∈I

count(T (j) = i) (1)

where I denotes breast tissue image, i is the ith element of
the texton dictionary, T (j) returns the texton assigned to pixel
j. In this way, each breast tissue image was modeled as a
texture modes distribution, the texton histogram. Each image
was mapped to one point in the high dimension space Rd,
where d = K = 4000 is the number of textons.

B. Dimension Reduction and Classification

After quantizing the filter response into texton histograms,
each image was represented by a 4000 dimension vector.
Generally, in such a high dimensional space, one has to
consider the ”curse of dimensionality” [28, pp. 170]. In this
paper, a nonlinear dimension reduction method, the isometric
feature mapping (ISOMAP) [29], was applied to find the
embedded dimensionality of the original feature space.

1) Nonlinear Dimension Reduction: Although the dimen-
sionality of the input features was quite high, the features have
usually exhibited much less degrees of freedom. Given a set
of feature vectors Z = {z1, ...zi, ...zn} where zi ∈ Rd, there
exists a nonlinear mapping T which represents zi in the low
dimension as

zi = T (xi) + ui i = 1, 2, ...n (2)

where ui ∈ Rd is the sampling noise and and xi ∈ Rq denotes
the representation of the original zi in the low-dimensional
subspace, where q represents the dimensionality of the reduced
subspace.

Unsupervised manifold learning is capable of discovering
the degrees of freedom that underlie complex natural obser-
vations. We applied ISOMAP to explore the low dimension
embedding in the original feature space. In the first step, we
determined the neighbors of each point zi in the original space
Rd and connected the neighbors to form a weighted graph G.
The weights were calculated based on the Euclidean distance
between each connected pair of points. We then calculated
the shortest distance in the graph G, dG(i, j), between pairs
of points of zi and zj . The final step was to apply the standard
multiple dimensional scaling (MDS) [30] to the matrix of
graph distance M = {dG(i, j)}. In this way, the ISOMAP
applied a linear MDS on the local patch but preserved the
geometric distance globally using the shortest path in the
weighted graph G. Cross validation (CV) [31] was applied
to evaluate the embedded dimensionality of the original 4000
dimensional feature vector. CV is the statistical method of
partitioning samples into subsets

CV (α) =
1
N

N∑
i=1

∣∣yi − f−k(xi, α)
∣∣ (3)

where xi is the feature vector in the reduced subspace Rq,
yi = {+1,−1}, which represents the cancer and benign breast
tissue labels. f−k(xi, α) is used to denote the classification
results using the α-th dimensionality with the k-th partition
removed from the training set. In Figure 5 we show the
CV errors corresponding to the dimensions of the feature
vector. An elbow can be observed when the dimensionality
approaches 500, therefore, we choose to reduce the dimension
of the original feature vector to 500.

2) Classification: In [32], the k-nearest neighbor (kNN)
and classification tree (C4.5) were integrated into a Bayesian
framework for characterizing breast tissues. However, in our
case, each training sample was represented by a feature vector
xi in the reduced subspace Rq where q = 500. This is
still a relatively high dimension where the maximal margin
classifiers such as support vector machine (SVM) [33] and
boosting [34] are better suited. We conducted experiments
to compare the performance of four boosting algorithms, the
standard AdaBoost, the gentle AdaBoost, the real AdaBoost
and LogitBoost with kNN , Bayesian classifier and SVM. The
results showed that the maximal margin classifiers [33], [34],
such as SVM and boosting, which simultaneously minimize
the empirical classification error and maximize the geometric
margin, outperformed all the other algorithms. In order to
separate two subtypes of breast cancers from the benign, the
best binary classifier in our experiments (the gentle AdaBoost)
was extended to a multi-class algorithm

The kNN consists of assigning all the features into k most
similar cluster centers based on certain similarity measure-
ments. The final label was determined by majority voting from
k candidates. The C4 .5 decision tree is a widely used multiple
node tree based classifier, which is built by minimizing the
entropy.
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Input: Given n features xi in Rq and their corresponding
labels yi = {−1, 1}.
Training:

• Initialize the weights wi = 1/n, i = 1, ..., n. Set
b(x) = 0 and the number of nodes M = 8 in the
CART decision tree.

• For j = 1...J

– Each training sample is assigned its weight wi.
The weighted tree growing algorithm is applied
to build the CART decision tree hj(x).

– Update using b(x) = b(x) + hj(x).
– Update the weights wi = wie

−yihj(x) and renor-
malize wi.

– Save the j-th CART decision tree Hj(x).
Testing:

• Output the classification: sign [b(x)] =

sign
[∑J

j=1 Hj(x)
]
.

Fig. 6. The binary gentle AdaBoost using an eight nodes classification and
regression tree (CART) as the weak learner.

Let x ∈ X represent the low level feature in the reduced
subspace Rq, the Bayesian classifier is designed to maximize
a-posterior (MAP ) probability

p(Ci|x) =
p(x|Ci)p(Ci)∑K

i=1 p(x|Ck)p(Ck)
(4)

and the Bayesian classifier determines the class Ci by maxi-
mizing the posterior probability p(Ci|x).

The support vector machine (SVM) was first introduced
in [33] for binary classification problem. The strategy is to
construct the linear decision boundaries in a large transformed
version of the original feature space. The SVM simultaneously
minimizes the empirical classification error and maximizes the
geometric margins by minimizing the regularization penalty

1
2
‖w‖2 , subject to yi(w0 + wT xi)− 1 ≥ 0 (5)

When the examples are not linearly separable, the optimization
can be modified by adding a penalty for violating the clas-
sification constraints. This is called soft margin SVM which
minimizes

1
2
‖w‖2+C

N∑
i=1

ξi, subject to yi(w0+wT xi)−1+ξi ≥ 0 (6)

where ξi are called slack variables which store the deviation
from the margin and C is the soft penalty to balance the
training errors and margins. In (5) and (6), w is the slope of the
decision hyperplane and w0 is the offset. The xi denotes the
feature vector, and yi is the ground true labels. We minimize
(6) by maximizing the dual problem of (6) which involve a
feature mapping φ(x) through an inner product. The inner
product can be evaluated without ever explicitly constructing
the feature vectors φ(x) but through a kernel function κ(x,x′).
In our project, we proposed to use a nonlinear Mercer kernel
[35] based on χ2 distance. It was shown that among other
choices of distance functions between histograms, χ2 distance

Input: Given n features xi in Rq and their corresponding
labels yi = {1, 2, ..., M}, where M represents the number
of classes.
Training:

• Using the original n training samples to compose
a n ∗ M observation matrix of training samples
{(xi, 1), yi1}, ..., {(xi, j), yij}..., {(xi, M), yiM},
where yij is the {−1, +1} response for j-th class of
training sample xi.

• Generate the j-th strong classfier Hj(x) by applying
the gentle AdaBoost algorithm in Figure 6 on the j-th
row of the observation matrix. Continue this step for
each class.

Output:
• Output the final classification result by maximizing

argmaxjHj(x).

Fig. 7. The multi-class gentle AdaBoost using an eight nodes classification
and regression tree (CART) as the weak learner.

performed the best for the texture similarity measure. The
kernel function is defined as

κ(x,x′) = exp
(
−1

τ
χ2 (x,x′)

)
(7)

where

χ2 (x,x′) =
1
2

500∑
l=1

(x(l)− x′(l))2

x(l) + x′(l)
. (8)

Boosting works by sequentially applying a classification
algorithm on a reweighted version of the training data and pro-
ducing a sequence of weak classifiers hj(x), j = 1, 2, ...,W
where W = 40 in our case represents the number of iteration
rounds of each boosting algorithm. The strong classifier is
assembled from all the weak classifiers hj(x) to minimize the
exponential cost function exp(−yhj(x)), where y represents
the label of the training sample x. In the standard binary
AdaBoost classification, the labels were decided by weighted
voting to produce the final prediction

ŷ = sign

 W∑
j=1

αjhj(x)

 = sign(H(x)) (9)

where H(x) is the learned strong classifier. The αj is the
weight of the j-th weak classifier hj(x) and is computed dur-
ing training. All the boosting algorithms are designed to min-
imize an exponential cost function exp

(
−y

∑W
j=1 αjhj(x)

)
.

If the weak classifier hj(x) returns a discrete class label
{−1,+1}, the boosting algorithm is called AdaBoost. Instead
of making a hard decision, if the weak classifier hj(x) returns
a real value prediction like a probability mapped to the interval
[−1,+1], it is called real AdaBoost. The gentle AdaBoost is
a modified version of the real AdaBoost algorithm, which
applies Newton step rather than exact optimization at each
step of minimizing the loss function. The LogitBoost is another
boosting algorithm which uses Newton steps to fit an additive
logistic regress model based on maximum likelihood. The
weak classifier we used was an eight node classification and
regression tree (CART ).
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Fig. 8. The binary classification accuracy of nine different classifiers using
30% as the training set. 1) Bayesian classifier. 2) KNN (K = 3). 3) KNN
(K = 5). 4) C4.5 decision tree. 5) Support vector machine (SVM). 6) Standard
AdaBoost. 7) Real AdaBoost. 8) LogitBoost. 9) Gentle AdaBoost.

We experimentally tested each of the classification algo-
rithm. The gentle AdaBoost using an eight node CART
decision tree provided the best results for binary classification
problem. Fig. 6 shows the details of the gentle AdaBoost
algorithm.

Multi-class experiments were designed to determine the
capacity of the system to subclassify different types of cancer.
Given a M -class classification problem, where we have N
training samples {x1, y1}, ...{xi, yi}, ..., {xN , yN}. The xi ∈
Rq denotes the i-th feature vector in the reduced subspace
and yi ∈ {1, 2, ...,M} represents the corresponding ground-
truth class labels. The target is to find a strong classi-
fier which minimizes a multi-class exponential loss function∑M

j=1 exp(−yiHj(x)) where Hj(x) is the j-th strong classi-
fier. This is equivalent to run separate boosting algorithms in
an one-against-all manner. One-against-all boosting constructs
M binary classifier, each of which is used to separate one
class from all the others. The j-th strong classifier was trained
using boosting with all the training samples satisfying yi = j,
i = 1, 2, ..., N as positive and all the others as negative. As
the gentle AdaBoost outperformed the other methods in the
previous binary classification, we extended it to classify two
different subtypes of cancers from benign tissue images in
the multi-class experiment. The multi-class gentle AdaBoost
algorithm is shown in Fig. 7.

V. EXPERIMENTS

In these experiments, pathologists were asked to provide
independent confirmation of the ground-truth labels of records
for the entire mixed set of 3744 digitized breast tissue im-
ages. The breast tissue images contained 10 different types,
which included normal (NOR), ductal hyperplasia (DH), fi-
broadenoma (FIB), atypical ductal hyperplasia (ADH), ductal
carcinoma in situ (DCIS), lobular carcinoma in situ (LCIS),
invasive ductal carcinoma (IDC), invasive lobular carcinoma
(ILC), lymph-node-negative metastasis (LNN) and soft tissue
metastasis (STM). The goal of the binary classification ex-
periments was to determine the capacity of the algorithms to
separate benign from cancer tissue. Based on the discussion
with surgical pathologists, NOR, DH, FIB and ADH were
grouped as benign breast tissue and the remaining classes were
grouped as breast cancer. In the multi-class experiment, DCIS

TABLE I
THE CONFUSION MATRIX SHOWS THREE CLASSES CLASSIFICATION

ACCURACY USING MULTI-CLASS GENTLE ADABOOST AND 30% IMAGES
AS THE TRAINING SET

Benign Cancer I Cancer II
Benign 84.5 6.4 7.1

Cancer I 6.8 81.2 13.8
Cancer II 8.7 12.4 79.1

and LCIS were treated as one subgroup of cancer and IDC,
ILC, LNN and STM as the other.

The mixed set of breast tissue microarrays were digitized
using a 40× volume scan on a Trestle/Zeiss MedMicro,
whole slide scanner system. We have developed algorithms to
automatically delineate the tissue discs comprising the arrays,
decompose those discs into their constituent staining maps,
and process the images on the World Community Grid. The
total number of computers currently participating in the World
Community Grid efforts is approximately 250,000 worldwide
and growing.

We have analyzed 3744 breast cancer tissues (674 hema-
toxylin and 3070 hematoxylin and eorin staining) from the
total dataset containing 100,000 imaged specimens. Without
the Grid, it would require about 210 days of computation to
generate the complete texton library using an efficient C++
implementation on a PC with P3 1.5GHz processor and 1G
RAM. However, we built the texton library in less than 40
minutes for the breast cancer subset using WCG.

A. Binary Classification of Benign and Caner

In this section, we first present the comparative performance
results for four classification methods, kNN , Bayesian, C4.5
and SV M , and four types of boosting algorithms. The dataset
used in these experiments consisted of 611 benign and 3133
cancer specimens. Each algorithm was tested 10 times using
different portions of the training images drawn from random
sampling. We select 30% of the images as training and the
other 70% was reserved for testing. Figure 8 shows the average
classification results. It is clear that the maximal margin
classifiers, SVM and boosting, produced comparative good
results, while outperforming widely used classifiers such as
kNN , Bayesian and C4.5 decision tree. The gentle AdaBoost
using an eight node CART decision tree provided the best
performance. Because the training data was skewed to cancer
samples, we obtained higher false positive than false negative.
This is indeed preferred and is actually a design criteria for
many clinical tests.

B. Multi-class Classification of Benign and Two Subtypes of
Cancer

The experimental results are presented for studies in which
the original gentle AdaBoost algorithm was modified to ac-
commodate multi-class classification. Based on the direction
of the clinical pathologist, we separated six subtypes of cancer
tissues into two sub-groups: cancer class I which contains
DCIS and LCIS and cancer class II containing IDC, ILC,
LNN and STM. The dataset is consisted of 611 benign, 1103
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cancer class I and 2030 cancer class II. 30% of the images
in each class were randomly selected for training and the
remaining 70% was used for testing. The confusion matrix
is presented on the right of Table I. Figure 9 shows some
correct classification samples and failed cases. The left most
three columns are correctly classified samples, and the right
most fourth column shows the failed cases. The first row is
the benign tissue where the last one is misclassified as cancer
class II. The second row represents cancer I while the last
tissue image is misclassified as benign. The last row is the
cancer II, and the last image is misclassified as cancer I. In
Figure 9 we show the large intra-class variances and inter-class
similarities which produced the classification errors.

From all these experiments, it was shown that the gentle
AdaBoost provided satisfactory results on both binary and
multi-class classification of breast tissue images. We obtained
an average 89% accuracy in separating benign from cancer
tissue and an average accuracy of 80% in classifying two types
of breast cancers from benign. In both cases only 30% of the
images were used in the training.

VI. CONCLUSION

We have presented a Grid-enabled framework which utilize
texton histograms to perform high throughput analysis of
digitized breast cancer specimens. Experimental results have
shown that a gentle AdaBoost classifier using an eight node
CART decision tree as the weak learner provided the best
results. We present the classification results of separating
benign from cancer and also two classes of breast cancer.
Multi-class classification errors increase significantly as the
number of classes increased. In future work, we plan to
expand the reference library of texton signatures and develop
a robust multi-class classification algorithm to further classify
ten different classes of breast cancer. We also plan to expand
our studies to include a wide range of cancers, including colon
cancer, head & neck, for which we have already generated the
texton reference libraries using IBM World Community Grid.
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