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Abstract The original mean shift algorithm is widely ap-
plied for nonparametric clustering in vector spaces. In this
paper we generalize it to data points lying on Riemannian
manifolds. This allows us to extend mean shift based clus-
tering and filtering techniques to a large class of frequently
occurring non-vector spaces in vision. We present an exact
algorithm and prove its convergence properties as opposed
to previous work which approximates the mean shift vector.
The computational details of our algorithm are presented for
frequently occurring classes of manifolds such as matrix Lie
groups, Grassmann manifolds, essential matrices and sym-
metric positive definite matrices. Applications of the mean
shift over these manifolds are shown.
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1 Introduction

The mean shift algorithm was first proposed in Fukunaga
and Hostetler (1975) and was further discussed in Cheng
(1995). However, it became truly popular after (Comani-
ciu and Meer 2002; Comaniciu et al. 2003) used mean
shift for color image segmentation and motion tracking.
Since then, mean shift has been applied to many different
problems including image segmentation (Wang et al. 2004;
Yang et al. 2003), tracking (Birchfield and Rangarajan 2005;
Collins 2003; Elgammal et al. 2003; Hager et al. 2004) and
robust fusion (Chen and Meer 2005; Comaniciu 2003).
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Mean shift is essentially a clustering technique for find-
ing meaningful centers of arbitrarily distributed points in
a vector space. As it makes no assumptions about the na-
ture of the distribution which generated the points, mean
shift belongs to the class of nonparametric clustering meth-
ods. Mean shift has alternatively been shown to be equiv-
alent to gradient ascent optimization of a kernel density
(Comaniciu and Meer 2002), bounds optimization (Fashing
and Tomasi 2005) and expectation-maximization (Carreira-
Perpinan 2007). In practice, the popularity of mean shift is
due to the fact that the algorithm is easy to implement while
exhibiting very good convergence properties.

In this paper we present a generalized form of mean shift
which can be used to cluster points which do not lie on a
vector space. For example, consider a set of points lying on
the surface of a sphere. As we explain later, each iteration
of mean shift requires the weighted sum of the data points
around our current position. However, the weighted sum of
points on the surface of the sphere does not lie on the sphere.
In this case, it is possible to use our geometric intuition to es-
timate a mean, but geometric constraints often lead to much
more complex curved surfaces where it is not possible to use
our intuition.

A more complex example would be a motion segmenta-
tion problem. It has been shown that robust estimation of
motion parameters with voting based techniques, where the
votes from different parameter hypothesis are aggregated,
give good results (Mordohai and Medioni 2007). This would
require the clustering of motion hypotheses. To use mean
shift for this purpose, we would need a formal definition of
notions such as the distance between motions and the aver-
age of a set of motions. These ideas have been well studied
in fields such as differential geometry, physics and robotics
and are formalized by the motion of a Riemannian manifold.
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In this paper we present a mean shift algorithm for clustering
points on Riemannian manifolds.

Riemannian manifolds appear frequently in computer vi-
sion due to the geometric nature of the problems. In Ma et
al. (2001), geometric cost functions for reconstruction were
treated as real valued functions on appropriate manifolds
and minimized over these manifolds. The idea of treating
motions as points on manifolds was used in Govindu (2004)
to smooth motions. In Pennec and Ayache (1998), it was
shown that distances and distributions over manifolds can
be defined based on the geometry they represent. The recent
interest in the theory of manifolds is also due to the novel
imaging data of new medical systems. Diffusion tensor im-
ages measure the diffusivity of water molecules and the
smoothing of these images requires an understanding of the
manifold nature of diffusion matrices (Arsigny et al. 2006;
Lenglet et al. 2004; Pennec et al. 2006; Vemuri et al. 2001).
New image representations have also been developed for the
statistical analysis of medical data using appropriate mani-
folds (Fletcher et al. 2003, 2004; Davis et al. 2007).

In Tuzel et al. (2005) mean shift was extended to a par-
ticular class of Riemannian manifolds, matrix Lie groups.
A similar, but more general algorithm was proposed in Sub-
barao and Meer (2006), which could handle points lying
on any Riemannian manifold, not necessarily Lie groups.
Simultaneously, Begelfor and Werman (2006) proposed a
slightly different mean shift algorithm for a specific class
of manifolds, Grassmann manifolds. Although these algo-
rithms give good results, here has been no analysis of their
theoretical properties. Here, we present a proper derivation
of nonlinear mean shift and discuss its theoretical proper-
ties. In deriving the nonlinear mean shift algorithm we have
concentrated on issues such as ease of implementation and
computational efficiency. For example, a proper definition of
kernel densities over manifolds would be too complicated.
Consequently, we choose to define a reasonable approxima-
tion whose gradient can be easily computed. This work has
various novelties as compared to previous work on nonlinear
mean shift. These are listed below.

• A general mean shift algorithm valid for all Riemannian
manifolds is derived.

• For symmetric matrices and Grassmann manifolds, the al-
gorithm proposed here is different from previous work.

• The theoretical properties of the algorithm are discussed.
We present a proof of convergence of the nonlinear mean
shift for the first time.

The rest of the paper if organized as follows. Section 2
provides a brief introduction to the theory of manifolds. This
introduction is extremely basic and where possible we try to
supply some geometric intuition to the meanings of the vari-
ous terms. A thorough introduction to Riemannian geometry
can be found in O’Neill (1983). Examples of commonly oc-
curring Riemannian manifolds in computer vision are intro-

duced in Sect. 3. The mean shift algorithm of Comaniciu and
Meer (2002) is derived in Sect. 4 and our nonlinear mean
shift algorithm is presented in Sect. 5. The computational
details of the nonlinear mean shift algorithm over different
manifolds are discussed in Sect. 6 and the theoretical prop-
erties of our algorithm are discussed in Sect. 7. The results
of applying nonlinear mean shift to different problems are
shown in Sect. 8.

Note, we represent the points on manifolds by small bold
letters, e.g., x,y. In some of our examples, the manifold is
a set of matrices. Although matrices are conventionally rep-
resented by capital bold letters, when we consider them to
be points on a manifold, we denote them by small letters.
However, in certain cases such as the essential manifold, we
continue to denote points on the manifold by capital bold let-
ters since essential matrices are conventionally represented
by capital bold letters. The meaning should be clear from
the context, but we reiterate that small bold letters do not
necessarily represent just vectors.

2 Analytic Manifolds

A manifold, M is a Hausdorff topological space (O’Neill
1983, Chap. 1), such that for every point x ∈ M there ex-
ists a neighborhood U ⊂ M containing x and an associ-
ated homeomorphism φ from U to some Euclidean space
R

m, such that φ(U ) is an open set in R
m. The neighbor-

hood U and its associated mapping φ together form a co-
ordinate chart. A set of coordinate charts which cover the
whole manifold is an atlas. Intuitively, a manifold is a space
that is locally similar to an Euclidean space and this sim-
ilarity is defined by the coordinate charts at each point. It
is generally not possible to define global coordinates which
make the whole manifold look like Euclidean space.

Consider two different coordinate charts (U , φ) and
(V ,ψ) such that U ∩ V is not empty. Then, the transition
map φ ◦ψ−1 is a mapping from the open set ψ(U ∩ V ) ∈ R

m

to the open set φ(U ∩ V ) ∈ R
m. Further structure can be in-

troduced on the manifold through the behaviour of the tran-
sition maps.

An analytic manifold is a manifold such that for all co-
ordinate charts (U , φ) and (V ,ψ), either U ∩ V is empty or
U ∩ V is nonempty and the transition map φ ◦ ψ−1 is ana-
lytic, i.e., has a convergent Taylor series expansion (Fig. 1).
From now on we restrict ourselves to analytic manifolds.

Consider a real valued function f : M → R on the man-
ifold. Given a coordinate chart (U , φ), the function f ◦ φ−1

maps the open set φ(U ) ∈ R
m to R. The function f is said

to be continuous, if for all coordinate charts f̃ = f ◦ φ−1 is
continuous when viewed as a function from R

m to R. Simi-
larly, f is said to be analytic if f̃ is analytic for all coordi-
nate charts.
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Fig. 1 Example of a two-dimensional manifold. Two overlapping co-
ordinate charts are shown. If the manifold is analytic, the transition
map φ ◦ ψ−1 (and ψ ◦ φ−1) from R

2 to R
2 should be analytic

The tangent space can be thought of as the set of allowed
velocities for a point constrained to move on the manifold.
Formally, the tangent space is a generalization of directional
derivatives. A tangent of M at x is a real-valued operator on
continuous functions satisfying

�(af + bh) = a�(f ) + b�(h), (1)

�(f h) = f �(h) + h�(f ) (2)

for all continuous functions f,h and a, b ∈ R. The real
number assigned to f can be thought of as the derivative
of f in the direction represented by �. Tangent vectors
are real-valued operators acting on continuous functions, al-
though for intuitive purposes we can think of them as veloc-
ities of points constrained to move on the manifold. Proper-
ties (1) and (2) ensure that the mapping is linear and sat-
isfies the Leibniz product rule of derivatives. The set of
all tangents at x is denoted by Tx(M). It can be shown
that for m-dimensional manifolds, the tangent space is a m-
dimensional vector space (O’Neill 1983, Chap. 1). An ex-
ample of a two-dimensional manifold embedded in R

3 with
the tangent space Tx(M), is shown in Fig. 2. The solid ar-
row �, is a tangent at x.

When using the coordinate chart (U , φ), a convenient ba-
sis for Tx(M) is the set of tangents ∂i, i = 1, . . . ,m, where

∂i(f ) = ∂(f ◦ φ−1)

∂ui

∣
∣
∣
∣
φ(x)

, (3)

where, ui is the i-th coordinate of the point φ(x) in R
m.

That is, ∂i maps a function f to the directional deriva-
tive of f̃ = f ◦ φ−1 along the i-th coordinate, computed at
φ(x) ∈ R

m. The use of superscripts and subscripts for index-
ing components follows the standard rules based on whether
they are covariant or contravariant tensors. However, we do
not discuss this matter any further here.

A Riemannian metric on the manifold is defined by a
set of inner products on the tangent spaces Tx(M) for each

Fig. 2 Example of a two-dimensional manifold and the tangent space
at the point x

x ∈ M (O’Neill 1983, Chap. 2). We denote this inner prod-
uct by g and for two tangents �,� ∈ Tx(M), the inner
product is written as gx(�,�). The inner product induces a
metric with the length of � given by

√
gx(�,�). For con-

tinuity, the products vary smoothly with x. For any x ∈ M,
given a coordinate map φ, we can choose a basis for Tx(M).
All tangents can now be represented as vectors in this basis
and, relative to this basis, the inner product gx can be writ-
ten as a symmetric positive definite matrix. Note, the Rie-
mannian metric is an inherently geometric notion. It does
not require the definition of a coordinate chart or a basis for
Tx(M). Different coordinate charts lead to different coordi-
nates for tangents and the Riemannian metric matrix, but for
a given pair of tangents the inner product is independent of
the basis.

A Riemannian manifold is an ordered pair (M, g) con-
sisting of the manifold and an associated metric. It is possi-
ble to define different metrics on the same manifold to obtain
different Riemannian manifolds. However, in practice there
exists a standard metric and the Riemannian manifold is de-
noted by the underlying manifold M. This metric is chosen
to have geometrical significance such as being invariant to a
set of geometric transformations (Pennec and Ayache 1998).

A curve is a continuous mapping α from an open interval
S of R to M. For a particular t ∈ S, α(t) lies on the manifold
and α′(t) is the tangent at α(t) which maps a function f to
∂(f ◦ α)/∂t . Physically α′(t) is the tangent which points
along the curve α(t). The norm of α′(t) gives the velocity of
the curve. The length of the curve is given by
∫

t∈S

√

gα(t)(α′(t), α′(t))dt (4)

where, α(t) is a point on the curve. The shortest path con-
necting two points x, y ∈ M is the geodesic between x
and y. The length of the geodesic is defined to be the Rie-
mannian distance between the two points. Geodesics have
the property that gα(t)(α

′(t), α′(t)) is constant for all t ∈ S,
i.e., the velocity is constant along the geodesic (O’Neill
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1983, Chap. 3). This property of having zero acceleration
is sometimes used to define a geodesic.

2.1 Exponential and Logarithm Operators

For Riemannian manifolds, tangents (on the tangent space)
and geodesics (on the manifold) are closely related. For each
tangent � ∈ Tx(M), there is a unique geodesic α : [0,1] →
M starting at x with initial velocity α′(0) = �. The expo-
nential map, expx, maps � to the point on the manifold
reached by this geodesic

expx(�) = α(1). (5)

The origin of the tangent space is mapped to the point itself,
expx(0) = x. For each point x ∈ M, there exists a neigh-
borhood Ũ of the origin in Tx(M), such that expx is a dif-
feomorphism from Ũ onto a neighborhood U of x (O’Neill
1983, Chap. 3). Over this neighborhood U , we can define
the inverse of the exponential and this mapping from U to
Ũ is known as the logarithm map, logx = exp−1

x . Note that
the exponential and logarithm operators vary as the point
x moves. This is made explicit by the subscript in the ex-
ponential and logarithm operators. The above concepts are
illustrated in Fig. 2, where x, y are points on the manifold
and � ∈ Tx(M). The dotted line shows the geodesic start-
ing at x and ending at y. This geodesic has an initial velocity
� and we have expx(�) = y and logx(y) = �. The specific
forms of these operators depend on the manifold. We present
explicit formulae for certain manifolds in later sections.

The neighborhood Ũ defined above is not necessarily
convex. However, Ũ is star-shaped, i.e., that for any point ly-
ing in Ũ , the line joining the point to the origin is contained
in Ũ (O’Neill 1983, Chap. 3). The image of a star-shaped
neighborhood under the exponential mapping is a neighbor-
hood of x on the manifold. This neighborhood is known as
a normal neighborhood.

The radius of the largest open ball in Tx(M), centered
at the origin over which expx is invertible, is known as the
injectivity radius at x and denoted by i(x, M). The injec-
tivity radius of the manifold, i(M), is the minimum of the
injectivity radii at all points on the manifold M

i(M) = min
x∈M

i(x, M). (6)

For any open ball centered at the origin in Tx(M) with a
radius less than i(M), the exponential map is one-to-one
and its inverse is given by the logarithm.

2.2 Normal Coordinates

The exponential map can be used to define convenient coor-
dinates for normal neighborhoods, which simplify compu-
tation. Let Ũ be a star shaped neighborhood at the origin in

Tx(M) and let U be its image under the exponential map,
i.e., U is a normal neighborhood of x. Let, ei , i = 1, . . . ,m

be any orthonormal coordinate system for Tx(M). There-
fore,

g(ei , ej ) =
{

0 if i 	= j,

1 if i = j.
(7)

The normal coordinate system of x is the coordinate chart
(U , φ) which maps y ∈ U to the coordinates of logx(y) in
the orthonormal coordinate system,

logx(y) =
m

∑

i=1

φi(y)ei (8)

where, φi(y) is the i-th coordinate of φ(y) ∈ R
m (O’Neill

1983, Chap. 3). If we use (3) to define a define a basis of
Tx(M) based on the normal coordinate mapping, we get
∂i = ei .

2.3 Differential Operators on Manifolds

For a smooth, real valued function f : M → R, the gradi-
ent of f at x, ∇f ∈ Tx(M), is the unique tangent vector
satisfying

gx(∇f,�) = ∂�f (9)

for any � ∈ Tx(M), where ∂� is the directional derivative
along �. The gradient is the unique tangent such that the di-
rectional derivative along any other tangent � is equal to the
inner product of � with the gradient. It is possible to gener-
alize higher order operators such as the Hessian and Lapla-
cian for functions on manifolds (O’Neill 1983, Chap. 3).
Using these operators the usual function optimization tech-
niques such as gradient ascent, Newton iterations and con-
jugate gradient can be generalized to manifolds (Edelman et
al. 1998; Smith 1994). However, the computation of these
operators is more involved than the computation of the gra-
dient (Ferreira and Xavier 2006).

As we show later, the function whose gradient we require
is the Riemann squared distance. For two points, x, y ∈ M
let d(x, y) be the Riemannian distance between them. Con-
sider the function f (x) = d2(x, y) as a function of x mea-
suring the squared distance from y. This is a real function
on the manifold and we have the following theorem.

Theorem 1 The gradient of the Riemann squared distance
is given by

∇f (x) = ∇x d2(x,y) = −2 logx(y). (10)

This property is well known, for example (Begelfor and
Werman 2006; Ferreira and Xavier 2006). We present the
proof in Appendix.
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3 Types of Riemannian Manifolds

We briefly discuss the geometry of a few classes of Rie-
mannian manifolds. Most frequently occurring manifolds in
computer vision lie in one of these classes.

3.1 Lie Groups

A Lie group is a manifold which is also a group such that the
group operation is an analytic mapping. The group operation
gives Lie groups more algebraic structure than a manifold.

In practice, most frequently occurring Lie groups are sets
of matrices, i.e., each element in the group is a matrix and
the group operation is matrix multiplication. Such groups
are called matrix Lie groups (Rossmann 2003). An alterna-
tive definition of matrix Lie groups is that they are closed
subgroups of the general linear group GL(n,R), the group
of n×n nonsingular matrices. Common examples of matrix
Lie groups include

• Special Orthogonal Group. The special orthogonal
groups, SO(n), is the set of rotations in R

n. Elements
of SO(n) are n × n orthogonal matrices.

• Special Euclidean Group. The special Euclidean group,
SE(n), is the set of rigid transformations in R

n. Matrices
in SE(n) are (n + 1) × (n + 1) matrices of the form
[

R t
0T 1

]

(11)

where R ∈ R
n×n is orthogonal and t ∈ R

n.
• Affine Group. The affine groups A(n) consists of (n+1)×

(n + 1) matrices of the form
[

H t
0T 1

]

(12)

where H ∈ R
n×n is invertible and t ∈ R

n.

The tangent space at the identity of the group is known
as the Lie algebra of the Lie group. Lie algebras are im-
portant since the tangent space at any point on the manifold
can be expressed in terms of the Lie algebra (O’Neill 1983;
Rossmann 2003).

3.2 Homogeneous Spaces

The group action of a group G on a manifold M is a smooth
mapping from G × M to M. For g ∈ G and x ∈ M, the
mapping is written as (g, x) → g ·x and satisfies g · (h ·x) =
(gh) · x and e · x = x, where e is the identity of the group G.
Just as matrices are transformations of vector spaces, group
actions are transformations of manifolds.

The orbit of a point x ∈ M is

O(x) = {g · x|g ∈ G}. (13)

The group action divides the manifold into a set of disjoint
orbits. For example, consider the Euclidean plane R

2 to be
the manifold under the action of the rotation group SO(2).
The orbits consist of circles centered at the origin.

If the whole manifold forms a single orbit, then M is
said to be a homogeneous space and the action is said to
be transitive. The action is transitive, if for any two points
x, y ∈ M, there exists g ∈ G such that g ·x = y. The Euclid-
ean plane R

2 under the action of the Euclidean motion group
SE(2) would be a homogeneous space since for any two
points on the plane, there exists some transformation map-
ping one to the other.

The isotropy subgroup of x is defined as

Gx = {g ∈ G|g · x = x}. (14)

The isotropy subgroup is the set of elements which leave
x fixed. In our previous example of SE(2) acting on R

2, the
isotropy subgroup of the origin would be the set of rotations.
The isotropy subgroup around any other point on the Euclid-
ean plane would be the set of rotations about that point.

Let H be a subgroup of G. The left coset of g ∈ G is

gH = {gh|h ∈ H }. (15)

The set of all left cosets of H in G is denoted by G/H . If
G is a Lie group, then G/H forms a manifold known as a
coset manifold. The coset manifold is a homogeneous space
of G with the natural group action

g · kH = (gk)H (16)

i.e., g acting on the coset of k gives the coset of gk.
The above result lets us represent a coset manifold as a

homogeneous space. For a manifold with a transitive Lie
group action, it is possible to reverse the process and think of
it as a coset manifold. Let M be a homogeneous space under
the Lie group action of G. For any arbitrary point x ∈ M, the
manifold M can be identified with the homogenous space
G/Gx (O’Neill 1983, Chap. 9).

The reason for using this characterization of coset mani-
folds is that they inherit a lot of their operators from the Lie
group. Once the geometry of the Lie group is understood, the
geometry of its coset manifolds can be expressed in terms of
the geometry of the Lie group.

3.3 Grassmann Manifolds

A point on the Grassmann manifold, Gn,k , represents a k-
dimensional subspace of R

n. In practice an element of Gn,k

is represented by an orthonormal basis as a n × k matrix,
i.e., xT x = ek×k . Since many basis span the same subspace,
this representation of points on Gn,k is not unique (Edelman
et al. 1998).
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Consider any element U of the group SO(n). Its columns
form an orthonormal basis of the space R

n. A k-dimensional
subspace can be obtained by taking the span of the first k-
columns of U and this is an element of Gn,k . However, rota-
tions of the form
[

Uk 0
0 Un−k

]

(17)

where, Uk ∈ SO(k) and Un−k ∈ SO(n − k), leave the sub-
space spanned by the first k-columns unchanged. Mul-
tiplication by elements of this form do not change the
point in Gn,k and the set of all such rotations is equiv-
alent to SO(k) × SO(n − k). Therefore the Grassmann
manifold Gn,k can be identified with the coset manifold
SO(n)/ (SO(k) × SO(n − k)).

3.4 Essential Manifold

An essential matrix encodes the epipolar geometry for a set
of calibrated cameras. Let p and q be the normalized coordi-
nates of corresponding points and Q be the essential matrix.
The essential constraint is

pT Qq = 0 (18)

and the 3 × 3 matrix Q is of rank-2 with two equal, pos-
itive singular values and a zero singular value. Let E de-
note the essential space, the set of all essential matrices.
The essential space is an algebraic variety (Maybank 1992;
Soatto et al. 1994) and a manifold of dimension six. If
Q = U�VT is the singular value decomposition of a 3 × 3
matrix Q, then (Hartley and Zisserman 2000, Sect. 8.6.1)

Q ∈ E ⇐⇒ � = diag{λ,λ,0}, λ ∈ R
+. (19)

The essential matrix is a homogeneous quantity and scaling
does not change the geometry. We use the scaling λ = 1 and
define the normalized essential space, E1 as the set of 3 × 3
matrices with two unit singular values and one zero singular
value

Q ∈ E1 ⇐⇒ � = �1 (20)

where, �1 = diag{1,1,0}.
Since the epipolar geometry depends on the relative pose

of the two cameras, this can be recovered from the essential
matrix except for two ambiguities. Firstly, since the epipo-
lar geometry is a purely image based concept, there is no
scale information and the baseline between the cameras can
only be recovered upto a scale factor. Secondly, four differ-
ent relative camera geometries give rise to the same essential
matrix (Hartley and Zisserman 2000, p. 241). This is shown
in Fig. 3. Given an essential matrix the camera geometry can
only be recovered upto a four-fold ambiguity. Usually, fur-
ther image information is required to disambiguate the four

Fig. 3 Four different camera geometries which give the same essential
matrix. In each row the geometries differ by changing the sign of the
direction of translation. Each column is a twisted pair. The image was
taken from Hartley and Zisserman (2000, p. 241)

geometries and choose the true geometry based on the posi-
tive depth constraint.

A common parametrization of the essential manifold is
based on the fact that each relative camera geometry corre-
sponds to a tangent of SO(3) with unit norm. The set of all
tangents of a manifold forms a manifold known as the tan-
gent bundle. Therefore, the essential manifold can be iden-
tified with the unit tangent bundle of SO(3) (Ma et al. 2001;
Soatto et al. 1994). Since each essential matrix corresponds
to four different camera geometries, and each camera geom-
etry corresponds to a different tangent of SO(3), this para-
metrization gives a four-fold covering of the essential mani-
fold.

In Helmke et al. (2007) a geometric optimization method
over essential matrices was proposed using an alternate
parametrization. This parametrization was also used in
Geyer et al. (2004) for harmonic analysis over the essential
manifold. The parametrization is based on a singular value
decomposition of the essential matrix. We further develop
this idea here and show that this gives a one-to-one corre-
spondence between the points on the manifold and essential
matrices. Furthermore, this parametrization makes the es-
sential manifold a homogeneous space under the action of
the group SO(3) × SO(3). We will use this to obtain geo-
metrically meaningful Riemannian metrics for the essential
manifold.

Consider Q ∈ E1 with the singular value decomposi-
tion U�1VT , where U and V are orthogonal and det(U),

det(V) = ±1. As the third singular value is zero, we can
change the sign of the third columns of U and V to ensure
det(U),det(V) = 1 without changing the SVD.

Since SO(3) is a Lie group, the manifold SO(3)×SO(3)

is also a Lie group with the topology and group operation in-
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herited from SO(3) (Rossmann 2003, Sect. 4.3). We define
the mapping

	 : SO(3) × SO(3) → E1 (21)

which maps (U,V) ∈ SO(3) × SO(3) to U�1VT ∈ E1. The
inverse mapping from E1 to SO(3) × SO(3) is not well de-
fined as there is one degree of freedom in choosing the basis
of the space spanned by the first two columns of U and V.
A rotation of the first two columns of U can be offset by
a rotation of the first two columns of V, such that U�1VT

does not change. Consider the rotations R1, R2 such that

R1 =
[

A 0
0 det(A)

]

, R2 =
[±A 0

0 det(A)

]

,

and AAT = ±e2. Then,

UR1�1RT
2 VT = U

[±AAT 0
0 0

]

VT = ±U�1VT (22)

which leaves the essential matrix unchanged and 	 maps
(UR1,VR2) ∈ SO(3) × SO(3) to the same point in E1.

Let H	 be the group of transformations which leaves
	 invariant. It consists of elements which leave the third
columns of U and V unchanged, and rotate the first two
columns by angles which differ by kπ, k ∈ Z

H	 = {(R1,R2)|R1,R2 ∈ Sz,RT
1 R2 = Rz(kπ)} (23)

where, Sz is the set of rotations around the z-axis and
Rz(kπ) denotes a rotation by kπ around the z-axis.

The manifold E1 is identified with the coset manifold
SO(3)×SO(3)/H	, i.e., elements of SO(3)×SO(3) which
differ by group multiplication by an element in H	 are con-
sidered to be the same on SO(3) × SO(3)/H	. Multiplica-
tion of (U,V) by elements of H	 generates the equivalence
class of (U,V), and all the elements in an equivalence class
represent the same essential matrix.

3.5 Symmetric Positive Definite (SPD) Matrices

The set of n × n symmetric positive definite matrices forms
a manifold known as the symmetric manifold, Sym+

n . Re-
cently, there has been a considerable amount of research
aimed at understanding the geometry of this manifold due
to the development of diffusion tensor MRI (DT-MRI), a
widely used medical imaging method which measures the
diffusivity of the water molecules in three dimensional space
(Basser et al. 1994; Lenglet et al. 2004; Tschumperle and
Deriche 2003; Vemuri et al. 2001). The diffusivity is en-
coded as a 3 × 3 SPD matrix and the image is a 3D grid of
3 × 3 SPD matrices. The filtering of these images is an im-
portant step in their processing and requires an understand-
ing of the noise model and the geometry of the manifold,
Sym+

3 .

A metric for this manifold was first proposed in Forstner
and Moonen (1999). Later, in Pennec et al. (2006) it was
shown that this metric is invariant to affine transformations
and that Sym+

n is a Riemannian manifold. A different Rie-
mannian metric for this manifold was proposed in Arsigny
et al. (2006), and this is the metric we will use later.

4 The Original Mean Shift

The mean shift algorithm is based on the theory of kernel
density estimation. Here we briefly describe the derivation
of mean shift as in Comaniciu and Meer (2002).

Let xi ∈ R
d , i = 1, . . . , n be n independent, identically

distributed points generated by an unknown probability dis-
tribution f . The kernel density estimate

f̂k(y) = ck,h

n

n
∑

i=1

k

(‖y − xi‖2

h2

)

(24)

based on a profile function k satisfying k(z) ≥ 0 for z ≥ 0,
is a nonparametric estimator of the density f (y) at y. The
constant ck,h is chosen to ensure that f̂k integrates to one.

Define g(·) = −k′(·). Taking the gradient of (24) we get

mh(y) = C
∇f̂k(y)

f̂g(y)
=

∑n
i=1 xig

(‖y − xi‖2/h2
)

∑n
i=1 g

(‖y − xi‖2/h2
) − y (25)

where, C is a positive constant and mh(x) is the mean shift
vector. The expression (25) shows that the mean shift vec-
tor is proportional to a normalized density gradient estimate.
The iteration

yj+1 = mh(yj ) + yj (26)

is a gradient ascent technique converging to a stationary
point of the density. Saddle points can be detected and re-
moved, to obtain only the modes.

4.1 Mean Shift as Bounds Optimization

In the previous section mean shift was derived as a gradi-
ent ascent technique. The advantage of mean shift is that it
avoids the computationally intensive line search step which
other gradient ascent techniques require. The magnitude of
the mean shift step adapts to the surrounding data and it can
be shown that the mean shift iterations are guaranteed to
converge to a local maxima of the kernel density (Comani-
ciu and Meer 2002).

An alternative view of mean shift was proposed in Fash-
ing and Tomasi (2005). It was shown that for Epanechnikov
kernels, the mean shift vector not only lies along the gradi-
ent but is in fact a Newton step. Furthermore, when using a
general kernel, the mean shift step optimizes a lower bound
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on the kernel density function. This idea of mean shift as
a variational bounds optimization was further developed in
Singh et al. (2004).

Finally, in Carreira-Perpinan (2007), it was shown that
for Gaussian kernels, the mean shift step is the same
as Expectation-Maximization. In the M-step of the EM-
algorithm a tight lower bound on the function is computed
and in the E-step this bound is maximized. For non-Gaussian
kernels, mean shift is equivalent to generalized EM.

All these approaches yield the same update rule when the
data lies in Euclidean space, but for Riemannian manifolds
this is not true. Generalizing each of these different algo-
rithms to manifolds lead to different update rules. However,
the reason for the widespread use of mean shift is due to
its ease of implementation. It offers a simple iterative up-
date rule with provable convergence behavior. We should
take this into consideration when developing a mean shift
update rule for manifolds. The computation of Hessians over
manifolds can be hard to implement, and should be avoided.
We propose a simple gradient based mean shift rule while
making sure that the convergence properties of mean shift
continue to hold. Specifically we show the following.

• Kernel density estimation over manifolds is more com-
plex than in the Euclidean case. It requires the computa-
tion of a point dependent volume density function leading
to a complex update rule.

• The weighted average (not the weighted sum) of points
on the manifold is well defined. Replacing a point by the
weighted mean of the data points in a neighborhood still
leads to convergence to the maxima of a cost function.

• For homogeneous spaces the update rule is equivalent to
expectation-maximization.

The nonlinear mean shift algorithm for Riemannian mani-
folds is discussed next.

5 Nonlinear Mean Shift

The reason the previous mean shift algorithm is not di-
rectly applicable to manifolds is that manifolds are not vec-
tor spaces and the sum of points on the manifold, in general,
does not lie on the manifold. Consequently, the mean shift
vector of (25) is not valid. However, it is possible to define
the weighted mean of points as the minimum of an appropri-
ate cost function (Karcher 1977). In this section, we use this
concept to derive the mean shift vector as the weighted sum
of tangent vectors. Since tangent spaces are vector spaces,
a weighted sum of tangents is possible and can be used to
update the mode estimate. This method is valid over any
Riemannian manifold.

5.1 Kernel Density Estimation over Riemannian Manifolds

Consider a Riemannian manifold with a metric d . Given n

points on the manifold, xi , i = 1, . . . , n, the kernel density
estimate with profile k and bandwidth h is

f̂k(y) = ck,h

n

n
∑

i=1

k

(
d2(y,xi )

h2

)

. (27)

The bandwidth h can be included in the distance function
as a scaling. However, we write it in this form since it gives
us a parameter to tune performance in applications. If the
manifold is an Euclidean space with the Euclidean distance
metric, (27) is the same as (24). The constant ck,h is cho-
sen to ensure that f̂k is a density, i.e., the integral of f̂k over
the manifold is one. Note, our definition of a kernel density
is restricted to points lying on the manifold. Since the Rie-
mannian distance on the right hand side is not defined for
points not on the manifold, the domain of definition for the
equation above is the manifold.

Strictly speaking, f̂k is not a true kernel density. In
Euclidean space the integral of the kernel is independent of
the point at which it is centered. For a general Riemannian
manifold, the integral of the kernel depends on the point at
which it is centered. It is possible to ensure the integral of
the kernel is the same irrespective of where it is centered
by using the volume density function (Pelletier 2005). We
do not do this, since the computation of the volume den-
sity function would limit the applicability of the algorithm
to manifolds where explicit expressions for the volume den-
sities are available. Also, the computation of the gradient
would become very complicated. We prefer to use a modi-
fied kernel density function of (27) which is similar to the
one proposed in Chikuse (2003, Chap. 10) for Grassmann
manifolds. We use the same expression over all Riemannian
manifolds.

5.2 Mean Shift over Riemannian Manifolds

Calculating the gradient of f̂k at y, we get

∇f̂k(y) = 1

n

n
∑

i=1

∇k

(
d2(y,xi )

h2

)

= −1

n

n
∑

i=1

g

(
d2(y,xi )

h2

) ∇d2(y,xi )

h2

= 2

n

n
∑

i=1

g

(
d2(y,xi )

h2

) logy(xi )

h2
(28)

where, g(·) = −k′(·), and in the final step we use (10). The
gradient of the distance is taken with respect to y. Analogous
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Fig. 4 Mean shift algorithm for Riemannian manifolds

to (25), define the nonlinear mean shift vector as

mh(y) =
∑n

i=1 g(
d2(y,xi )

h2 ) logy(xi )

∑n
i=1 g(

d2(y,xi )

h2 )
. (29)

All the operations in the above equation are well defined.
The logy(xi ) terms lie in the tangent space Ty(M) and the

kernel terms g(d2(y, xi )/h2) are scalars. The mean shift
vector is a weighted sum of tangent vectors, and is itself
a tangent vector in Ty(M). The noneuclidean mean shift
iteration is

yj+1 = expyj

(

mh(yj )
)

. (30)

The iteration (30) updates yj by moving along the geodesic
defined by the mean shift vector to get the next estimate,
yj+1. A mean shift iteration is started at each data point by
initializing x = xi . The inner loop then iteratively updates x
till convergence. The complete algorithm is shown in Fig. 4.

Strong modes have high kernel density scores and a large
number of iterations converge to these locations. Spurious
modes having low densities and few iterations converging
to them can be pruned to obtain only the strong modes. So,
mean shift returns the number of modes and their locations.

6 Computational Details of Nonlinear Mean Shift

The nonlinear mean shift algorithm is valid for any Rie-
mannian manifold. A practical implementation requires the
computation of the exponential operator expx and the log-
arithm operator logx. The computational details of this are
discussed next.

6.1 Lie Groups

Lie groups are the most well known examples of Rie-
mannian manifolds and the first nonlinear mean shift algo-
rithm was proposed for Lie groups in Tuzel et al. (2005). Let
exp and log be the matrix operators

exp(�) =
∞
∑

i=0

1

i!�
i , (31)

log(y) =
∞
∑

i=1

(−1)i−1

i
(y − e)i (32)

where, e is the identity matrix. These are standard matrix
operators which can be applied to any square matrix and no
subscript is necessary to define them. They should not be
confused with the manifold operators, expx and logx for Lie
groups, which are given by

expx(�) = x exp(x−1�), (33)

logx(y) = x log(x−1y) (34)

where, y is any point on the manifold and � ∈ Tx(M)

(O’Neill 1983, Chap. 11). The distance function is given by

d(x,y) = ‖ log(x−1y)‖F (35)

where, ‖.‖F denotes the Frobenius norm of a matrix. This
definition of d can be shown to be the distance correspond-
ing to an inner product on Tx(M), as necessary for Rie-
mannian manifolds (O’Neill 1983, Chap. 11). Substituting
the expressions of (33) and (34) into (29), the mean shift
vector for matrix Lie groups can be obtained.

The major bottleneck for the nonlinear mean shift algo-
rithm is the computation of exp and log. There exist iterative
techniques for a computing the exp or log of general square
matrices (Golub and Van Loan 1989, Sect. 11.3). In prac-
tice, considerable improvements can be obtained by taking
advantage of the structure of the matrix Lie group under con-
sideration. We show this with the special orthogonal group,
SO(3). Let so(3) be the Lie algebra, i.e., the tangent space
at the identity. Elements of so(3) are 3 × 3 skew-symmetric
matrices of the form

[ω]× =
⎡

⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤

⎦ (36)

where the vector ω = [ωx ωy ωz] is the axis of rotation
and ‖ω‖ is the magnitude of the rotation. The structure of
SO(3) allows us to compute exp using the Rodriguez for-
mula (Kanatani 1990, p. 204)

exp([ω]×) = e + sin‖ω‖
‖ω‖ [ω]× + 1 − cos‖ω‖

‖ω‖2
[ω]2× , (37)
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where, e is the identity matrix. The matrix logarithm can be
computed by inverting the above equation. Using (37) rather
than iterative techniques to compute the matrix exponential
can speed up an implementation by an order of 20.

The mean shift update proposed here is the same as the
one proposed in Subbarao and Meer (2006), Tuzel et al.
(2005). However, in Subbarao and Meer (2006), Tuzel et
al. (2005) it was assumed that the relation between the Rie-
mann distance and the log operator was an approximation.
As we show later, this relation is exact, and the algorithm
is provably convergent to a local maxima of the kernel den-
sity (27).

6.2 Grassmann Manifold

The Grassmann manifold, Gn,k , consists of n × k orthonor-
mal matrices. The set of tangents at x are n × k matrices �

satisfying xT � = 0. For a tangent � ∈ Tx(M) the exponen-
tial at x is

expx(�) = xv cos(s)vT + u sin(s)vT (38)

where, usvT is the compact SVD of � and the sin and cos
act element-by-element along the diagonal of s (Edelman et
al. 1998).

The log operator is the inverse of the exp operator. Let x
and y be two points on the manifold Gn,k . The logarithm of
y at x is given by

logx(y) = u sin−1(s)vT (39)

where, usdT = y − xxT y and vcdT = xT y is the general-
ized SVD with cT c + sT s = e and the sin−1 acts element-
by-element along the diagonal of s. It can be verified that
this tangent does satisfy the two properties, xT logx(y) = 0
and expx(logx(y)) = y as required in Edelman et al. (1998).

The distance between two points on the manifold is (Ab-
sil et al. 2003; Edelman et al. 1998)

d(x,y) = ∥
∥logx(y)

∥
∥

F
. (40)

These computational details are different from those pro-
posed in Subbarao and Meer (2006). Over there, an arc-
length approximation to the Riemannian distance was used
for computational purposes. This approximation was treated
as a function of one of the points and the gradient was com-
puted as in Edelman et al. (1998). This holds for points close
to each other and in all experiments the algorithm converges
quickly. However, theoretically the convergence of the ap-
proximation of Subbarao and Meer (2006) is not assured,
while the method proposed here is provably convergent.

6.3 Essential Matrices

The manifold SO(3) × SO(3) consists of two copies of
SO(3) and the tangent space of SO(3) × SO(3) will consist
of two copies of the tangent space of SO(3). Since SO(3)

has three-dimensional tangent spaces, SO(3) × SO(3) will
have six-dimensional tangent spaces. Consider (U,V) ∈
SO(3) × SO(3) and a tangent represented as a six vector

� =
[

uT vT
]T

(41)

where, u = [ux uy uz]T and v = [vx vy vz]T . The expo-
nential for SO(3) × SO(3) is computed by performing the
exponential of SO(3) twice, once each for U and V

exp(U,V)(�) = (U exp([u]×),V exp([v]×)) (42)

where, the exp on the right represents the matrix exponential
computed by the Rodriguez formula (37) and [·]× is defined
by (36). The first three elements of the tangent vector corre-
spond to U and the last three to V. This ordering is equiva-
lent to choosing a basis for the tangent space.

The tangent space of SO(3) × SO(3) can be divided into
two complementary subspaces, the vertical and the horizon-
tal space. The horizontal space contains tangents of the form

[ux uy uz vx vy − uz], ‖uz‖ < π/2. (43)

The vertical space consists of tangents of the form

[0 0 uz 0 0 kπ + uz] (44)

which lie in the Lie algebra of H	 (Edelman et al. 1998).
When k = 0, the vertical and horizontal spaces form com-
plementary subspaces around the origin of the tangent space.
Moving along geodesics defined by tangents in the vertical
space is equivalent to multiplying by elements of H	 and
leaves the equivalence class unchanged. Vectors in the hor-
izontal space are tangent to the equivalence class and all
tangents of SO(3) × SO(3)/H	 must lie in the horizontal
space of SO(3) × SO(3). Given a tangent in the horizontal
space, its exponential can be computed like in (42) to get
an element in a different equivalence class (which will be a
different essential matrix).

Let (U,V) and (Û, V̂) represent two elements of SO(3)×
SO(3)/H	. These can be any points in their respective
equivalence classes. The logarithm operator for SO(3) ×
SO(3)/H	 should give a tangent in the horizontal space.
To do this we first compute the logarithm on the manifold
SO(3) × SO(3). Define

δU = UT Û, δV = VT V̂. (45)

Taking the matrix logarithms of δU and δV, and rearranging
the elements into a six-vector, we get

[δux δuy δuz δvx δvy δvz]T (46)
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which lies in the tangent space of SO(3) × SO(3). Since
(U,V) and (Û, V̂) are arbitrary elements of their equiva-
lence classes, it is not necessary that this vector lie in the
horizontal space. We need to remove the component lying
in the vertical space. Using Givens rotations (Hartley and
Zisserman 2000, App. 3) δU and δV are decomposed into
rotations around the z-axis and rotations around axes in the
xy-plane. Now, (U,V) is moved using z-rotations differing
by kπ , according to (42). On recomputing δU and δV, they
have opposite z-rotations less than π/2. This can be done
in a single step and ensures that for the new δU and δV,
δuz ≈ −δvz upto a few degrees. Due to the nonlinearity of
the manifold δuz = −δvz will not hold exactly. This can be
improved by moving (U,V) along tangents of the form

[0 0 (δuz + δvz)/2 0 0 (δuz + δvz)/2]T (47)

and recomputing δU and δV. The tangents of (47) lie in the
vertical space and do not change the equivalence class of
(U,V). After the initial step with Givens rotations, δuz +
δvz is very small. Three or four iterations generally give an
acceptable accuracy of the order of 10−4. At convergence
we obtain the log, which is a six-vector of the form

[δux δuy δuz δvx δvy − δuz] (48)

pointing from one equivalence class to the other. The intrin-
sic distance between (U,V) and (Û, V̂) is given by the norm
of the five dimensional vector

d((U,V), (Û, V̂)) = ‖δux δuy δuz δvx δvy‖2. (49)

6.4 Symmetric Positive Definite (SPD) Matrices

We use the framework proposed in Arsigny et al. (2006) to
work with the manifold of n×n symmetric positive definite
matrices, Sym+

n . The idea is that the matrix log operator of
(32) is a diffeomorphism (a one-to-one, continuous, differ-
entiable mapping with a continuous, differentiable inverse)
over the space Sym+

n . The range of the log is the space of
n × n symmetric matrices, not necessarily positive definite.
All operations are carried out by mapping SPD matrices to
symmetric matrices using the log operator. Means and in-
terpolation can be done in the space of symmetric matrices,
which is a vector space, and mapped back to Sym+

n using the
exp operator. It is shown in Arsigny et al. (2006) that this
corresponds to giving Sym+

n a Lie group structure. How-
ever, the group operation is not matrix multiplication and
Sym+

n is not a matrix Lie group. The reason for using this
Riemannian framework as opposed to the one proposed in
Pennec et al. (2006) is that the numerical results are almost
identical but the Lie group structure is more computationally
efficient. Mean shift over Sym+

n can be carried out using the
Riemannian structure of Pennec et al. (2006), and the results
of this can be seen in Subbarao and Meer (2007).

The computation of the matrix exponential and logarithm
can be simplified in the case of the SPD matrices. Let usuT

be the singular value decomposition of a symmetric positive
definite matrix x ∈ Sym+

n . Then the matrix logarithm is

log(x) = u log(s)uT (50)

where, the log acts on element-by-element along the diag-
onal of s. Since the singular values of a SPD matrix are al-
ways positive, the log can act along the diagonal. The matrix
exponential is computed similarly. Let � be a symmetric
matrix with SVD given by � = uduT . The matrix exponen-
tial becomes

exp(�) = u exp(d)uT , (51)

where, the exp acts element-by-element along the diagonal
of d. It is easy to see that this form of the exponential is
defined for any symmetric matrix and the result is a SPD
matrix.

Let x and y be two n × n SPD matrices. The manifold
logarithm according to Arsigny et al. (2006) is

logx(y) = log(y) − log(x). (52)

Given a tangent �, the manifold exponential operator is

expx(�) = exp(log(x) + �). (53)

The distance between x and y is given by

d(x,y) = ‖ log(y) − log(x)‖2. (54)

In our implementation, the log operator is used in a pre-
processing step to map all matrices to their matrix loga-
rithms. Mean shift is then carried out in the vector space
of symmetric matrices and the modes are mapped back to
Sym+

n by the exp operator. This is equivalent to performing
nonlinear mean shift with the Lie group structure of Sym+

n

(Arsigny et al. 2006). However the matrix logarithms and
exponentials are used only once during the preprocessing
and post-processing of data and the time taken for mean shift
is much lower.

7 Theoretical Properties of Nonlinear Mean Shift

One of the reasons of for the popularity of the original mean
shift is the provable convergence of the mean shift iterations.
In Comaniciu and Meer (2002) it was shown that the itera-
tions will converge to a local maxima of a kernel density.
This is rather surprising since other gradient ascent meth-
ods such as Newton steps or conjugate gradient require a
line search along the gradient to make sure that the iteration
does not take a big step and miss the maximum. In the mean
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shift algorithms there is no line search. The mean shift iter-
ation of (25) adapts itself to the data points surrounding it.
In regions with a high density of points, the mean shift steps
are small to make sure that it does not move too far and miss
the maximum, while in regions with a low density of points
the steps are much larger.

The nonlinear mean shift step of (29) ensures similar con-
vergence properties. Let yj , j = 1, . . . be the successive es-
timates of the mode obtained through mean shift iterations
given by (29) and (30). The following theorem is proved in
Appendix.

Theorem 2 If the kernel K has a convex and monotoni-
cally decreasing profile and the bandwidth h is less than
the injectivity radius i(M) of the manifold, the sequence
{f (yj )}j=1,2,... is convergent and monotonically non-
decreasing.

The proof proceeds is a manner similar to the proof for
the Euclidean case (Comaniciu and Meer 2002). Given the
convexity of the profile we only need to show that each mean
shift step minimizes a weighted error measure, which is the
same as that minimized by the weighted mean finding al-
gorithm over manifolds. The necessary conditions for this
have already been shown in Karcher (1977). In Comaniciu
and Meer (2002) it was also shown that the mean shift it-
erations will converge to a spatially to a single point. This
property may not extend to the manifold mean shift algo-
rithm although we have not experienced such a situation in
practice.

7.1 Nonlinear Mean Shift and Expectation Maximization

In Carreira-Perpinan (2007) it was shown that the original
mean shift over vector spaces can be viewed as a special case
of expectation maximization (EM). Due to the complexity
of the idea we cannot completely explain it here but briefly
outline the conditions under which manifold mean shift is
equivalent to EM. The equivalence is shown by considering
a slightly different problem. Assume that the kernel density
function is given to us with one degree of freedom which
allows us to translate the whole distribution. Therefore, the
true distribution is of the form

pθ (x) = f (x + θ) (55)

where, f is the kernel density and θ is the translational de-
gree of freedom. We are given a point z sampled from the
distribution pθ (x) with unknown θ . Assume that the sam-
pled point lies at the origin z = 0 and use EM to find the
most likely value of the parameter θ . Intuitively it is easy to
see that the maximum likelihood estimate of θ will be so as
to move the point of maximum density to the origin. There-
fore, we pick θ such that pθ (0) is the highest mode. Since
pθ (0) = f (θ), our best estimate of θ will be the mode of f .

To generalize this procedure to arbitrary Riemannian
manifolds, we need to generalize the concept of ‘translat-
ing’ the distribution like in (55). This notion is captured by
a group action. We now take f to represent kernel density
(27) over some manifold M and assume that a group G acts
transitively over M. We define the ‘translated’ version of f

as

pg(x) = f (g · x) (56)

where g ∈ G. Given that the sampled point lies at a partic-
ular x0 ∈ M, EM attempts to find the group element which
moves the mode of f to the point x0. We use an arbitrary
point x0 since there is no special point equivalent to the ori-
gin of Euclidean space. Like in Carreira-Perpinan (2007) it
is now easy to show that the EM iterations are the same as
the mean shift iterations.

8 Applications

We present two applications of the nonlinear mean shift al-
gorithm. The first application is a motion segmentation algo-
rithm which can be used with many different motion mod-
els. It recovers both the number of motions and the motion
parameters in a single step. The second application is a dis-
continuity preserving filtering algorithm which works with
non-vector valued images.

8.1 Motion Segmentation

This motion segmentation algorithm was first proposed in
Tuzel et al. (2005) although the algorithm was only valid for
parameter spaces which were matrix Lie groups. This algo-
rithm was extended in Subbarao and Meer (2006) to all Rie-
mannian manifolds. However, Subbarao and Meer (2006)
makes a few approximations, while applying the nonlinear
mean shift algorithm to different manifolds. The mean shift
algorithm proposed here is not an approximation and is the-
oretically valid for any Riemannian manifold.

The input to the algorithm consists of point matches be-
longing to different motions. Some of these correspondences
may also be outliers. The algorithm proceeds in two stages.
In the first stage, the matches are randomly sampled to gen-
erate minimal sets of points which define motion hypothe-
ses. Such minimal sets are known as elemental subsets. The
sampling and hypothesis generation can be improved by a
validation step which reduces computation in the second
stage (Tuzel et al. 2005).

In the second stage, the parameter estimates are clustered
using the algorithm proposed in Sect. 5.2. The number of
dominant modes gives the number of motions in the data
and the position of the modes corresponds to the motion pa-
rameters. Modes are considered not to be dominant if they
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do not have high kernel densities or do not have a large num-
ber of mean shift iterations converging to them.

The inliers for each mode are found based on the resid-
uals. For each motion parameter returned by clustering the
motions, the residual errors of the inliers will be close to
zero in the Euclidean space of the residuals. This will lead
to a mode around the origin in the space of residuals. We use
the original mean shift in the Euclidean space of the resid-
ual errors to find the basin of attraction of the mode at zero.
Points with residuals in this basin of attraction are declared
inliers. Since the inliers for each motion are decided inde-
pendently, it is possible for a correspondence to be assigned
to two motions. In such a case the tie is broken by assigning
it to the motion which gives a lower error.

The performance of our algorithm is tested by verifying
that the number of strong modes is equal to the number of
motions present in the data. Since mean shift returns all lo-
cal maxima of the kernel density estimate, for a data set with
m motions the first m modes should clearly dominate the
(m + 1)th mode, so that these extraneous modes can be
pruned.

We also quantitatively compare the result of the algo-
rithm with a manual segmentation in two ways. Firstly, the
classification of the correspondences is compared based on
the number of misclassifications by the algorithm. Secondly,
we compute the squared error using only the points declared
inliers by the manual segmentation. Let Mj be the j -th
mode returned by the clustering. If the correspondence pi

is an inlier for this motion, the residual Mj (pi ) should be
small. We measure the residual squared error of Mj as

εj
res = 1

nj

nj
∑

i=1

∣
∣Mj (pi )

∣
∣
2

(57)

where the sum is taken only over correspondences which are
inliers according to the manual segmentation and nj is the

number of inliers for the j -th motion. The lower limit for
this error is

ε
j
LS = 1

nj

nj
∑

i=1

|M̂j (pi )|2 (58)

where, M̂j is the least squares estimate based on the inliers
given by the manual segmentation. By definition, the least
square estimate minimizes the squared error.

This algorithm can be used with different motion models,
with the difference being the manifold over which the hy-
potheses are clustered. This depends on the application and
the assumptions made about the type of motion. We present
a examples of using this algorithm, and other examples of
motion models and their corresponding manifolds can be
found in Subbarao and Meer (2006), Tuzel et al. (2005). In
all our experiments, we generate 1000 hypotheses and clus-
ter them using nonlinear mean shift.

8.1.1 Camera Pose Segmentation

The pose of a calibrated camera is the rigid body transfor-
mation between the world coordinate system to the camera
coordinate system and the set of camera poses is the special
Euclidean group, SE(3). We used the OpenCV camera cali-
bration routines based on Zhang (2000) to triangulate three
different point clouds. A 10 × 7 checkerboard pattern was
placed next to each of three objects and 25 images from dif-
ferent angles were taken for each object. A few of the images
are shown in Fig. 5. The OpenCV routine returns the inter-
nal camera parameters and the pose for each of the frames.
We then used SIFT (Lowe 2004) to match features across
the images and used the calibrated pose estimates to trian-
gulate features in 3D. This gives us a data set of three dif-
ferent point clouds along with the SIFT descriptors for each
feature. Each of the three point clouds is triangulated in a
different 3D coordinate system.

Fig. 5 Camera Pose
Segmentation. Images used to
reconstruct 3D point clouds
using the OpenCV
implementation of the
calibration technique of Zhang
(2000)
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Fig. 6 Camera Pose
Segmentation. Mean shift over
SE(3). The figure shows inliers
for the different motions found.
The table on the left contains the
properties of the first four
modes. The first mode M1
corresponds to both books on
the right, M2 corresponds to
both books on the left and M3 is
the box in the middle. Only the
first three modes are valid
motions. The table on the right
compares the result with the
manual segmentation

Mot. hyp. kde

M1 46 0.0388
M2 65 0.0387
M3 28 0.0223
M4 16 0.0092

M1 M2 M3 Out εres εLS

M1 42 0 0 1 2.46e−4 9.48e−5
M2 0 49 0 2 1.15e−4 3.90e−5
M3 0 0 25 0 4.63e−5 9.79e−6
Out 0 0 0 44

For segmentation, we use an image in which all three ob-
jects are present as shown in Fig. 6. The relative pose of the
camera with respect to the world coordinate systems of each
of the objects is different. Therefore, the pose obtained us-
ing only the correspondences from each of the objects will
be different. This property can be used to segment the three
objects in the 2D image. Using SIFT we match the image
features to the previously computed 3D features. This gives
3D to 2D correspondences lying across all three objects.
Pose hypotheses are generated by the three-point method of
Haralick et al. (1991). Each elemental subset of three points
gives upto two solutions. The hypothesis are clustered using
mean shift over the Lie group SE(3) with a bandwidth of
h = 0.1. The results of the segmentation are shown in Fig. 6.

In the table on the left the number of hypotheses which
converge to each mode and the kernel density at the mode
are shown. Since the data set has three motions, there are
three dominant modes with the fourth mode having a much
lower score. The segmentation results are on the right. Each
row represents a motion and the row labeled Out represents
outliers. The first four columns show the classification re-
sults. For example, the first row indicates of the 43 inliers
for the first motion, 42 are true inliers and one outlier is mis-
classified as an inlier. Values along the diagonal are correctly
classified, while off-diagonal values are misclassifications.
The last two columns show the residual errors for our esti-
mates ε, and for the least squares estimate, εLS . These resid-
uals are the average reprojection errors in mm2 for the inliers
based on the manual segmentation. Our algorithm’s perfor-

mance, with no knowledge of the segmentation, is compara-
ble to manually segmented least squares estimates.

8.1.2 Multi-body Factorization

Here we use mean shift over Grassmann manifolds. The po-
sitions of points tracked over F frames of an uncalibrated
affine camera define a feature vector in R

2F . For points shar-
ing the same motion, these vectors lie in a four dimensional
subspace of R

2F , and for planar scenes this subspace is only
three dimensional (Sugaya and Kanatani 2004). In a scene
with multiple planar moving bodies, each motion defines a
different subspace, which can be represented by a point in
the Grassmann manifold G2F,3, i.e., n = 2F and k = 3. An
elemental subset consists of the feature vectors defined by
three points tracked across F frames. The basis is obtained
through singular value decomposition.

The result of multibody factorization with three motions
is shown in Fig. 7. The system detects corners in the first
frame. Points on the background were identified as having
zero displacement and removed leaving 257 corners. These
corners are tracked across five frames, i.e., F = 5. The pla-
nar assumption holds due to low depth variation, and each
motion defines a three-dimensional subspace of R

10. The
three motions contain 100, 46 and 54 points with 57 out-
liers. We clustered the motion hypotheses on G10,3 with a
bandwidth of 0.07. The segmentation returned by the system
perfectly matches the manual segmentation. The squared er-
rors in pixel2 for the system’s estimates are comparable to
the least squared errors.



Int J Comput Vis (2009) 84: 1–20 15

Mot. hyp. kde

M1 581 0.469
M2 51 0.040
M3 54 0.036
M4 8 0.016

M1 M2 M3 Out εres εLS

M1 100 0 0 0 2.187 2.100
M2 0 46 0 0 1.025 0.901
M3 0 0 54 0 3.364 1.445
Out 0 0 0 57

Fig. 7 Multibody Factorization. Mean shift over G10,3. The left fig-
ure shows the first frame with all the points which are tracked. The
right image shows the fifth and last frame with only the inliers. The
table on the left contains the properties of the first four modes. The first

mode M1 corresponds to the napkin, M2 corresponds to the orange
book and M3 to the white book. Only the first three modes are valid
motions. The table on the right compares the results with the manual
segmentation

8.1.3 Epipolar Segmentation

We do mean shift over the essential manifold. We calibrated

a camera offline using the method of Zhang (2000). Two

images of a scene with two moving bodies were taken. The

points on each motion define an essential matrix due to their

relative motion with respect to the camera. For hypotheses

generation we used the method of Nister (2005). Each el-

emental subset consists of five point and returns upto ten

essential matrices. The hypotheses are clustered over the es-

sential manifold using the theory developed in Sect. 6.3.

The two images used for motion segmentation are shown

in Fig. 8. The toy cars move together and the book has a

separate motion. Using SIFT, and removing points in the

background as having zero displacement, we get 100 point

matches with 39 on the book and 42 on the cars and 19 out-

liers according to the manual segmentation. The mean shift

was done with a bandwidth of h = 0.001. The clustering re-

turns two dominant modes as expected. The first two modes

are clearly more dominant than the third. Some of the out-

liers are misclassified as inliers since they satisfy the epipo-

lar constraint.

8.2 Discontinuity Preserving Filtering

The original mean shift has been used for the discontinu-
ity preserving filtering of color images (Christoudias et al.
2002; Comaniciu and Meer 2002). This algorithm was ex-
tended to manifold valued images in Subbarao et al. (2007).

The image I is considered to be a mapping on a n-
dimensional lattice which assigns a value to each lattice
point. Typically, n = 2 or 3. At each location zi , the data val-
ues I(zi ) are assumed to lie on a Riemannian manifold, M.
A pixel I(zi ) along with its location zi is considered as a sin-
gle data point xi = (zi , I(zi )), in the joint domain R

n × M.
We do mean shift in this joint space to cluster the pixels.

Consider an iteration starting at the point xi = (zi , ci ), ci =
I(zi ). Let this iteration converge to (ẑi , ĉi ). In the filtered
image Î, we set Î(zi ) = ĉi . The profile in the joint domain is
the product of a spatial profile defined on the Euclidean part
of the joint domain and a parameter profile defined on the
manifold, as

k(x,xi ) = ks

(‖z − zi‖2

h2
s

)

kp

(

d2(c, ci )

h2
p

)

. (59)

The bandwidth in the joint domain consists of a spatial band-
width hs and a parameter bandwidth hp . In practice, we use
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Mot. hyp. kde

M1 459 0.0215
M2 409 0.0051
M3 92 0.0026

M1 M2 Out εres εLS

M1 36 1 2 5.31e−5 3.82e−5
M2 3 38 2 9.86e−4 1.64e−4
Out 0 3 15

Fig. 8 Mean shift over the Essential Manifold. The left figure shows
the first frame with all the points which are matched. The right image
shows the second frame with only the inliers returned by the segmen-
tation. The table on the left contains the properties of the first three

modes. The first mode M1 is due to the cars and the second mode
M2 is due to the book. Only the first two modes correspond to mo-
tions. The table on the right compares the results with the manual
segmentations

a truncated normal kernel and the performance of the algo-
rithm can be controlled by varying hp and hs .

To optimize performance, we used the heuristic sug-
gested in Christoudias et al. (2002) and used in the EDISON
system. The filtering step was not applied to pixels which are
on the mean shift trajectory of another (already processed)
pixel. These pixels were directly associated with the mode
to which the path converged. The approximation does not
noticeably change the filtered image but reduces processing
time.

8.2.1 Chromatic Noise Filtering

Chromatic noise filtering involves mean shift over R
2 ×G3,1.

Chromatic image noise affects the direction (chromaticity)
of the color vector but not its intensity. The direction of a 3D
vector can be represented by a unit vector in 3D and these
form the Grassmann manifold, G3,1. By filtering chromatic-
ity we obtain better results than original mean shift which
smooths both chromaticity and brightness.

The results for the jellybeans image are shown in Fig. 9.
The image is corrupted with chromatic noise of standard
deviation 0.2. The original mean shift image filtering al-
gorithm from EDISON (Christoudias et al. 2002), was run
with a spatial bandwidth hs = 11.0 and color bandwidth
hp = 10.5, to get the middle image. Using a larger hp leads

to oversmoothing and using smaller values does not change
the image much. The nonlinear mean shift algorithm was run
with the same hs = 11.0 but with hp = 0.3 to get the image
on the right. Our filtering is clearly better than EDISON due
to the averaging of the right noise model.

8.2.2 Diffusion Tensor-MRI Filtering

DT-MRI filtering involves mean shift over R
3 × Sym+

3 . Our
real data set is a DTI of the human heart obtained from
Helm et al. (2006). The lattice size is 128 × 128 × 67 and
we ran the smoothing with bandwidth values hs = 9.0 and
hp = 1.0. For visualization purposes, each 3 × 3 diffusion
matrix is converted to some scalar value and planes of the
3D lattice are drawn. Here, we use the fractional anisotropy
(Tschumperle and Deriche 2005)

√

3

2

(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

(60)

where, λ1, λ2 and λ3 are the eigenvalues and λ̄ = (λ1 +λ2 +
λ3)/3. The fractional anisotropy for a particular plane z =
47 is shown in Fig. 10.



Int J Comput Vis (2009) 84: 1–20 17

Fig. 9 Chromatic Noise Filtering. Mean Shift over R
2 × G3,1. The jellybeans image corrupted with chromatic noise is shown on the left. The

results of using standard mean shift filtering with EDISON are in the middle and the result of nonlinear mean shift filtering is on the right

Fig. 10 DT-MRI Filtering.
Mean Shift over R

3 × Sym+
3 .

Real DTI data of a human heart
before and after smoothing. The
jitter in the left image is due to
noisy voxels having different
anisotropies from their
surroundings. These are
removed by the smoothing and
more continuous regions of
uniform anisotropy are visible
on the right

9 Conclusion

We present a new clustering algorithm which works with
points lying on Riemannian manifolds. The algorithm
is a generalization of mean shift to Riemannian mani-
folds and it inherits the properties of the mean shift al-
gorithm such as being provably convergent to a max-
ima of the kernel density. We also discussed a novel
parametrization of the essential manifold which is nec-
essary for the application of the nonlinear mean shift to
the space of essential matrices. The code IS available at
www.caip.rutgers.edu/riul/research/code.html.

We only discussed a few of the many manifolds which
occur in applications. It is possible to use the same mean
shift algorithm for clustering shapes in shape space (Fletcher
et al. 2004; Srivastava et al. 2005) or to cluster probability
distributions over the manifolds of distributions (Srivastava
et al. 2007). Consequently, we believe the nonlinear mean
shift algorithm can be used to solve many different problems

in the same way that the original mean shift has so widely
been used.

Appendix: Proofs

Proof of Theorem 1 The gradient of the Riemann squared
distance is given by

∇f (x) = ∇x d2(x,y) = −2 logx(y). (61)

Let α : [0,1] → M be the geodesic from x to y. Then, the
geodesic from y to x is given by β(t) = α(1 − t). For any
t ∈ [0,1], we have

β ′(t) = −α′(1 − t). (62)

It states that, for any point on the geodesic between x
and y, the tangents along the curves α(t) and β(t) dif-
fer by multiplication by −1. Specifically, at t = 1 we get

http://www.caip.rutgers.edu/riul/research/code.html
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β ′(1) = −α′(0). Recall that α′(0) and logx(y) are two dif-
ferent expressions for the same initial velocity of the geo-
desic from x to y. Therefore, β ′(1) = − logx(y) and it is
sufficient to prove

∇f (x) = 2β ′(1). (63)

Let Ṽ be the star-shaped neighborhood of the origin in
Ty(M) and (V , φ) be the corresponding normal neighbor-
hood of y ∈ M. The function f (x) measures the squared
distance of x from y. Since, the velocity of the geodesic is
constant, the length of the geodesic is equal to the velocity
along the geodesic

f (x) = gy(logy(x), logy(x)). (64)

We now define, f̃ = f ◦ φ−1 : R
m → R. Given a point

u ∈ R
m, φ−1(u) ∈ M is a point on the manifold. By defini-

tion, we have logy(φ−1(u)) = ∑

i u
iei , where ui is the i-th

coordinate of u and ei is the orthonormal basis of Ty(M).
Therefore,

f̃ (u) = f (φ−1(u))

= gy(logy(φ−1(u)), logy(φ−1(u)))

= gy

(
m

∑

i=1

uiei ,

m
∑

i=1

uiei

)

=
m

∑

i=1

(ui)2. (65)

In the final step, we used the orthonormality of the basis
ei . From O’Neill (1983, p. 85), the j -th component of the
gradient is given by

(∇f )j =
m

∑

i=1

gij ∂f̃

∂ui
= ∂f̃

∂uj
= 2uj (66)

where, we use the fact that the Riemannian metric matrix is
the identity when expressed in normal coordinates. By defi-
nition, uj is the component of the tangent logy(x) along ej .
Therefore, ∇f = 2β ′(1) and (63) holds. �

Proof of Theorem 2 If the kernel K has a convex and
monotonically decreasing profile and the bandwidth h is
less than the injectivity radius i(M) of the manifold, the
sequence {f (yj )}j=1,2,... is convergent and monotonically
non-decreasing.

To prove this theorem we use a result shown in Karcher
(1977). Consider a set of points xi , i = 1, . . . , n lying on a
Riemannian manifold. The weighted Karcher mean of these
points with weights wi ∈ R, i = 1, . . . , n is defined as the

points which minimize the cost function

C(y) =
n

∑

i=1

wid
2(y,xi ). (67)

It was shown in Karcher (1977) that if all the data points lie
within an injectivity radius of each other, then the minimizer
is unique and can be found using an iterative procedure. Let,
yj be the current estimate of the Karcher mean, then the
updated estimate is given by

yj+1 = expyj

(
n

∑

i=1

wi logyj
(xi )

/
n

∑

i=1

wi

)

. (68)

If yj+1 is obtained from yj using the above rule, then
C(yj+1) ≤ C(yj ) and

n
∑

i=1

wi(d
2(yj ,xi ) − d2(yj+1,xi )) ≥ 0. (69)

Using this result we prove the convergence of the mean
shift iterations. Each kernel is a real-valued function with a
maximum value of 1 and the kernel density (27) is a sum
of n such kernels. Since n is finite, the value of f (yj )

is bounded above. To prove convergence of the sequence
{f (yj )}j=1,2,... it is sufficient to prove that

f (yj+1) ≥ f (yj ). (70)

Using (27), we can write

f (yj+1) − f (yj )

= ck,h

n

n
∑

i=1

[

k

(

d2
j+1,i

h2

)

− k

(

d2
j,i

h2

)]

(71)

where, we use the notation dj+1,i = d(yj+1, xi ). Due to the
convexity of the kernel we have

k(z2) ≥ k(z1) + k′(z1)(z2 − z1) (72)

for any z1, z2 ∈ R. Since, g(·) = −k(·), we rewrite (72) as

k(z2) − k(z1) ≥ g(z1)(z1 − z2). (73)

Using this identity in (71) for each of the n terms we get

f (yj+1) − f (yj )

≥ ck,h

nh2

n
∑

i=1

[

g

(

d2
j,i

h2

)

(d2
j,i − d2

j+1,i )

]

. (74)

We now use (69) with the data points xi , i = 1, . . . , n and
the weights wi = g(d2

j,i/h2). These weights change at each
iteration, but for a single iteration they are constant and the
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inequality holds. In this case (68) is the same as the mean
shift step (30) and therefore the right side of the above in-
equality if nonnegative. Therefore, (70) is true and the se-
quence of values f (yj ) is nondecreasing.

The only condition that needs to be verified is whether
all the points lie within an injectivity radius of each other as
required for the result of Karcher (1977) to hold. This can be
ensured by using a value of h less than the injectivity radius.
In this case, the weights g(d2

j,i/h2) are zero for all points
further than h away and all points with nonzero weights will
lie within an injectivity radius of each other as required. �
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