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Robust Fusion of Uncertain Information

Haifeng Chen and Peter Meer

Abstract—A technique is presented to combine data points, each avail-
able with point-dependent uncertainty, when only a subset of these points
come from sources, where is unknown. We detect the signif-
icant modes of the underlying multivariate probability distribution using a
generalization of the nonparametric mean shift procedure. The number of
detected modes automaticallydefines , while the belongingof apoint to the
basin of attraction of a mode provides the fusion rule. The robust data fusion
algorithm was successfully applied to two computer vision problems: esti-
mating the multiple affine transformations, and range image segmentation.

Index Terms—Computer vision, information fusion, mean shift, robust
analysis.

I. INTRODUCTION

Under its most general form, information fusion is a process in which
the available data is combined to find representations of higher quality.
See [31] for a discussion of the concepts involved in data fusion, and
[30] for an extensive analysis of the recent literature.

In different research areas information fusion has different mean-
ings. In engineering and applied sciences it is most often identified with
sensor fusion, and the goal is to improve the representations provided
by individual sensing modalities. See [27] and [28] for typical collec-
tions of papers. In pattern recognition, statistics and machine learning,
information fusion is related to combining classifiers to increase clas-
sification accuracy, e.g., [18], [24], or handling ensembles of outputs
obtained by resampling the input, e.g., [12], [20]. We approach the in-
formation fusion problem as a generic one and the proposed technique
can be integrated into most of the methods described in the literature.

Let the p-dimensional data points be xi 2 Rp, i = 1; . . . ; n, each
associated with a covariance matrixCi characterizes the uncertainty of
the process through which xi was obtained. The data can come from an
unknown number of information sources, and will denote this number
by N . To have a realistic setup, will also assume that only a subset of
the data is actually related to the information sources, others (possibly
the majority) are severely corrupted data points, i.e., outliers. The goal
is to characterize the N sources.

Whenever a data point is related to one of the information sources, it
is assumed to carry an unbiased representation of that source. Since we
focus here on computational aspects of information fusion, no distinc-
tion has to be drawn based on the nature of the data. This distinction
is important, however, when analyzing different classifier combination
rules under the Bayesian paradigm [29], or in the context of machine
learning [18].

There have been several studies in the computation of multiple
source models in the computer vision tasks, such as multiple objects
motions, multiple epipolar geometries, etc. However, those methods
are either sensitive to the outliers [8], [10] or sensitive to the parameters
of the algorithm [11]. Here we address those problems by robust data
fusion. We show that our technique is superior to Hough transform
and other clustering based methods in dealing with the multiple
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structured data. The fusion based algorithm was applied to two generic
computer vision problems: estimation of the affine transformation
parameters from moving objects, and range image segmentation. In
both applications, the proposed algorithm gave satisfactory results.

In Section II kernel density estimation is reviewed. In Section III in-
formation fusion of data from a single or multiple sources is discussed.
In Section IV the computational technique employed to characterize the
information sources, the mean shift procedure is described. The main
advantages of data fusion are presented in Section V. Two fusion exam-
ples are shown in Section VI, and the relation of the proposed method
to other approaches is discussed in Section VII.

II. KERNEL DENSITY ESTIMATION

Kernel density estimation, called the Parzen window technique in the
pattern recognition literature [19, Sec.4.3], is the most popular density
estimation method. See [32] for a thorough treatment of the subject in
the statistical literature.

Given the data points xi 2 Rp, the estimate of the underlying prob-
ability distribution at location x is computed as the average of contin-
uous kernel functions centered on the data points

f̂(x) =
1

n

n

i=1

KH (x� xi) : (1)

We will consider only radially symmetric kernels with bounded sup-
port, i.e., K(x) = 0 for kxk > 1. The p � p symmetric positive
definite bandwidth matrix H scales the kernel support to the desired
elliptical shape and size

KH(x) = [det[H]]�1=2K(H�1=2x): (2)

The case H = h2Ip yields the often used multivariate kernel density
estimator expression for (1), where the radius of the kernel is defined
by the bandwidth h.

The bandwidth matrixH is the critical parameter of the kernel den-
sity estimator. For example, if the support of the kernel is too large, sig-
nificant features of the distribution, like multimodality, can be missed
by oversmoothing. A single bandwidth matrix may not be enough when
the distribution has very different structure locally.

There are two ways to adapt the bandwidth to the local structure,
in each case the adaptive behavior being achieved by first performing a
pilot density estimation. The bandwidth matrix can be either associated
with the location x in which the distribution is to be estimated, or each
data point xi can be taken into account in (1) with its own bandwidth
matrix, i.e.,

f̂(x) =
1

n

n

i=1

KH (x� xi) : (3)

It can be shown that (3), called the sample point density estimator, has
superior statistical properties [22].

Our radially symmetric kernels satisfy

K(x) = ck;pk(x
>
x) > 0 kxk � 1 (4)

where k(x) is called the profile of the kernel, and the normalization
constant ck;p > 0 assures thatK(x) integrates to one. We have k(x) >
0 for 0 � x < 1, and w.l.g. will be considered monotonically de-
creasing with x. The Epanechnikov kernel, having the profile

k(x) =
1� x; 0 � x � 1

0; x > 1
(5)
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will be used in the examples. The Epanechnikov kernel is optimal in
the sense of asymptotic mean square error of the estimated distribution
[32, p. 104]. From (3), taking into account (4) and (2), we obtain

f̂(x) =
ck;p

n

n

i=1

[det[Hi]]
�1=2

k (x� xi)
>
H
�1
i (x� xi) : (6)

III. DATA FUSION

We discuss first the simplest case when all the available data is re-
lated to a single source of information. Next, will describe the more re-
alistic situation in which not only several information sources should be
handled simultaneously (without a priori knowledge of their number)
but also the presence of spurious data should be tolerated.

A. Single Source

When all the data points xi 2 Rp, i = 1; . . . ; n are related to the
same source, the underlying probability distribution is unimodal. In the
sequel the data (measurements) are assumed to be independent random
variables, an assumption which may not necessarily be accurate in re-
ality, and it is not crucial for the proposed method. The uncertainty
about the data point xi is described by the covariance matrix Ci. The
data points are unbiased estimates of x̂, the value characterizing the in-
formation source. Therefore, the source should be taken as the center
of the cluster of these points, i.e.,

x̂ = argmin
x

n

i=1

(x� xi)
>
C
�1
i (x� xi) (7)

where the covariances are assumed to have full rank. The rank deficient
case can be easily handled by using pseudoinverses in (7), though the
presence of null spaces may require some additional care. It is easy to
show that

x̂ =

n

i=1

C
�1
i

�1 n

i=1

C
�1
i xi (8)

i.e., the source is characterized by the covariance weighted average of
the data. The more uncertain is a data point (the inverse of its covariance
has a smaller norm), the less it contributes to the result of the fusion.
This is a desirable behavior, though will not defend against an outlier
with small uncertainty far away from the good data. Thus, the fusion
rule (8) is not robust.

The uncertainty of x̂ is also of interest. Without loss of generality we
can assume that the true x̂ = 0. The covariance of x̂, obtained after
some simple manipulations, is

Ĉ = E[x̂x̂ ] =

n

i=1

C
�1
i

�1

: (9)

The covariance of the fusion output is the harmonic mean of the data
covariances. Note that the estimator (8) is consistent. Indeed, by taking
all Ci = C, the covariance estimate becomes Ĉ = n�1C and van-
ishes when the number of measurements becomes very large.

B. Multiple Sources

We will relax now the single source condition imposed in the pre-
vious section. A data point may come from any of the N � n in-
formation sources, or can be an outlier not related to these sources. It
is assumed that the outliers are not structured, i.e., they do not yield
“phantom” sources. The data points related to an information source
being unbiased representations of that source, we should seek the cen-
ters of the N densest regions in Rp, i.e., the modes of the underlying
probability distribution. These modes will be localized by using the
sample point kernel density estimator (3).

The robustness of our approach will be assured by defining the band-
width matrices as

Hi = �
2

;pCi i = 1; . . . ; n (10)

where �2
;p is the chi-square value for p degrees of freedom and level
of confidence 
. In our implementation 
 = 0:995.

As a consequence of our choice for the bandwidth matrices the sup-
port of the kernel KH (x � xi) is the confidence region of xi at cov-
erage probability 
. Indeed, from (4) we have

KH (x� xi) > 0 for (x� xi)
>
C
�1
i (x� xi) < �

2

;p: (11)

When the data xi is related to a source characterized by x̂l, the el-
lipsoidal region in Rp centered on xi and delineated by the condition
(11) contains x̂l with probability 
. Note that the �2 values are used to
scale the confidence region, which implicitly assumes that the differ-
ence x � xi is a zero mean Gaussian variable with covariance Ci. In
fact, the result of the fusion is only weakly dependent on the accurate
size of the confidence region, as long as all these regions are scaled the
same way.

Taking into account (10) the density estimate (6) becomes

f̂(x) =
ck;p

n �2
;p
p=2

n

i=1

[det[Ci]]
�1=2

�k
1

�2
;p
(x� xi)

>
C
�1
i (x� xi) (12)

with the modes being the significant local maxima

x̂l = argmax
x

f̂(x) l = 1; . . . ; N: (13)

Note that by identifying the modes the value of N is automatically
determined. They are defined by the zeros of the gradient of the density
estimate. Stationary points also correspond to such zeros, but they can
be avoided in our approach as will be discussed in Section IV. The
gradient of the density estimate is computed from (13)

rf̂(x) =
ck;p

n �2
;p
(p=2+1)

�

n

i=1

[det[Ci]]
�1=2

C
�1
i (x� xi)

� k
0 1

�2
;p
(x� xi)

>
C
�1
i (x� xi) : (14)

We will define the function g(x) = �k0(x)which is also a profile since
k(x) is monotonically decreasing with x. After scaling the covariance
matrices

Wi = [det[Ci]]
1=2
Ci (15)

the expression of the gradient estimate can be rewritten as

rf̂(x) =
ck;p

n �2
;p
(p=2+1)

n

i=1

I
(x� xi)W
�1
i

�

m

i=1

I
(x� xi)W
�1
i

�1

�

n

i=1

I
(x� xi)W
�1
i xi � x (16)

where

I
(u) = g
u
>
C
�1
u u

�2
;p
=

1; u
>
C
�1
u u � �2
;p

0; u
>
C
�1
u u > �2
;p

(17)

with the second definition being the specific value for the case of the
Epanechnikov kernel (5) used in the paper.
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The zeros of the density gradient estimate (16) are then the solutions
of the equation

x =

n

i=1

I
(x� xi)W
�1
i

�1 n

i=1

I
(x� xi)W
�1
i xi : (18)

By comparing (8) with (18) we see that both expressions are covariance
weighted averages of the data, but in (18) the scalar function I
(x�xi)
is also present in the weights. This function has nonzero values only
over the confidence region of xi, see (17). Thus, the computation of the
kernel density estimates is restricted to local regions and the detection
of each mode is handled separately, yielding a robust behavior. To solve
(18) an iterative numerical procedure will be employed.

IV. MEAN SHIFT PROCEDURE

The mean shift property was first described in 1975 by Fukunaga and
Hostetler [21] in the context of pattern recognition. It provides an effi-
cient way to locally estimate the gradient of a density. Recently mean
shift became a popular tool in computer vision. See [15]–[17] for is-
sues related to the topic of this paper. The mean shift property is less
known in the statistical literature. While the book [26, Sec.6.2.2] dis-
cusses [21], the usefulness of mean shift type approaches to density
estimation was only recently recognized [14].

To describe the mean shift property, will assume for the moment that
all the covariance matrices are the same and proportional to the identity
matrix

Ci =
h2

�2
;p
Ip i = 1; . . . ; n (19)

where h is the radius (bandwidth) of the kernel. Then (17) becomes

Ih(x� xi) =
1; kx� xik � h

0; kx� xik > h.
(20)

Since now allWi = cIp (15), we can define from (18) the mean shift
vector

mh(x) =

n

i=1

xiIh(x � xi)

n

i=1

Ih(x� xi)
� x (21)

i.e., the difference between the average of the data points in a window
of radius h, and its center x. The mean is biased toward the region con-
taining the majority of the points, i.e.,mh(x) is oriented from the center
toward the region of highest density in the window. Thus, moving the
window into the location specified by the mean shift vector, will place it
over a region of higher density than the current position. It can be shown
that this iterative procedure is guaranteed to converge to the nearest sta-
tionary point where the density gradient estimate vanishes. See [16] for
a more rigorous description of the mean shift property.

In most cases the point of convergence is a local maximum of the den-
sity, i.e., a mode. The modes have the property that after a small random
perturbation the new mean shift process will return to the original point
of convergence. For nonmaximum stationary points, like saddle point,
this is much less probable and thus they can be easily eliminated.

The following procedure finds the modes of the distribution under-
lying the measurement.

Starting from x = xi, i = 1; . . . ; n:

1) compute the mean shift vector mh(x)
2) translate the window by mh(x)
3) if mh(x) larger than tolerance return to 1.
4) store point of convergence.

Due to numerical issues the n mean shift procedures may converge to n
different points. However, the convergence points around each of theN

modes can be grouped together using the bandwidth parameter h as a
measure of proximity. This parameter sets the resolution of the density
estimation and therefore the resolution of the mode detection process
as well.

Given a detected mode, the data points which converged to it de-
fine its basin of attraction. Only the N modes have significant basins
of attraction since the outliers in the background are in regions of low
density. It is important to emphasize that a basin of attraction can have
an arbitrary shape since each data point xi was processed separately.
This is the main advantage of the mean shift based clustering technique
over the traditional approaches in which quadratic proximity measures
are used and thus an elliptical shape is imposed for the clusters. See
[15] for a detailed discussion of clustering with the mean shift proce-
dure. The low density boundary regions of a basin of attraction can be
removed by postprocessing.

The two-dimensional data in Fig. 1(a) is used as a simple example. In
Fig. 1(b) the probability distribution underlying the data is shown. Note
that presence of three significant modes, the complex shapes of two
of the three clusters, and the large contamination of the background.
Nevertheless, the mean shift procedure successfully recovers the three
modes, and their basins of attraction are close to the original shape of
the clusters [Fig. 1(c)].

A. Application to Data Fusion

We return now to the general case when each data point is associ-
ated with a different covariance matrix. The mean shift iterations (18)
become

x
(m+1) =

n

i=1

I
 x
(m) � xi W

�1
i

�1

�

n

i=1

I
 x
(m) � xi W

�1
i xi (22)

where m is the iteration index. Taking into account (15) and (20) and
we can recognize at every iteration of (22) an expression similar to (8) is
computed. However, now the computations are restricted to a local re-
gion due to the presence of the indicator function I
 . After the density
gradient was estimated inx, to compute the next location of the window
of analysis, i.e., the mean shift vector, only those xi are taken into con-
sideration whose region of confidence contains x. This is the property
which assures the robustness of the multiple source data fusion.

The basin of attraction of each point of convergence defines the
subset of the data to be used when computing its characteristics, x̂ (8)
and Ĉ (9). To group the points of convergence around a significant
mode their mutual relation is verified. Let x̂a, Ĉa and x̂b, Ĉb be as-
sociated with the points of convergence labeled a and b respectively.
They will be grouped together, iff

(x̂a � x̂b)
>
Ĉ
�1
j (x̂a � x̂b) � �

2

;p j = a; b (23)

i.e., each point of convergence has to be inside the region of confidence
of the other one. At the end of the grouping process, the basins of at-
traction associated with the modes are defined and the final x̂ and Ĉ are
computed. The condition (23) can also be used before the mean shift
procedure to eliminate isolated outliers and thus reduce the amount of
computations.

V. WHY ROBUST DATA FUSION

Clustering based feature space analysis is a common technique to
approach the computer vision problems and has numerous advantages
[15], [16]. The fusion strategy we proposed in this paper actually is a
clustering algorithm. However, our method addresses the drawbacks of
traditional clustering methods, such as the k-means.
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Fig. 1. Example of clustering using the mean shift procedure. (a) Two-dimensional input. (b) Kernel density estimate of the underlying distribution. (c) Basins
of attraction of the three significant modes (marked “+”).

One major drawback of the traditional clustering methods is their
sensitivity to the choice of the number of clusters in the feature space.
This sensitivity is an important limitation in computer vision, where
only rarely is the number of significant feature properties known a
prior. In our robust fusion approach, the number of detected modes au-
tomatically defines the number of information sources, which is equiv-
alent to the number of clusters k. Another problem of the traditional
clustering methods is their sensitivity to the outliers. In the k-means
clustering, adding an outlier located very far away from the clusters
may change the results a lot. To solve this problem, a lot of robust clus-
tering methods were proposed [5], [16]. However, those methods are
still sensitive to the parameters used by the algorithm. For instance, the
efficacy of mean shift [16] involves the specification of a bandwidth
parameter, which is critical to the performance of the algorithm. Our
approach adapts the bandwidth to the local structure of the data distri-
bution. The fusion process exploits the uncertainty of each measure-
ment, and incorporates such uncertainties into the bandwidth determi-
nation. By doing so, we could avoid the bandwidth selection problem,
and achieve much reliable results.

To illustrate the potential of the proposed data fusion method we
discuss a simple example. We return to the data in Fig. 1. Twenty points
were drawn randomly from each of the three clusters (information
sources), and forty points from the outliers. The 100 measurements are
shown in Fig. 2(a) where the true values of the information sources, the
centers of the three clusters, are marked “+.” Each data point was asso-
ciated with a randomly generated region of confidence [Fig. 2(b)]. For
the 60 points chosen from the clusters, the related information source
was inside the region of confidence. The robust data fusion process
accurately extracts the three information sources, and associates small
regions of confidence with them [Fig. 2(c)]. However, the k-means
based clustering is unable to recover the correct information sources,
because it could not deal with outliers in the data. Also for the fixed
bandwidth mean shift, its performance is dependent on the correct
bandwidth selection since it did not account the uncertain information
of each point. On the other hand, our fusion based approach comes up
with satisfactory results. Note that for visualization purposes, we only
deal with low dimensional data in this example. However, much higher
dimensional and more complex data can be handled the same way.
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Fig. 2. Robust fusion of measurements drawn from the data in Fig. 1(a). (a) Selected data points. The information sources are marked “+.” (b) Associated confidence
regions. Note the slightly different scale of the graph. (c) Regions of confidence of the three detected modes (marked “�”). The true values are marked “+.”

VI. APPLICATIONS

Data containing multiple structures is characterized by the presence
of several instances of the same model, each defined with a different set
of parameters. As two computer vision examples, these structures may
be different surfaces in depth measurements, or multiple moving objects
in motion estimation. There have been a lot of studies of dealing with
multiple structures [8], [10], [11]. But these methods are either sensitive
to the outliers [8], [10], or sensitive to the parameters used in the algo-
rithm [11]. For instance, Hough transform is a traditional technique for
multiple structures extraction. But care has to be taken when one quan-
tizes the feature space. When the bins of the feature space is too fine, the
two candidates for the same structure may be in different bins. If the bin
size is not fine enough, on the other hand, two similar structures (like two
parallel lines which are close to each other) will lie in the same bin. To
real applications, however, there is not enough a priori knowledge to re-
liably define the bin size. Furthermore, our research shows that when the
noise level corrupting the data is high, there may not exist suitable bin
size for the Hough Transform [9]. In this paper, we apply robust data fu-
sion technique in the Hough space to detect the multiple structures. Our
fusion process is a clustering based analysis. However, as we discussed
in the previous section, it has superior advantages than traditional clus-
tering methods. We have conducted two real experiments: estimation
of the affine transformation parameters from moving objects, and range
image segmentation. Our results have shown that the fusion based ap-
proach indeed has the desired abilities and great advantages.

A. Multiple Affine Transformations

In this example, a pair of images of three independently moving ob-
jects was considered [Fig. 3(a) and (b)]. The motion of each object

is modeled by an affine transformation between the (unknown) true
coordinates of salient points in correspondence yko = [yk1oyk2o] ,
k = 1; 2,

y21o

y22o
=

a11 a12

a21 a22

y11o

y12o
+

t1

t2
(24)

which can be decoupled into two three-dimensional problems [23].
Here will consider the one in variables (y11; y12; y21) and parameters
a11; a12; t1.

To obtain the data, first a large number of point correspondences
were established and the matches on the static background, identified
by having zero displacement, were removed. The estimation process
used the remaining 282 point correspondences. When this data is
mapped into the space of the variables, the correspondences associ-
ated with the three moving objects yield points near to three planes
[Fig. 3(c)]. Note also the points in the background due to erroneous
matches.

To identify the points belonging to the individual objects we solve the
multiple regression problem with a technique which can be regarded as
a generalization of the Hough transform. One hundred and fifty sam-
ples, each containing around 30 points, were chosen by guided random
sampling with preference toward denser regions in the data. From each
sample the parameters of a plane were robustly estimated. The plane
is parameterized by (x1; x2; x3), the coordinates of its point closest to
the origin. See [13] for a detailed description of all the issues about
sampling and parameter estimation.
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Fig. 3. Robust fusion in a multiple regression problem, detection of three moving objects through estimation of three affine transformations. (a)–(b) Two image
frames with marked salient points. (c) Distribution of point correspondences in the subspace (y ; y ; y ). (d) Parameter space used for data fusion. The three
detected modes are marked “+.” (e) Points associated with the moving objects, as seen in the first frame. Each object is labeled with a different symbol. (f) Points
not associated with any object, as seen in the second frame.

The parameter estimation process also returns the covariance of the
estimates. As the associated confidence regions are difficult to visu-
alize, only the parameter estimates are shown in Fig. 3(d). The robust
fusion technique described in this paper was then used to detect three
modes, marked “+.” The associated confidence ellipsoids are too small
to display. By deriving the number of modes from the data we also de-
termined the number of significant independently moving objects in
the scene. The basins of attraction of the modes delineate the points re-
lated to each of the moving objects. The final delineation of the objects
is based on the joint results of the two estimation processes.

The estimated affine transformation parameters for each object are
presented in Table I. Among the 282 points, we detected 169 object
points and 113 background points. As can be seen in Fig. 3(e), the de-

TABLE I
ESTIMATED TRANSFORMATION PARAMETERS

tected object points are correctly assigned to its related object (marked
by “�,” “�,” and “x,” respectively). Only a few background points are
wrongly taken as object points, which is probably because those back-
ground points happen to satisfy the affine motion constraints. From
Fig. 3(f), it is shown that the detected background points are either on
the background or on the boundaries of objects. Those boundary points
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Fig. 4. Range image segmentation by robust data fusion. (a) Range image from USF database with 26 200 random outliers added. (b) Sampled points in the
second iterative step. (c) Associated confidence regions related to the estimated regression parameters. (d) Segmentation results.

are treated as outliers since they are occluded in the other image. Due
to the outliers and the unavailability of the knowledge about number of
moving objects, traditional clustering methods, such as the k-means, is
unable to segment three moving object correctly.

B. Range Image Segmentation

Range image provides three-dimensional geometric information
about the objects in a scene. Segmentation is to break the image into
some meaningful nonoverlapping homogeneous regions whose union
is the entire image. An often adopted approach is to fit surface models
to range data subsets and then calculate geometric features using the
estimated model parameters [2], [5]. To make the algorithm tolerate
the outliers, some robust estimators were employed in fitting the
surface model [2], [3]. Since the robust estimators only extract one
dominant structure in the data set, it has to be employed multiple times
to iteratively extract all the surfaces from the range image. Research
also shows that under certain circumstances, none of the current robust
estimators could correctly extract the surface model from the data [9].

Here we propose a new segmentation algorithm that takes advan-
tages of the robust data fusion technique. Given a range image, we ran-
domly select n points from that image (n = 1000 in this experiment),

and use the multiple regression method introduced in the previous ex-
ample to extract all the surfaces that are related to the sampled points.
Unlike the robust estimator based methods, our sampling and surface
extraction processes are only run a small number of iterative steps (usu-
ally three or four) to obtain all the surface models. After the surfaces
related to the sampled points are extracted in each iterative step, we
remove all the points in the image that belong to those surfaces. When
all the surfaces are extracted, some isolated outliers may remain. Also
there may exist the problem of virtual intersection. This is because the
true extent of the surface being extracted is not always known, and
points of other surfaces, which are intercepted by the unbounded sur-
face being considered, may be incorrectly assigned to that surface. At
this stage, a post processing procedure, like the connected component
algorithm [4], is made to deal with those problems.

Fig. 4 illustrates a fusion based range image segmentation example.
In order to show the advantages of the proposed method, we add 26 200
random noise points to the range image taken from the USF ABW range
image database (test 22), as shown in Fig. 4(a). The sampling and fu-
sion are employed three times for this image to extract all the planar
primitives. In the first iterative step, the two background planes are es-
timated. In the following iterative steps, all the six planes related to the



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005 585

object in the scene are extracted. Fig. 4(b) shows the sampled data in
the second iterative step. The associated confidence regions related to
the estimated parameters in the multiple regression stage are shown in
Fig. 4(c). The robust fusion is conducted on the parameter space, and
the recovered information sources are related to the surface models.
As we can see in Fig. 4(d), the algorithm extracted all the surfaces cor-
rectly. The accuracy of the surface parameters ensures that the location
and boundary of the planes are aligned with those in the original image
[Fig. 4(a)].

VII. DISCUSSION

Describing the proposed fusion technique from a Bayesian view-
point provides additional insight. To obtain the expression (8) for a
single source, we must assume that the data points are independent,
have conditional normal distributions xi � NI(x̂;Ci), and that no
a priori information is available about x̂. In this case, both the max-
imum a posteriori (MAP) and the maximum likelihood estimates of
x̂ yield (8).

For multiple sources, a Bayesian model is more complicated. We
have to introduce the (unknown) probability of a data point being an
inlier or an outlier. The representation of the sources, x̂, becomes a
discrete random variable taking one of N unknown values, where the
number N also has to be determined. There is no information about the
prior probability of these sources.

The difficulties of such parametric model are avoided in our method
by seeking the modes of the distribution underlying the data with the
nonparametric mean shift procedure. At each iteration of (22) the mean
shift vector provides the update of a MAP estimate computed only from
those points whose region of confidence contains the current estimate.
Any data distribution can be handled, as long as there are enough data
points to support the mean shift procedure.

In the machine learning literature the variable-kernel similarity
(VSM) metric method [25] is close in spirit to what was proposed in
this paper. There, to classify a new measurement, the most probable
class is determined by conditional density estimation. A Gaussian
kernel is centered on each training data point in a neighborhood, and
the probability of the test point belonging to a class is computed with
a kernel density estimator. The kernel parameters are determined by
an optimization procedure. In our method the basin of attraction of
each mode provides a similar way to classify new data, but the kernel
parameters are replaced by the information about the measurement
uncertainty. This could yield a more accurate classification.

Integration of the proposed information fusion method with resam-
pling based machine learning techniques, such as bagging [12], can
yield a new class of robust bootstrap-type learning techniques. In this
case, each data point is obtained from a bootstrap sample, i.e., a boot-
strap estimate, and the aggregation process is now based on the de-
tected modes and their basins of attraction. Since the covariances asso-
ciated with the bootstrap samples provide a measure of confidence in
the sample, our mode delineation automatically takes into account the
relevance of the sample during fusion, with the outlying samples being
discarded. Note that by using the modes, the two traditional learning
strategies, averaging and voting, are combined together. Indeed, the
mode is a local maximum of the a posteriori distribution, while its po-
sition is computed as a weighted average.

VIII. CONCLUSION

A new technique for the robust fusion of information was presented
in the paper. Given the measurements with their uncertainty described
by the covariance matrices, we find the characteristics of an unknown

number of information sources by minimizing the sum of Mahalanobis
distances from the measurements to those sources. Multivariate
Epanechnikov kernels are used to compute the sample point density
estimate of the measurements. Adaptive mean shift is employed to
locate the modes of such multivariate density distribution, which are
related to the information sources. Two computer vision applications,
multiple affine transforms estimation and range image segmentation,
showed the effectiveness of this technique.
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