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Estimation and Color Active Contour Models
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Abstract

One of the most commonly utilized clinical tests performed today is the routine evaluation of peripheral blood smears. In this
paper, we investigate the design, development, and implementation of a robust color GVF active contour model for performing
segmentation using a database of 1, 791 imaged cells. The algorithms developed for this research operate in Luv color space and
introduce a color gradient and L2E robust estimation into the traditional GVF snake. The accuracy of the new model was compared
with the segmentation results utilizing a mean-shift approach, the traditional color GVF snake and several other commonly utilized
segmentation strategies. The unsupervised robust color snake with L2E robust estimation was shown to provide results which were
superior to the other unsupervised approaches and was comparable with supervised segmentation as judged by a panel of human
experts.

Index Terms

Image segmentation, L2E robust estimation, active contours, unsupervised segmentation.

I. INTRODUCTION

A. Clinical Background and System Description
A differential diagnosis is crucial for determining which medications are appropriate and what level of risk is justified. As new

therapy options become available it has become increasingly important to distinguish among subclasses of pathologies [40]. The
subtle visible differences exhibited by some malignancies can give rise to a significant number of false negatives during routine
screening. In such cases the diagnosis can only be rendered after immunophenotyping and/or molecular or cytogenetic studies
have been performed. Unfortunately, these studies occur too late in the diagnostic pathway to impact on the frequency of false
negatives, significantly. Passing specimens through a reliable image-based screening system, however, could potentially reduce
costs and patient morbidity.

Usually, the cells of interest are the white blood cells (WBC) including neutrophils, eosinophils, monocytes and lymphocytes.
The main objective of our studies was to distinguish among different subgroups of lymphocytes. Three major well-defined entities
of leukemia/lymphomas which can sometimes be confused with one another during routine microscopic evaluation are: B-cell
chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL) and follicle center cell lymphoma (FCC) [46], [47]. These
are small lymphoid lymphomas that are known to be associated with bone marrow and/or peripheral blood involvement during
the course of the disease or at the time of the diagnosis [48]. Depending on the clinical presentation, age, sex and peripheral blood
counts of patients, an accurate diagnosis may prove difficult when only a limited amount of specimen is available for ancillary
studies such as flow cytometry, karyotyping, fluorescence in-situ hybridization (FISH), polymerase chain reaction (PCR) or reverse
transcriptase polymerase chain reaction (RT-PCR). The tremendous effort undertaken to subtype these disorders is driven by the
medical community’s desire for identify improved treatment protocols and therapy options [41], [42].

Recent literatures [43], [44], [45] ascribe much of the difficulty in rendering consistent diagnoses to subjective impressions
of observers and show that, when morphological cell classification is based upon computer aided analysis, both objectivity and
reproducibility improve. An image guided decision support (IGDS) system [16], [18] based on the mean-shift clustering algorithm
[17] was recently developed to provide assistance to technicians and physicians when they are confronted with detecting and
discriminating among CLL, MCL, FCC, and benign cells. The IGDS enables individuals to submit query imaged cells from local
or remote computers and robotic microscopes to search engines, which automatically classify the query and retrieve digitized
imaged cells and correlated data (protein/molecular studies) from the "ground-truth" databases which exhibit the most similar
features. The most probable diagnosis is provided based upon the majority logic of the ranked retrievals.

While the performance of the first generation of IGDS prototype showed promising results, it exhibited several limitations:
1) populating the “ground-truth” database was a tedious, time-consuming task. A more automated system would be required
to facilitate data collection; 2) while the mean-shift segmentation algorithm used in the first generation of IGDS system could
accurately segment cells into multiple subregions, this approach, like many other low level image segmentation approaches,
often over-segmented cells; 3) the original image segmentation algorithm used in the first generation of IGDS only addressed
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Fig. 1. The user interface of the image guided decision support (IGDS) system. The left panel is the user interface of the new "ground-truth" image database
system. The right panel shows the user interface of the new image segmentation and indexing system.

the segmentation of the nucleus, although the cytoplasm also contains important information, which can be useful in improving
classification performance.

In an attempt to improve the recognition accuracy and automate cellular segmentation, this paper focuses on developing a
reliable and unsupervised approach which could facilitate accurate unsupervised segmentation of both the cytoplasm and the
nucleus. A screen-shot of the new IGDS system implementing robust color GVF snake is shown in Figure 1.

B. Image Segmentation
Image segmentation is the process of delineating an image into "homogeneous" regions based on the similarity of pixel at-

tributes. Active contour models, or snakes, have gained significant attention and become popular image segmentation methods
after their first introduction by Kass, Witkin and Terzopoulus [1]. Snakes are curves defined within the image’s domain and driven
by the internal forces within the curve and the external forces derived from the image data. There are mainly two general types
of active contour models described in the literature: parametric active contours [1] and geometric active contours [8], [7], [9],
[49]. Parametric active contour models are widely used in many applications, including edge detection [1], object recognition
[4], [5], shape modeling [5], [2] and motion tracking [4], [6], to mention only a few. The image gradients can be used as the
external forces in parametric active contour models. Examples include the traditional snake [10], [11], the balloon snake [12], the
pressure forces model [13] and the gradient vector flow (GVF) model [14], [15]. Geometric active contour models, or geodesic
snakes, were almost simultaneously proposed by Caselles et al. [9] and by Malladi et al. [49] to address the fact that parametric
active contour models can not resolve topological changes. Geodesic snakes are based on the theory of curve evolution and are
numerically implemented using level sets. They can automatically manage topology changes in an image and allow for multiple
simultaneous boundary estimations. However, due to their computational complexity, their speed of convergence is slower than
parametric snakes.

In our applications, the pre-processing steps of IGDS system automatically selects regions of interest (ROI) [16], which [18]
contains the object cell. In each ROI, there are no topological changes because there is only one object of interest in each field. In
addition, since the speed of convergence is an important issue in our application, parametric active contour models were selected in
the development of new IGDS system. The GVF snake often outperforms other gradient-based models because of its insensitivity
to initial positions and larger capture region. However, it is best suited for binary or gray-level images as cited in the literature
review above rather than chromatically stained pathology specimens. Simply transforming color images into gray-level images
without using color gradients, or using color gradients and then directly applying the GVF snake do not provide satisfactory
results. In this paper, we propose a robust color GVF snake model which combines robust estimation and color gradient. The
proposed algorithm was shown to be effective in solving the real world problem of segmenting stained pathology specimens.

The remainder of the paper is organized as follows. Section 2 introduces the requisite background information concerning
active contour models. In Section 3, we introduce the L2E robust estimation and the newly developed robust color GVF snake.
Section 4A provides the experimental results of the L2E robust estimation. Section 4B compares the robust color GVF snake
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with the Fisher linear discriminant approach (FLD), the original GVF snake, the watershed algorithm derived from mathematical
morphology, and the mean-shift clustering algorithm used in the prototype IGDS subsystem. Section 5 provides the conclusion
and future directions.

II. PARAMETRIC ACTIVE CONTOUR MODEL

A traditional snake is parametrically defined as x(s) = (x(s), y(s)), where x(s) and y(s) are x and y coordinates along the
contour and s represents the arc-length with value in [0, 1], to minimize an energy function

Esnake =

Z 1

0

(Eint(x(s)) + Eext(x(s)))ds (1)

where the first term represents the internal energy defined as

Eint(x(s)) = (α |xs(s)|2 + β |xss(s)|2)/2 (2)

where xs(s) is the first derivative of x(s) and xss(s) is the second derivative of x(s) with respect to s. The external energy is
defined as

Eext(x(s)) = −γ
¯̄
∇
©
Gσ(x,y) ∗ f(x, y)

ª¯̄
(3)

where f is the original image, Gσ(x,y) is the two dimensional Gaussian kernel with σ as standard deviation.
The goal of the computation is to find the local minima of Esnake defined in (1). Based on the Euler-Lagrange principle,

equation (1) has a minimum when

αxss(s)− βxssss(s)−∇Eext(x(s)) = 0 (4)

where xss(s) and xssss(s) are the second and fourth derivatives of the curve with respect to the parameter s.
In order to find the solution for (4), the snake is made dynamic by defining x as the function of time t and s

xt(s, t) = αxss(s, t)− βxssss(s, t)−∇Eext(x(s, t)). (5)

The solution to (5) can be achieved by solving the discrete equations iteratively.
To effectively lead the snakes into concave region, Xu and Prince [14] proposed a new external force. According to Helmholtz

theorem [19], rewriting (5) and replacing the −∇Eext(x(s)) with Θ

xt(s, t) = αxss(s, t)− βxssss(s, t) +Θ (6)

where Θ is the gradient vector flow defined as Θ(x, y) = [u(x, y), v(x, y)] that minimizes the energy functional

Ψ =

Z Z
µ(u2x + u2y + v2x + v2y)dxdy

+(
¯̄
∇
©
Gσ(x,y) ∗ f(x, y)

ª¯̄2 ·¯̄
Θ−∇

©
Gσ(x,y) ∗ f(x, y)

ª¯̄2
)dxdy (7)

where ∇
©
Gσ(x,y) ∗ f(x, y)

ª
is the gradient of the input image f(x, y) after Gaussian smoothing with variance σ and mean 0.

Equation (7) is dominated by u2x + u2y + v2x + v2y when
¯̄
∇
©
Gσ(x,y) ∗ f(x, y)

ª¯̄
is small. When

¯̄
∇
©
Gσ(x,y) ∗ f(x, y)

ª¯̄
is large,

the second term dominates the integrand and is minimized whenΘ = ∇
©
Gσ(x,y) ∗ f(x, y)

ª
. This result keeps Θ nearly equal to

the gradient of the edge when the snake is near the object, while enabling the snake to move towards the edges when it is far away
from the object.

III. UNSUPERVISED IMAGE SEGMENTATION USING ROBUST COLOR GVF SNAKE

A. Color Gradient in Luv Color Space
In gray-level images, the gradient is defined as the first derivative of the image luminance. It has a high value in those regions

exhibiting high luminance contrast. However, this strategy is not suitable for color images. Simply transforming color images
into gray-level image by taking the average of three channels and applying the gray-level image gradient operator do not provide
satisfactory results in our applications.

In this paper, we adopt the definition of gradients for color images [22], [23], [24]. In contrast to previous approaches, we define
the color gradient in Luv color space rather than RGB color space because Euclidean metrics and distances are perceptually
uniform in Luv color space, which is not the case in RGB color space [23].
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Let Γ(x, y) : R3 be a color image, based on classical Riemannian geometry results [21], the L2 norm can be written in matrix
form

dΓ2 =

∙
dx
dy

¸T ∙
g11 g12
g21 g22

¸ ∙
dx
dy

¸
(8)

where g11 = [∂Γ∂x ]
2, g12 = g21 =

∂Γ
∂x

∂Γ
∂y , g22 = [

∂Γ
∂y ]

2.
The quadratic form (8) achieves its extrema changing rates in the directions of the eigenvectors of matrix [gi,j ] , i = 1, 2, j = 1, 2

and the changing magnitude is decided by its eigenvalues λ+ and λ−. In our approach, we select
p
λ+ − λ− [23], [50] to define

the color gradient

∇Θ =
p
λ+ − λ− (9)

where

g11 =

⎡⎢⎣
¯̄
∂L
∂x

¯̄2¯̄
∂u
∂x

¯̄2¯̄
∂v
∂x

¯̄2
⎤⎥⎦ g22 =

⎡⎢⎢⎢⎢⎣
¯̄̄
∂L
∂y

¯̄̄2¯̄̄
∂u
∂y

¯̄̄2¯̄̄
∂v
∂y

¯̄̄2
⎤⎥⎥⎥⎥⎦ (10)

g12 = g21 =

⎡⎢⎢⎢⎣
¯̄̄
∂2L
∂x∂y

¯̄̄¯̄̄
∂2u
∂x∂y

¯̄̄¯̄̄
∂2v
∂x∂y

¯̄̄
⎤⎥⎥⎥⎦ (11)

where L, u, v correspond to the three channels in Luv color space.

B. L2E Robust Estimation
In the previous section, we defined the color gradient in Luv color space in order to replace the gray level gradient of the

original GVF snake. Although the capture range of original GVF snake is large, it still may fail to find the edges of the object
when given unsuitable initial positions. For example, to capture the boundary of a circular object the initial snake must include
the center of the circle [34]. Another potential difficulty relates to computational complexity. Given an initial location far away
from the object, the original GVF snake may take a long time to converge to the edges of the object. Other challenges arise from
the diversity and complexity of the images under study. The current "ground-truth" database of the IGDS system contains 1791
imaged cells corresponding to 58 different cases collected from three different institutions (University of Pennsylvania School
of Medicine, University of Medicine and Dentistry of New Jersey, and City of Hope National Medical Center). There were
obvious variations in the staining characteristics of specimens among the institutions which had been introduced by differences
in manufacturers of dyes, automated stainer choices and overall intensity variations. All of these variables led to variations in
shadowing, shading, contrasts and highlighting cues. In addition, many of the specimens also contained artifacts (flattened and
crushed cells; debris) which had unintentionally been introduced during specimen preparation. Because of these challenges, it was
necessary to introduce a robust nucleus and cytoplasm classifier which could reject "outliers" and provide accurate estimations of
initial positions.

One of the common approaches used to resolve this sort of classification problem is the least square (LS) approach. Define the
image classification model as

g = Fw + e (12)

where F is the sample image, a m× 3 matrix with m = w · h as the total pixels in the image, w is the width of the image and h is
the height of the image. Applying orthogonal principles, we obtain the least square solution

w = (FTF)−1FTg. (13)

By choosing g as 1 and -1 to denote the background and the object, respectively, LS provides a least square solution to the
classification problem.

A total least square (TLS) performs better by minimizing the error between both g, bg and F, bF. The weights w are given
by the right singular vector corresponding to the smallest eigenvalue of the singular value decomposition (SVD) of

£
F g

¤
,

which is the stacked data of input image F and output image g. It can be shown [39, p.83] that the solution is

w = − vn+1(1 : n)
vn+1(n+ 1)

(14)
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Fig. 2. The estimation results using least square (LS), total least square (TLS) and L2E for a linear regression problem of a dataset containing outliers.

where vn+1 corresponding to the right singular vector of the smallest singular value.
Because L2 norm is sensitive to outliers, neither LS nor TLS are robust estimators. In order to address the outliers and vari-

abilities of the images, L2E robust estimation and training have been proposed. By merging training and L2E robust estimation
with color GVF snake, the segmentation accuracy improved significantly, while simultaneously saving computation time. In order
to obtain a robust estimation of the initial locations of the nucleus and cytoplasm of cells without being affected by outliers, we
adopt a statistically robust matching criteria based on the minimization of the integral squared error (ISE) also known as L2E
between a Gaussian model of the residual and the true density function of the residual. It was shown in Scott [25], [26], [27] that
minimum distance estimators, including the L2E, are inherently robust without requiring the specification of tuning parameters.

Figure 2 is a linear regression example showing the capacity of L2E robust estimation to reject outliers. One can easily see that
the LS and TLS are perturbed by the outliers on the left upper side of Figure 2, marked with a rectangle, while the L2E based fit
has successfully rejected the outliers.

In (12), the residual e is assumed to be composed of independent, identically distributed random variables, whose distribution
will be modeled by a Gaussian with mean 0 and variance σ. Our goal is to minimize the integrated square error (ISE) or L2E
error measurement given by

ISE (bθ) = Ebθ
Z
[g(e|bθ)− h(e|θ)]2de (15)

where g(·) is the Gaussian function modeling the density of the residual error, bθ and θ are the estimation parameter and the true
parameter respectively, and h is the true unknown density of the residual error term. Ebθ(·) denotes the estimate of the integral.
Considering minimizing an estimate of ISE with respect to θ:

bθ = argminbθ Ebθ
Z
[g(e|bθ)− h(e|θ)]2de

= argminbθ [Ebθ
Z

g2(e|bθ)de− 2Ebθ Z g(e|bθ)h(e|θ)de
+Ebθ

Z
h2(e|θ)de]. (16)

The third term h2(·) is independent of bθ and can be omitted from the minimization. The first term in the expansion is
Ebθ R g2(·)de and can be evaluated in closed form. The second term is −2Ebθ R g(e|bθ)h(e|θ)de with Ebθ [g(·)] being the expecta-
tion of g(·) with respect to bθ. The following Rudemo’s unbiased estimator can be used for the second term [33]

− 2
m

mX
i=1

g(ei|θ) for i = 1, ..,m (17)

where m = w · h denotes the total number of pixels. Thus, the minimization using the L2E criterion for normal density is given
by

bθL2E = arg min
θ=[σ,w]

"
1

2
√
πσ
− 2
m

mX
i=1

exp

Ã
−kg −Fwk

2

2σ2

!#
(18)
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The numerical solution is calculated by applying the gradient descant algorithm to equation (18). For readers who are interested
in robust estimators, we should point out that L2E robust estimation has many useful applications, such as image registration [28],
computer latency and workload prediction [29], applied statistics [32], [33] and data mining [31] .

C. Image Segmentation Approaches
In this subsection, several state of the art approaches, such as Fisher linear discriminant (FLD) classification, watershed image

segmentation and mean-shift robust clustering algorithm are described and the proposed robust color GVF snake is described in
detail. Experiments comparing the performance of these algorithms with the robust color GVF snake follow in the next section.

1) Fisher Linear Discriminant: One of the common approaches in pattern recognition is FLD (Fisher linear discriminant)
[59]. FLD can also be used in image segmentation problem by treating segmentation as classification. If we form a linear
combination of the pixels Pij ∈ F, we obtained a scalar dot product

g = Fw (19)

and a corresponding set of gij ∈ g divided into subsets g1 and g2, which correspond to the objects of interests and background,
respectively. FLD is the algorithm used to maximize the ratio of between-class scatter to within-class scatter. Suppose we
have p as a 3-dimensional vector that belongs to F. For a binary classification problem, where c = {D1,D2}, the result can be
immediately determined forw

w =S−1w (m1−m2) (20)

where

Sw =
2X
i=1

X
p∈Di

(p−mi)(p−mi)
T (21)

wherem = 1
n

P
p∈c p is the total mean vector andmi =

1
ni

P
x∈Di

x is the ith within-class mean vector, ni denotes the number
of pixels in class Di. The result is the same as LS in this special case. For those who are interested in the details, we refer the
readers to [37, p. 243].

2) Watershed: Another popular image segmentation algorithm is the watershed transform [51]. This algorithm is derived from
the field of mathematical morphology. The term watershed refers to a ridge that divides areas drained by different river systems.
A catchment basin is the geographical area draining into a river or reservoir. The gradients of the image are used to compute
watershed transform and therefore the catchment basin boundaries are located on the maximum gradient points.

A good review of different definitions and implementations of the watershed transform can be found in [52]. In our experiments,
we adopted the watershed definition based on topographical distance applied to discrete images. Let F be an original image. The
lower slope LS(p) of F at a pixel p, is defined as the maximal slope linking p to any of its neighbors of lower altitude.

LS(p) = max
q∈NG(p)∪p

F(p)− F(q)
d(p,q)

(22)

where NG(p) is the set of neighbors of pixel p on the grid G, and d(p,q) is the Euclidean distance between two pixels p and q.
The corresponding definition of lower neighbors and topographical distance can be found in [52].

The watershed in the original form often produces an over-segmentation of images. Many small catchment basins are produced
due to the large number of local minima in the input image. Several improved marker-based watershed algorithms [54], [55], [56]
have been proposed to remedy this issue. The basic idea behind the marker-based segmentation is to transform the input image in
such a way that the watershed of the transformed image corresponds to meaningful object boundaries. The technique for filtering
the image is the marker imposition [57] and is based on the morphological reconstruction algorithm [58]. In our experiments,
both the original watershed algorithm using Vincent-Soille algorithm [53] and the marker-based watershed algorithm [57] are
implemented for comparison with the robust color GVF snake.

3) Mean-shift Robust Clustering: Mean-shift algorithm is a general nonparametric technique proposed for clustering of a
complex multi-model feature space [17]. It randomly tessellates the space with search windows and moves the windows until
convergence is achieved at the nearest mode of the underlying probability distribution.

In our implementation, the RGB input vectors are first converted into Luv vectors through a nonlinear transformation to
produce a perceptually uniform Euclidean distances and metrics. A set of m points x1, ...xm called the sample set are then
randomly selected from the data with the radius of a searching sphere Sh(x). The mean-shift procedure is then applied to each
point in the sample set. The mean-shift vector at the point x is defined as [38, p. 534]:

Mh(x) =
1

nx

X
xi∈Sh(x)

xi − x (23)

where nx is the number of data points contained in the searching sphere Sh(x). It can be shown that the vector has the direction
of the gradient density estimate ∇̂f(x)
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Mh(x) =
h2

5

∇̂f(x)bf(x) (24)

where the kernel is defined as

KE(x) =

½
5
2c
−1
3 (1− xTx) if xTx ≤ 1

0 otherwise (25)

where c3 is the volume of the unit sphere in the three-dimensional space. Pointing towards the direction of maximum increase in
the density, recursive computation of the mean-shift vector defines a path leading to the nearest mode of the density. For more
details about mean-shift algorithm, please refer to [17].

4) Robust Color GVF Snake: Now we describe the design and development of the robust color GVF snake. Rewriting equation
(6) and replacing the original GVF vector field Θ with the new color GVF vector field Θ in Luv color space, we have

Esnake = αvss(s)− βvssss(s) +Θ (26)

where Θ is the color gradient vector flow defined as Θ(x, y) = [u(x, y), v(x, y)] that minimizes the energy function defined in
equation (7).

In the robust color GVF snake, ∇ in equation (7) is the Luv color gradient defined in equation (9). The two initial snake
contour locations are obtained from L2E robust estimation and correspond to the boundaries of the nucleus and the cytoplasm
respectively. By applying calculus of variations, it can be shown that minimizing the integral in equation (7) is equal to solve the
following equation

µ∇2u− (u− fx)(f
2
x + f2y ) = 0 (27)

µ∇2v − (v − fy)(f
2
x + f2y ) = 0. (28)

The numerical solution to (27) and (28) can be solved by treating u and v as functions of time and solving

ut(x, y, t) = µ∇2u(x, y, t)−
(u(x, y, t)− fx(x, y))(f

2
x(x, y) + f2y (x, y)) (29)

vt(x, y, t) = µ∇2v(x, y, t)−
(v(x, y, t)− fy(x, y))(f

2
x(x, y) + f2y (x, y)). (30)

In order to set up an iterative solution, let the indices i, j and n correspond to x, y, and t will be derived from the iterative algorithm
for (29) and (30).

The steps associated with the automatic segmentation, indexing and archiving of the IGDS system using robust color GVF
snake are as follows:

1) The pathologist selects an imaged cell from the data set for training.
2) The training image is mapped from RGB color space to Luv color space.
3) L2E robust estimation is first used to separate the imaged specimen into object Yo and background Yb. The parameters are

recorded as wcytoplasm. The object Yo contains the nucleus and cytoplasm of the cells. The cytoplasm of the cells, as a
general rule, surrounds the nucleus, therefore, this step is actually the initial estimation of cytoplasm contour. The cytoplasm
of the cell and the background are roughly separated in the same step. The L2E robust estimation is then applied within
the roughly delineated object region Yo and separated it into cytoplasm C and nucleus N . This step roughly separates the
cytoplasm and nucleus regions to denote the initial guess of the nuclear contour. The parameters are recorded as wnucleus.

4) Both wcytoplasm and wnucleus are applied to process all the cells from a given case and the resulting contours are used as the
initial positions to start the double robust color GVF snakes. Because the initial positions are close to the accurate positions,
they can converge quickly and provide clear, inherently connected and smooth contours.

5) In the current stage of development, the segmentation results are displayed for pathologists to review before actually be-
coming part of the "ground-truth" database. The cell image, the geometrical features of the cells, the mask of nucleus and
cytoplasm, the texture features of the cells and the cytoplasm/nucleus ratios are used to generate a record and indexed into
the database for future query.

IV. EXPERIMENTAL RESULTS

In the experiments, pathologists were asked to confirm the segmentation results for a mixed set of 58 lymphoproliferative cases.
The cell types included a mix set of mantle cell lymphoma (MCL), chronic lymphocytic leukemia (CLL), follicular center cell
lymphoma (FCC)) and normal (BENIGN). The imaged cells were collected from Hospital of the University of Pennsylvania,
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(a)

(b)

(d)

(c)

(a)

(b)

(d)

(c)

Fig. 3. The estimation results of the initial locations of the cytoplasm and nucleus of a Follicular Center Cell Lymphoma (FCC) image. (a) The "ground-truth"
contours delineated by human experts. (b) Estimation results using least square (LS). (c) Estimation results using total least square (TLS). (d) Estimation results
using L2E robust estimation.

Philadelphia, PA, Robert Wood Johnson University Hospital, New Brunswick, NJ, and City of Hope National Medical Center,
Duarte, CA.

The slides were prepared using standard peripheral blood collection techniques wherein a drop of blood is placed on the glass
slide and smeared in a thin film by using an automatic slide maker. The smear is then air-dried and stained with Wright-Giemsa
stain using the usual staining protocol for hematology specimens with mixtures of basic (methylene blue derivatives) and acid dyes
(usually eosin). According to the number of acid and basic groups present, cell components take up the dyes from the mixture
in various proportions. Different cells were stained with different hues depending on their composition (in proteins, amino acids,
enzymes, etc.). However, for a particular cell type the staining quality is generally maintained.

The test platform for the experiments consisted of an Intel-based workstation interfaced with a high-resolution Olympus DP70
camera equipped with 12-bit color depth on each color channel and 1.45 million pixel effective resolution. The system also in-
cludes a single 2/3 inch CCD digital camera, an Olympus AX70 microscope equipped with a Prior 6-way robotic stage, motorized
objective turret and a magnification changer.

A. Experimental Results of L2E Robust Estimation.
In this section, we first present the comparative results of the L2E robust estimation, LS and TLS. In every row of Figure 3,

the first image is the original image and the second is the image with the estimated initial contours imposed on it. The next two
images in the same row are the estimated contours of the nucleus and the cytoplasm. Figure 3a shows the "ground-truth" contours
delineated by human experts. The outer contour is the curve that surrounds the cytoplasm. The inner contour corresponds to
the nuclear region. Figure 3b, c, and d show the initial positions of the contours calculated based on LS, TLS and L2E robust
estimation, respectively.

Evaluated from the preprocessing results, the L2E robust estimation provides the most accurate estimation results when com-
pared with the LS and TLS. To quantify the difference between the true boundaries M and the estimation results S, the segmen-
tation accuracy rates are defined as

ε =
A(S) ∪A(M)−A(S) ∩A(M)

A(M)
∗ 100% (31)

where A(M) and A(S) are the areas that enclosed within M and S. ε is CAR (cytoplasm accuracy rate) or NAR (nucleus
accuracy rate).

Figure 4 illustrates the average error ration of CAR and NAR for LS, TLS and L2E robust estimation. If there are no outliers
in the image, all methods exhibit the same results with about 85% estimation accuracy. As the ratio of outliers increases, L2E
robust estimation provides a stable and low error rate, which is more robust than LS and TLS.

The next set of experiments were performed to determine whether the number of training images impacted the estimation
accuracy rates. Figure 5 shows the relationship between the number of training image and average estimation accuracy rates.
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Fig. 4. The relationship between the estimation accuracy of least square (LS), total least square (TLS), L2E robust estimation and the number of outliers in
the image.
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Fig. 5. The relationship between the estimation accuracy and the number of imaged cells used in the training set.

No significant benefits were observed by increasing the size of the training set. This is probably due to the fact that images
originated from a given case exhibit similar imaging conditions and reflection properties. Based upon the result of the pilot study,
pathologists were asked to choose only a single representative image from each case for training.

B. Segmentation Results of Robust Color GVF Snake
In this section, the experimental results are presented for studies comparing the performance of several state of the art image

segmentation algorithms and the robust color GVF snake. In Figure 6, the performance of the newly proposed robust color GVF
snake is compared with the FLD (Fisher Linear Discriminant), the watershed segmentation algorithms, the mean-shift clustering
algorithm used in the prototype of the IGDS system and the original GVF snake. Figure 6a is a FCC cell image with the nucleus
and the cytoplasm. Figure 6b shows the segmentation results of FLD. The unsupervised segmentation results using mean-shift
algorithm was shown in Figure 6c. Figure 6d shows the results of the original watershed algorithm. Figure 6e shows the results of
the improved marker-based watershed algorithm. The supervised segmentation results of mean-shift after region merging through
human interventions are shown in Figure 6f. The segmentation result of running the original GVF snake in RGB color space after
175 iterations is shown in Figure 6g. The proposed robust color GVF snake operating in Luv color space converges to the objects
in just 20 iterations, as shown in Figure 6h.

The results show that the traditional GVF snake, while quite useful for it original intended purpose, is not effective in segmenting
the hematopathology images without modification. Using the traditional approach may lead the snake converge to locations
exhibiting highest luminance, i.e., the red blood cells which should be classified as background for our purpose. At the same time,
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Fig. 6. The segmentation results of (a) Follicular Center Cell Lymphoma (FCC) applying (b) Fisher Linear Discriminant (FLD). (c) Unsupervised mean-shift
algorithm. (d) Unsupervised traditional watershed algorithm. (e) Unsupervised maker based watershed algorithm. (f) Supervised mean-shift algorithm after region
merging. (g) Original GVF snake. (h) Robust color GVF snake.

this approach requires longer time to converge than other methods. FLD provides unacceptable segmentation results because
the linear discriminant is not suitable for separating non-linear separable datasets. The mean-shift algorithm segmented every
sub-region accurately including even the most pronounced concave region. However, to achieve accurate results as illustrated in
Figure 6f, human intervention is required for manually adjusting parameters and merging the over-segmented regions. The original
watershed algorithm oversegmented the image into a myriad of small regions rendering its impractical usage for the application
at hand. One of the main contributing factors leading to the oversegmentation is the fact that all of the images in our application
exhibit high texture variations throughout both the nucleus and the cytoplasm. Marker based watershed algorithms [54], [55],
[56] have been proposed to resolve oversegmentation problems. In our experiments it did reduce the number of oversegmented
regions significantly but still required region merging to provide useful results. Achieving unsupervised region merging is not
trivial because it is not easy to find a general criterion to decide which regions should be merged and which should not. For
example, two separate small regions, even if they have similar pixel values, may actually belong to a single object or multiple
objects. There is some recent research which focus on the region merging problem [57], [60]. Aside from the difficulty presented
by oversegmentation, the contours delineated by the watershed approach are not as smooth as those produced using robust color
GVF snake. In our experiments, the robust color GVF snake provided the most accurate segmentation results while maintaining
smooth boundaries.

An advantage of using L2E robust estimation is the significant improvement in the speed of convergence. The current system
is running with Java sdk 1.4.3 on a PC with an Intel 2.4G processor and 512-MB RAM. It took 47 seconds to preprocess 100
640×480 images while automatically selecting the region of interest (ROI), each with the dimension of around 180×180. ROI
selection was the first step for every segmentation algorithm used in the experiments. After this step, It took 43 seconds to segment
both the nucleus and cytoplasm of the 100 imaged cells using the robust color GVF snake, compared to 245 seconds using original
GVF snake, 73 seconds with mean-shift algorithm, 98 seconds using marker based watershed algorithm and 28 seconds applying
Fisher linear discriminant (FLD). Although FLD provides the fastest speed, its segmentation results are unacceptable for our
purpose. The robust color GVF snake provided the fastest speed of convergence among these methods while providing accurate
segmentation results.

Figure 7 shows segmentation results using the robust color GVF snake to segment different types of cells. In each row, the first
image is the original image and the second is the initial positions calculated by L2E robust estimation. The next two images in
the same row show iterative intermediate results (after 5 and 10 iterations, respectively) while the last image is the final output
(after 20 iterations). Figure 7a shows a typical FCC (Follicular Center Cell Lymphoma) cell. While each disorder under study
exhibited a spectrum of morphologies, FCC cells tend to exhibit pronounced cleaves in the nucleus and relatively small quantities
of cytoplasm. Figure 7b shows a MCL (Mantle Cell Lymphoma), which has a small cleave in the cell and almost no cytoplasm.
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Fig. 7. The image segmentation results applying robust color GVF snake on four different types of cells: (a) Follicular Center Cell Lymphoma (FCC). (b) Mantle
Cell Lymphoma (MCL). (c) Chronic Lymphocytic Leukemia (CLL). (d) Normal Cells (BENIGN).

Figure 7c shows CLL (Chronic Lymphocytic Leukemia), which is similar to previous MCL example but contains more cytoplasm.
Figure 7d shows a normal cell (BENIGN), which has a relatively larger cytoplasm and regularly shaped nucleus. Figure 8 shows
some results of more difficult cell cases using robust color GVF snake, where (a), (c) are original images and (b), (d) exhibit
corresponding segmentation results. Some images exhibit very weak differences between cytoplasm and background. Some
images have complex texture or even several different color regions in the cytoplasm.

In the next set of experiments, we compared the performance for all 58 cases within the "ground-truth" database - 9 cases of
FCC (total of 315 cell images), 18 cases of MCL (total of 543 images), 15 cases of Benign (total of 536 cell images) and 16 cases
of CLL (total of 397 cell images). The distribution of the cases in the database is listed in Figure 9. We limited the comparative
performance studies to one of the supervised algorithms and unsupervised robust color GVF snake in order to determine how
closely the unsupervised approach compared with the supervised segmentation results. In the experiment, the supervised mean-
shift segmentation results are obtained after post-processing is performed to merge oversegmented subregions within the image.

Table 1 provides the error rates of the segmentation results obtained from the unsupervised robust color GVF snake and the
supervised mean-shift algorithm. The database used for these studies contained around 100 images per case with 2 cases having
only 10 images. For each case, single imaged cell was selected as the training image. The nuclear and the cytoplasm segmentation
accuracy ratios were calculated based on the remaining imaged cells in the same data set. MNAR is the mean-shift nucleus
segmentation accuracy ratio and MCAR denotes the mean-shift cytoplasm segmentation accuracy ratio. Similarly, SNAR and
SCAR, defined in equation (31), are the nucleus and cytoplasm segmentation accuracy ratios using robust color GVF snake,
respectively. The average of these four error measurements for all the cell images in the "ground-truth" database are graphically
shown in Figure 10.
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Fig. 8. Additional image segmentation experimental results applying robust color GVF snake: (a), (c) are the original images. (b), (d) are the corresponding
segmentation results.
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Fig. 9. The data distribution of the "ground-truth" database with 4 cell types, 58 specimen cases and 1791 images.
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Fig. 10. The average segmentation error rates of 4 different cell types, 58 specimen cases and 1791 cell images in the "ground-truth" database using robust color
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Table1: The comparative segmentation results of unsupervised robust color GVF snake and supervised mean-shift algorithm

The nuclear segmentation accuracy ratio based on robust color GVF snake (SNAR).
The cytoplasm segmentation accuracy ratio based on robust color GVF snake (SCAR).
The nuclear segmentation accuracy ratio based on supervised mean-shift algorithm (MNAR).
The cytoplasm segmentation accuracy ratio based on supervised mean-shift algorithm (MCAR).

Cell
Type

Number of 
Cases

Number of 
Images

SNAR SCAR MNAR MCAR

FCC 9 315 91.20 89.57 92.12 87.32

MCL 18 543 90.09 87.92 91.03 89.89

CLL 16 397 93.56 91.83 93.19 90.73

Benign 15 536 97.10 92.94 96.04 94.98

Table1: The comparative segmentation results of unsupervised robust color GVF snake and supervised mean-shift algorithm

The nuclear segmentation accuracy ratio based on robust color GVF snake (SNAR).
The cytoplasm segmentation accuracy ratio based on robust color GVF snake (SCAR).
The nuclear segmentation accuracy ratio based on supervised mean-shift algorithm (MNAR).
The cytoplasm segmentation accuracy ratio based on supervised mean-shift algorithm (MCAR).

Cell
Type

Number of 
Cases

Number of 
Images

SNAR SCAR MNAR MCAR

FCC 9 315 91.20 89.57 92.12 87.32

MCL 18 543 90.09 87.92 91.03 89.89

CLL 16 397 93.56 91.83 93.19 90.73

Benign 15 536 97.10 92.94 96.04 94.98

Cell
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Number of 
Cases

Number of 
Images

SNAR SCAR MNAR MCAR

FCC 9 315 91.20 89.57 92.12 87.32

MCL 18 543 90.09 87.92 91.03 89.89

CLL 16 397 93.56 91.83 93.19 90.73

Benign 15 536 97.10 92.94 96.04 94.98

Cell
Type
Cell
Type

Number of 
Cases
Number of 
Cases

Number of 
Images
Number of 
Images

SNARSNAR SCARSCAR MNARMNAR MCARMCAR

FCCFCC 99 315315 91.2091.20 89.5789.57 92.1292.12 87.3287.32

MCLMCL 1818 543543 90.0990.09 87.9287.92 91.0391.03 89.8989.89

CLLCLL 1616 397397 93.5693.56 91.8391.83 93.1993.19 90.7390.73

BenignBenign 1515 536536 97.1097.10 92.9492.94 96.0496.04 94.9894.98

From these sets of experiments, it was shown that the unsupervised robust color GVF snake provided comparable segmentation
results with those achieved using the supervised mean-shift algorithm which requires considerable human intervention. The unsu-
pervised segmentation results of color GVF snake were deemed satisfactory by a panel of experts while significantly accelerating
the rate of processing and decreasing the workload introduced by supervised approaches.

V. CONCLUSION

The results of the robust color GVF snake were obtained by exploiting prior-knowledge of the specific application. In this
particular microscopy application, there are two regions of interest: the nuclei and the cytoplasm with the cytoplasm of the cells,
as a general rule, surrounding the nucleus. Therefore, the robust color GVF snake, like many other high-level image segmentation
approaches, is tuned to provide a reliable means for segmenting imaged hematopathology specimens. The mean-shift algorithm
and watershed segmentation algorithms, on the other hand, provide a general solution applicable to a wider range of image
segmentation problems since they rely exclusively on pixel attributes. It should be emphasized that throughout our studies, the
pixel-based strategies consistently gave rise to oversegmented images which required considerable human intervention to achieve
desired results. Watershed algorithms do however offer the potential of resolving issues related to touching cells. We are currently
investigating how best to incorporate this desirable feature while avoiding the stated oversegmentation problem. The watersnake
[61] approach belongs to this class of algorithms and by introducing the snake’s smoothing energy into the watershed it is able
to provide watershed based segmentation results exhibiting smooth contours with less oversegmented regions. Another set of
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interesting and effective approaches are active contours without edges [65] or its more general model, the region based snakes
[62], [63], [64]. Region based snakes offer insensitivity to initialization and can be made computationally efficient for practical
use. Combining region based snakes and robust estimation is a potentially promising area for exploration that we plan to pursue
as our experiments move toward the analysis of imaged tissues in which there are few distinct edges.

Although L2E robust estimation is a new powerful tool which has attracted interests throughout the research community in
statistics [30], [32], [31], to our knowledge, it has not been used in conjunction with active contours for image segmentation. By
merging L2E robust estimation with the GVF snake and using an Luv color gradient, we have developed a quick, robust approach
which was shown to produce reliable results for detecting and delineating the boundaries of imaged cells. Since the robust color
GVF snake was able to provide satisfactory performance even when confronted with images exhibiting weak contrast and subtle
edges, we have begun to investigtate the use of parallel, robust color GVF snakes for evaluating tissue microarrays.
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