
ROBUST METHOD IN PHOTOGRAMMETRIC
RECONSTRUCTION OF GEOMETRIC PRIMITIVES IN

SOLID MODELING

By

XIANG YANG

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Mechanical and Aerospace Engineering

Written under the direction of

Peter Meer & Hae Chang Gea

and approved by

New Brunswick, New Jersey

May, 2017

c© 2017

Xiang Yang

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Robust Method in Photogrammetric Reconstruction of Geometric
Primitives in Solid Modeling

by Xiang Yang

Dissertation Directors: Peter Meer & Hae Chang Gea

The 3D point cloud is a widely used data format obtained from scanning a 3D model, either

by using active 3D laser range scanners or passive photogrammetric methods. Since the topo-

logical information in a point cloud is captured on 3D point level, the inverse design cannot

be carried out directly on the data. The point cloud is first segmented into various geometric

primitives, such as planes, spheres and cylinders, then the modification and redesign of solid

model can be more easily achieved.

A robust estimator is required to detect the multiple inlier structures while filtering out the

outliers. In this dissertation, we present a new robust algorithm which processes each structure

independently. The user gives only the number of elemental subsets for random sampling,

which is also required in other robust algorithms. This method provides a general solution

of robust estimation, and no tuning of other parameters are required for particular estimation

tasks. The scales of the structures (tolerance of error) are estimated adaptively and no threshold

is involved in spite of different objective functions. After classifying all the input data, the

segmented structures are sorted by their strengths and the strongest inlier structures come out

at the top. Like any robust estimators, this algorithm also has limitations which are described

in detail.

To illustrate its efficiency and robustness, the algorithm is tested on various synthetic and

ii

real examples in both 2D and 3D. We extend its applications through the entire process of the

structure from motion method, to reconstruct the 3D point cloud from a sequence of 2D images.

We automatically estimate and fit the 3D surfaces from the 3D point samples, without genera-

ting surface normals or mesh model. The designer can interact with the 3D points conveniently

and direct modification of point cloud becomes applicable.

iii

Acknowledgements

I would like to acknowledge with gratitude Professor Peter Meer and Professor Hae Chang Gea

for their mentorship and foresight, who supported me both morally and technically during the

past five years at Rutgers University. Also my special thanks to the lab colleagues and seniors

for their advice and encouragement. Lastly, I thank my wife Lijia Li for all her love and help

since the beginning of my PhD studies.

iv

Dedication

To my darling wife Lijia,

whose ardent love and unending support

for me and our dearest son Felix,

granted me a chance to finish this work.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Figures . ix

1. Introduction . 1

1.1. Inverse Design of Solid Models . 2

1.1.1. 3D Scanning Techniques . 2

1.1.2. Solid Modeling Techniques . 3

1.1.3. Extraction of Geometric Primitives 5

1.1.4. Overview of the RANSAC Algorithm 8

1.2. Challenges of Inverse Solid Modeling . 9

1.2.1. Active vs. Passive Methods in 3D Reconstruction 9

1.2.2. Using of RANSAC in the Robust Estimation 11

1.3. Research Contribution . 13

1.4. Dissertation Outline . 14

2. Background: Photogrammetric Reconstruction of 3D Point Cloud 15

2.1. Extraction and Matching of Image Features 17

2.2. Camera Model . 19

2.3. Epipolar Geometry . 21

2.4. Structure from Motion . 23

2.4.1. Extraction of Cameras . 24

2.4.2. Triangulation of 3D Points and Image Registration 26

vi

2.4.3. Bundle Adjustment . 27

2.4.4. Hierarchical Merging . 28

3. Algorithm: Robust Estimation of Multiple Inlier Structures 29

3.1. Algorithms without the User-Specified Inlier Scale 29

3.2. Robust Regression with Elemental Subsets . 32

3.2.1. Linearized Space of Carriers . 32

3.2.2. Computation of the Mahalanobis Distance 34

3.3. Estimation of Multiple Inlier Structures . 35

3.3.1. Scale Estimation . 35

3.3.2. Mean Shift Based Structure Recovery 39

3.3.3. Strength Based Classification . 40

3.4. Limitations . 41

3.5. Conditions of Robustness . 45

3.6. Review of the Algorithm . 46

4. Robust Method in the Recovery of 2D Structures 48

4.1. Estimation of 2D Geometric Primitives . 48

4.1.1. 2D Line . 48

4.1.2. 2D Ellipse . 51

4.2. Estimation of Projective Geometric Relations from 2D Images 54

4.2.1. Fundamental Matrix . 54

4.2.2. Homography . 57

5. Robust Method in the Reconstruction of 3D Point Cloud with Photogrammetry 62

5.1. Capture of the 2D Image Sequence . 62

5.2. Robust Matching of Image Features . 63

5.2.1. Robust Filtering of Outlier Matches 64

5.3. Track Initialization and Expansion . 66

5.3.1. Bundle Adjustment in Track Expansion 66

vii

5.4. Robust Merge of Tracks . 69

5.4.1. Robust Pairing of Tracks . 69

5.4.2. Bundle Adjustment in Hierarchical Merging 73

5.5. 3D Points Triangulated from Stereo Views . 74

6. Robust Method in the Recovery of 3D Geometric Primitives 76

6.1. Estimation of 3D Geometric Primitives . 76

6.1.1. 3D Plane . 76

6.1.2. 3D Sphere . 79

6.1.3. 3D Cylinder . 81

6.2. Recovery of Parametric Features . 86

7. Conclusion and Future Directions . 88

7.1. Conclusion . 88

7.2. Open Problems . 89

7.2.1. Scale Estimation in DataSet without i.i.d. Noise 89

7.2.2. Problems in the Recovery of 3D Geometric Primitives 90

7.3. Future Work . 94

References . 96

viii

List of Figures

1.1. Active 3D scanning devices. (a) A coordinate-measuring machine (CMM). (b)

A LiDAR device. (c) A hand-held 3D scanner. 2

1.2. Reference features to locate hand-held scanners. (a) References on the back-

ground surface. (b) Adhesive features on the model. 3

1.3. Parametric feature-based modeling in Solidworks [12]. (a) A linear extrusion.

(b) A revole feature. 4

1.4. To rebuild the solid model, the geometric primitives should be first recovered

from the point cloud. 5

1.5. Model scanned by a hand-held 3D scanner. (a) Point cloud obtained. (b) A

close look at the mesh model. 6

1.6. Normal based segmentation of a 3D point cloud acquired in a room with an

open door. 7

1.7. Robust estimation of a line in the presence of outliers. 8

1.8. Inaccurate mesh gives no supportive information for surface extraction. 11

1.9. 2D image feature matching using RANSAC. (a) RANSAC scale = 0.1. (b)

RANSAC scale = 1. 12

2.1. 3D reconstruction in Autodesk ReMake [2]. (a) Four image samples from 24

input images. (b) The reconstructed mesh model. 16

2.2. Optical flow tracking with Lucas-Kanade method [63]. 18

2.3. SIFT feature extraction. (a) Original image. (b) Difference of Gaussians. (c)

Extracted SIFT features. 18

2.4. SIFT feature matching. 19

2.5. Pinhole camera geometry. 20

2.6. Epipolar geometry. 22

ix

2.7. Structure from Motion algorithm pipeline. 24

2.8. Track expansion. 25

3.1. Incorrect homography estimation from RCMSA [73] when the model complex-

ity parameter is not well-tuned. 30

3.2. Estimation of 2D lines in gpbM [69]. (a) Input image. (b) Histogram of peaks

Jq (number of times a peak occurs at ηq fraction). (c) Cumulative distribution

function weighted by its size ηq. 31

3.3. Scale estimation. (a) Input data. (b) Initial set for an iteration. (c) The first

400 points in the sequence d̃[i]M . (d) Histogram of point amounts with segment

size ∆d0 = d̃[5%]M . (e) Histogram of point amounts with segment size ∆d5 =

d̃[10%]M . (f) Expansion criteria applied to increasing sets. 37

3.4. Comparison of segment densities, condition (3.13). (a) k = 0. (b) k = 1. 38

3.5. Structure recovery. (a) Structure recovered after mean shift. (b) Structure sorted

by strengths (sR > sG > sB). 41

3.6. The inlier/outlier interaction. (a) Input data of a circle with radius 50. (b)

Incorrect final result obtained from a correct scale estimate. (c) Input data of

a circle with radius 200. (d) Good final result obtained from a correct scale

estimate. 42

3.7. Limitation of scale estimation. (a) Case 1: a small number of inliers (nin =

200, nout = 400). (b) Case 2: a larger number of inliers (nin = 400, nout =

400). (c) Unstable estimate obtained from case 1. (d) More robust estimate

obtained from case 2. 44

4.1. Synthetic 2D line estimations. (a) Case 1: five lines with 350 outliers. (b)

Case 2: five lines with 500 outliers. (c) Recovered six structures, case 1. (d)

Recovered five structures, case 2. (e) Five strongest structures, case 1. (f) Four

strongest structures, case 2. 49

4.2. 2D lines in real images. (a) Roof: Canny edges, 8310 points. (b) Pole: Canny

edges, 8072 points. (c) Roof: Six strongest inlier structures. (d) Pole: Three

strongest inlier structures and one outlier structure. 51

x

4.3. Synthetic 2D ellipse estimations. (a) Case 1: three ellipses and 350 outliers. (b)

Case 2: three ellipses and 800 outliers. (c) Recovered four structures, case 1.

(d) Recovered first four structures, case 2. (e) Three strongest structures, case

1. (f) Interaction between two ellipses, case 2. 53

4.4. 2D ellipses in real images. (a) Strawberries: Canny edges, 4343 points. (b)

Stadium: Canny edges, 4579 points. (c) Strawberries: Three strongest inlier

structures. (d) Stadium: Four strongest inlier structures (see also text). 54

4.5. Motion segmentation with different objective functions. In the following figu-

res, the input points (white) are shown in the first view, the processed structures

(colored) in the second view. (a) The input points. Fundamental matrix: (b)

Translation only. (c) Translation and rotation. Homography: (d) Translation only. 55

4.6. Fundamental matrix estimation. (a) Image pair from Hopkins 155 dataset with

two inlier and one outlier structures. (b) The books with three inlier and one

outlier structures. (c) The dinabooks from [73] with four inlier and one outlier

structures. 56

4.7. Homography estimation with image pairs from Hopkins 155 dataset [8]. (a)

Three inlier and one outlier structures. (b) Three inlier and one outlier structures. 58

4.8. Homography estimation. (a) Merton College with 536 point pairs. Four inlier

and one outlier structures. (b) Merton College with 1982 point pairs. Five inlier

and one outlier structures. (c) Unionhouse with 619 point pairs. Three inliers

and one outlier structures. (d) Unionhouse with 2084 point pairs. Five inliers

and one outlier structures. 60

5.1. Capture of a 2D image sequence. (a) The three cameras used to capture diffe-

rent videos. (b) Five 2D frames extracted from the video used in the example. . 63

5.2. Extraction of SIFT features in 2D image sequence. 64

5.3. Robust filtering of outlier SIFT matches. 64

5.4. Paired image indices after robust filtering of outlier features. 65

5.5. A track expansion and bundle adjustment. 69

5.6. Ten tracks obtained from 70 image frames. 70

xi

5.7. Point clouds reconstructed in the tracks. (a) Track 4. (b) Track 5. (c) Track 5

(blue) plotted in the 3D coordinate system of Track 4 (red). 71

5.8. Pairing of tracks (see explanation in text). 72

5.9. Merge of Track 4 (red) and Track 5 (blue). (a) A top view. (b) A side view. . . 72

5.10. Track merging with bundle adjustment. 74

5.11. Point cloud obtained after hierarchical merging. (a) A top view. (b) A side view. 74

5.12. More 3D Points obtained from stereo views. (a) One frame in the 2D image

sequence. (b) & (c) 3D point cloud reconstructed from SIFT features. (d)

Colored 3D Points reconstructed from stereo views. 75

6.1. Synthetic plane estimation. (a) A pyramid model with side length a = 1. (b)

Point cloud extracted with 5000 points, σg = 0.01. (c) & (d) Five planes

estimated (viewed from different angles). 77

6.2. Plane detection in point cloud. (a) From Fig.1.8, a total of 5463 points selected.

(b) Three planes recovered. (c) An image from the sequence in Fig.5.11. (d)

A total of 23077 points selected. (e) & (f) Six planes recovered (viewed from

different angles). 78

6.3. Synthetic sphere estimation. (a) Input data. (b) The initial set. (c) First structure

obtained after mean shift. (d) Three structures sorted by strengths (sR > sG >

sB). 79

6.4. Sphere detection in point cloud. (a) An image from the sequence. (b) A total of

10854 points selected. (c) & (d) Two spheres recovered (viewed from different

angles). 80

6.5. Synthetic cylinder estimations. (a) Two synthetic cylinders and 500 outliers.

(b) Two inlier and one outlier structures are recovered. (c) Point cloud with

2000 points. (d) Three cylinders estimated. 83

6.6. 3D cylinder estimations with VisualSFM [96, 42]. (a) Sample real images used

for 3D reconstruction. (b) The 3D cloud of input points. (c) Three inlier and

one outlier structures are recovered. 84

xii

6.7. Detection of a cylindrical pole in 3D point cloud. (a) A sample image por-

traying one cylinder. (b) A total of 7241 points selected. (c) & (d) One cylinder

recovered (viewed from different angles). 85

6.8. Detection of cylindrical objects in 3D point cloud. (a) A sample image contai-

ning two cylinders. (b) A total of 6500 points selected. (c) & (d) Two cylinders

recovered (viewed from different angles). 86

6.9. Recovery of parametric information in cylinders. (a) The augmented cylindri-

cal surface recovered from Fig.6.7. (b) Two cylindrical surfaces recovered from

Fig.6.8. 87

7.1. Heteroscedastic noise in the 3D triangulation. (a) Error is low in the front view.

(b) Stronger error is observed along the depth direction. 90

7.2. Inaccurate segmentations from increased inlier noise with the synthetic point

cloud in Fig.6.1. (a) σg = 0.03. (b) Six planes are detected. (c) σg = 0.05. (d)

Incorrect segmentation of the planes. 91

7.3. Estimation of a 3D ellipse. (a) An ellipse obtained by cutting a paraboloid with

a plane. (b) Inlier points of the 3D ellipse. 92

7.4. An open problem to segment both 3D planes and cylinders. 93

7.5. An open problem to extract surfaces from a large point cloud. 94

7.6. Surface selection tool based on robust estimation algorithm. 95

xiii

1

Chapter 1

Introduction

Computer-aided design (CAD) system is used in many engineering fields to generate, modify

and optimize digital designs. Over the last two decades [7], several software packages of 3D

solid modeling became the most used tools in the mechanical design. With the digital models

built by geometric primitives, the designers present ideas of innovation, illustrate their design

efforts, and create virtual prototypes to validate engineering applications.

As more detailed models are now used for manufacturing, simulation and analysis, more

accurate designs are also required. A digital model is often acquired “inversely” from an ex-

isting physical model [91]. This “reverse engineering” process converts the 3D geometries in

real world into a digital data format which can be processed by computers. Then the obtai-

ned data will be imported into the 3D CAD/CAM (Computer-aided manufacturing) and CAE

(Computer-aided engineering) software for 3D visualization, rapid prototyping and 3D printing

[57].

A typical inverse design process consists of three major steps:

• Data acquisition of the 3D model.

• Segmentation of data into geometric primitives (2D curves and 3D surfaces).

• Redesign of solid model based on parametric features.

In this chapter we begin with a brief introduction of inverse design process for solid models

in Section 1.1. The existing challenges in the current methods are discusses in Section 1.2. In

Section 1.3 we state our research contributions in designing a new robust algorithm to recover

the geometric primitives. The outline of the following chapters in the dissertation are described

in Section 1.4.

2

(a) (b) (c)

Figure 1.1: Active 3D scanning devices. (a) A coordinate-measuring machine (CMM). (b) A
LiDAR device. (c) A hand-held 3D scanner.

1.1 Inverse Design of Solid Models

Several 3D scanning techniques will be succinctly described below. Both terms “3D point

cloud” and “3D reconstruction of the model” will be used when referring to the 3D scanning,

as the former is just the outcome of the latter process.

1.1.1 3D Scanning Techniques

The physical models in real world are three dimensional in general. The measured data is re-

presented by a 3D point cloud with the geometric information captured by the 3D coordinates

of the points. The manual measurement of the coordinates is a complex and error-prone pro-

cess, and it consumes huge amount of time. A self-incompatible measurement can also lead to

an over-constrained design. Since the beginning of the inverse CAD, the engineers have been

searching for automatic techniques to extract the 3D information from a physical model.

Two major approaches of the 3D reconstruction exist to generate 3D point cloud. The

3D scanning [34] actively interferes with the surfaces by using range finding devices, like the

coordinate-measuring machine (CMM) or laser range sensors. A few active scanning devices

are shown in Fig.1.1 1. The passive methods, such as the photogrammetric approach, are based

on multiple view geometry [47] and rebuild the 3D point cloud using a sequence of 2D images

from different views. The photogrammetric approach will be detailed in Chapter 2.

1Fig.1.1b is retrieved from LiDAR, Wikipedia, https://en.wikipedia.org/wiki/Lidar.
Fig.1.1c is retrieved from Go!SCAN 20, http://www.creaform3d.com/.

3

(a) (b)

Figure 1.2: Reference features to locate hand-held scanners. (a) References on the background
surface. (b) Adhesive features on the model.

The active 3D laser scanning techniques are considered as the most accurate and efficient

method to capture the 3D information of an object. These devices emit ultraviolet, or visible,

or infrared light towards the object, and the reflected light is captured and translated into the

coordinates of the 3D points [33]. Compared with the CMM system (Fig.1.1a) which measures

only a single point at a time, the 3D laser scanners can survey a large region of 3D scene

simultaneously.

The long-range 3D laser scanner measures the round-trip time of a pulse of light, such as

the Light Detection And Ranging (LiDAR) technique [33] (Fig.1.1b). The LiDAR method is

widely used in the digital terrain modeling, where a large area of ground surface can be scanned

and reconstructed. The short-range hand-held scanner utilizes the triangulation mechanism to

measure the 3D object from many different angles. Reference features [83] are used to recover

the pose and location of the moving scanner (Fig.1.2) 2, then the 3D data scanned in different

coordinate systems are registered together by the software.

1.1.2 Solid Modeling Techniques

Over the past decade, the development of the Product Lifecycle Management (PLM) changed

the CAD software used in the mechanical design. Today the mechanical 3D CAD software

is dominated by three vendors, Dassault, PTC and UGS [7]. Due to their similar functionally

for 3D solid modeling, such as in CATIA [3], Creo [10] and NX [11], the basic rules of 3D

2Fig.1.2a is retrieved from Z-corp ZScanner 700, https://www.flickr.com/photos/creative tools/.

4

(a) (b)

Figure 1.3: Parametric feature-based modeling in Solidworks [12]. (a) A linear extrusion. (b)
A revole feature.

mechanical design evolves into an industrial standard followed by all the designers.

We now review some solid modeling techniques. This offers insight of the data format that

can be used in the CAD software, into which the 3D point cloud has to be first converted. By

understanding the basic design rules, we can retrieve the geometric and topological information

to redesign a solid model, from the point cloud containing individual 3D points scattered in the

scene.

The design of solid model generally starts with a group of sketch-based features, like the

extrude or revolve shown in Fig.1.3. These features are applied, one at a time, until the model

is complete. The corresponding parameters specify how a feature is created, including the

geometric dimensions and the location of the reference plane. Since a solid model can be

uniquely defined and rebuilt following the same design procedure, many 3D file formats only

keep track of the exact process with the parameters in each step, along with the correct order

to implement them. This modeling technique is called the parametric design approach, also

named as the parametric feature based modeling [65]. In Fig.1.3a the model is created by

sweeping a 2D profile along a linear axis, while in Fig.1.3b the model is produced by revolving

a 2D curve around the central axis.

Many CAD programs support the freeform surface modeling, which is another method used

in mechanical design. There are two basic methods in the freeform surface modeling. The first

one begins with the construction of spline curves [23], from which the 3D surface is swept along

the guide rail, or lofted through. Examples of freeform surfaces can be found from the design

of car bodies, propelling nozzles and turbine blades. In most engineering applications, these

5

Figure 1.4: To rebuild the solid model, the geometric primitives should be first recovered from
the point cloud.

models are relatively simple to construct and thus can be used in the manufacturing process.

The second method directly establishes the surface with manipulation of the vertices or control

points in 3D space, which is mostly used for art design and realistic modeling.

In summary, the feature-based modeling approach provides accurate design constrained

by math equations. The feature-history makes it accessible to capture an engineer’s original

design intent, and the modifications of the model are also convenient. For example, a screw

can be simply featured by a length and a radius, thus by varying these two parameters it can be

fitted into different models. However, as shown in Fig.1.4, the functional changes in the model

cannot be easily achieved directly from the 3D point cloud dataset. To rebuild these parametric

features, the 3D point cloud has to be first simplified with the geometric primitives recovered.

1.1.3 Extraction of Geometric Primitives

In Fig.1.5a 3, a model is scanned by a Z-corp ZScanner 700 (Fig.1.2a), giving the 3D point

cloud and the mesh model (Fig.1.5b) in the STL (STereoLithography) format [1] generated by

Geomagic [5]. In this example, the point cloud consists of 1,896,849 vertices capturing enough

details to visually recognize the shapes and the surfaces, while the geometric features are not

explicitly represented.

Instead of working with 3D point samples, the models simplified by geometric primitives

are preferred by the designers of solid modeling. Some feature recognition systems, like Auto-

matic Feature Recognition (AFR), evaluate the characteristics of a solid model only when the

3Images in Fig.1.5 are retrieved from 3D scanning and printing, http://fab.cba.mit.edu/classes/863.10/people/andy.-
payne/Asst6.html.

6

(a)

(b)

Figure 1.5: Model scanned by a hand-held 3D scanner. (a) Point cloud obtained. (b) A close
look at the mesh model.

geometric features are already available [18]. The high-level geometric or topological proper-

ties, such as the extrusion and the revolving features, are recognizable only if the geometric

primitives are first recovered.

The surface extraction from the 3D point cloud can be done in two ways. In the first type of

methods, the surface normals are recovered from the densely reconstructed point cloud, and a

continuous surface [55] is generated to wrap the model [87] into, say, a triangular-faced mesh.

Then 3D surfaces can be extracted from the mesh. For example, in [56] the geometric primitives

were detected from the 3D range data containing thousands of points with the surface normals

specified.

In Fig.1.5 a total of 632,283 triangles were generated, and a close look at the dense surfaces

on the model is shown in Fig.1.5b. Another example illustrating the surface segmentation based

7

Figure 1.6: Normal based segmentation of a 3D point cloud acquired in a room with an open
door.

on normals is shown in Fig.1.6 4, where the region with a similar normal direction is classified

as a plane.

The STL file [1] used in rapid prototyping and 3D printing, consists of the unit normals

and the vertices of each triangulated planar surface, uniquely defines the solid model. This

file format can be generated from many 3D scanners, and the interpolation problem introduced

by the scattered data is solved by the dense sampling. However, since the evaluation of the

normals requires smoothing over a small area, very dense point samples are required to capture

accurate information of a surface. When millions of points exist in the point cloud, the compu-

tation becomes very expensive. In [20], the traditional least squares solution to find the surface

normals was reformulated into an unconstrained and fast approximation of the problem. The

same accuracy level was obtained, while the procedure was up to 17 times faster.

As explained in [16], the problem in recovering topological information in unstructured 3D

data cannot be fully solved with surface normals. The second type of methods extract geometric

primitives directly from a 3D point cloud, without going through the intermediate process to

reconstruct the mesh model. In [26, 43] the boundary features of 3D models were extracted

from the surface point cloud to rebuild wireframe models. In [49, 102], the surface extraction

was combined with the object detection in the aerial LiDAR data, where the buildings and roofs

were modeled by cuboids and inclined planes.

4Image is retrieved from Large-scale 3D point cloud processing tutorial 2013, http://kos.informatik.uni-
osnabrueck.de/icar2013/.

8

Figure 1.7: Robust estimation of a line in the presence of outliers.

All these surface extraction methods focused on the particular application and ad-hoc pro-

cedures were also applied. A general solution to extract geometric primitives from 3D point

cloud has yet to be discovered.

1.1.4 Overview of the RANSAC Algorithm

All the surface extraction methods introduced in Subsection 1.1.3 involve the use of the RANdom

SAmple Consensus (RANSAC) algorithm, which was developed by Fischler and Bolles in 1981

[39].

RANSAC is the most used robust regression algorithm in the past three decades, and is

implemented in commercial CAD software to detect and fit 3D surfaces [4, 5]. For a particular

surface, the estimation does not require the user to manually select a group of “good” points as

inliers. Instead, RANSAC discards automatically the outliers in the input data once they are far

away from the inlier structure. For example, given the input data in Fig.1.7, only the red points

are chosen as inliers in estimating a line structure, while the blue points are rejected as outliers.

Elemental subsets are the building blocks of the robust regression, and each randomly cho-

sen subset has the minimum number of points required to initialize a structure. For each ele-

mental subset, RANSAC computes the total amount of points within a user-specified threshold

(scale). The elemental subset which covers the most points defines the inlier structure. RAN-

SAC is based on the probabilistic relations to detect an inlier model, thus it can converge to the

correct structure even without trying all possibilities. Similar types of methods also exist, like

PROSAC, MLESAC, Lo-RANSAC, etc. These algorithms use different ways to generate the

9

random sampling and/or probabilistic relations for the elimination of the outliers. In paper [75]

a review of these methods was given.

The use of RANSAC is easy, but requires a very careful adjustment of the scale in each

problem. For the surface extraction from 3D point cloud, the RANSAC user should know how

the specific 3D scanner performs, or if the same error level exists in different surfaces, etc. This

is a major drawback in using RANSAC and more details are in Subsection 1.2.2.

1.2 Challenges of Inverse Solid Modeling

In this section we explain the challenges in the inverse solid modeling process, to which we

will seek a solution in this dissertation.

1.2.1 Active vs. Passive Methods in 3D Reconstruction

By using a 3D laser scanner, the point cloud can be generated automatically. The designer

doesn’t have to worry about the details of the reconstruction process, as everything is handled

by the equipment. The obtained 3D data can be checked in real-time to make sure that all the

necessary information was collected. The investment of the scanning device strongly affects

the degree of accuracy that can be achieved.

Some of the potential drawbacks in the use of active laser scanners are:

• Higher investment for the equipment.

• Requires the physical model and a well-trained surveyor.

• Model size must be compatible with the specific scanning device.

The cost issue should always be considered in the using of 3D laser scanning technology.

Besides the initial investment for the device, it also involves the upgrading of the software and

the training requirements for the system. The cost of a LiDAR device could vary from less than

a few hundreds to a million dollars, depending on the specific requirements on accuracy and

functionality.

The other two conditions establish hardware limitations on the active 3D scanners. A phy-

sical model has to be provided in order to carry out the measurements. If the 3D scanner is

10

located in a lab but not near to the model, this can be inconvenient. The physical model cannot

be too large or too small, since the device may not work for either a tiny mechanical part or a

big machine. Solutions of these problems may not be easily found for 3D laser scanners.

The photogrammetric approach using 2D images avoids these limitations. An example in

[14] showed a massive 3D reconstruction of the major landmarks in the city of Rome. The data

set consists of 150,000 images obtained from internet were matched after 13 hours processing,

and then reconstructed as the 3D point cloud in another 8 hours, on a cluster with 496 compute

cores. This work fully demonstrated the capacity of the passive 3D reconstruction method using

2D images. In Chapter 2 we will explain the algorithm. The processing time can be reduced to

a few minutes when smaller amount of 2D images are used for a single model.

Why the 3D point clouds generated from passive techniques are not widely accepted in

the engineering CAD? At first glance, the reason is simply that the photogrammetric approach

based on 2D images is not yet a mature enough solution for many practical problems. Good

results can be generated in controlled environments, but its performance may drop drastically

in different noise and light conditions. For example, when the image sequence are taken by

handheld cameras, and/or outdoor, the illumination of 2D images can be completely different.

The challenges in the passive 3D reconstruction method using multiple 2D images are:

• Improvement in robustness is required for image feature matching.

• Heavy noise and large area of missing data could exist in the 3D point cloud.

• Textureless and repetitive image area cannot be efficiently reconstructed.

The first problem listed above will be discussed in Subsection 1.2.2, while the other two are

briefly addressed here.

A 3D point cloud does not necessarily capture all the details of the surfaces. The point

samples are corrupted by noise, the model may contain sharp concave shapes, and a large area

of surface is missing due to the scene occlusion. Then, the sharp edges and surface flatness may

not be preserved without considering the missing data. These problems were mentioned in [41],

where they concluded that the 3D point cloud generated from multi-view stereo reconstruction

may not be suitable for inverse CAD.

11

Figure 1.8: Inaccurate mesh gives no supportive information for surface extraction.

On the other hand, overfitting of a surface results in redundant meshes, like in Fig.1.8

generated by Autodesk ReMake [2]. The mesh model doesn’t provide supportive information

to the latter surface extraction process. As we will see in Fig.6.2, the planes can be directly

estimated from the point cloud.

The textureless and/or repetitive surface patterns creates a problem for the matching al-

gorithms. Several alternative solutions are proposed, as in [52, 58], to compute an optimal,

smooth and consistent object over the image region without reliable point correspondences.

These methods preserve the topology of the model during the reconstruction, but many details

are lost due to the smoothing process. As a result, the obtained model may not show edges or

corners. In other methods such as [101], a lot of details on the model were retained from the

dense reconstruction, and can be used in 3D printing.

1.2.2 Using of RANSAC in the Robust Estimation

The robust estimation is involved in the entire process of 3D reconstruction and its performance

greatly affects the overall result. In Subsection 1.1.4, we gave a simple introduction of the

RANSAC algorithm which is widely used in the robust fitting of 3D surfaces (Subsection 1.1.3).

Here we focus on the problems in the use of RANSAC.

When multiple inlier structures exist in the input data, each structure can be corrupted by

noise independently, resulting in different scales. In the 3D reconstruction process, the noise

level of the obtained point cloud depends on many factors, such as the accuracy of the 3D

scanner, or the definition of images used in the photogrammetric method.

12

(a)

(b)

Figure 1.9: 2D image feature matching using RANSAC. (a) RANSAC scale = 0.1. (b) RAN-
SAC scale = 1.

The major drawback of RANSAC is that the user has to assign an empirical scale before the

robust fitting. This scale value identifies the maximal range of the inlier points and is also called

as the tolerance of error. The selection of the scale relies on the experience of the RANSAC

user. Providing a too small value for a scale could filter out many inlier points, while too large

value bring in a lot of outliers. As shown in Fig.1.9, the relation “the smaller the scale, the

better the result”, is not valid in RANSAC. When the scale is 0.1 in Fig.1.9a, four incorrect

matches can be found in the 14 pairs. In Fig.1.9b the scale is increased to 1 and 19 correct pairs

are found out of 20. It is important to select a suitable scale in the RANSAC estimation.

When the user doesn’t know the specifics of the 3D scanning devices, or the noise level of

images used in a photogrammetric method is unknown, an adequate value of the scale is hardly

predictable. The dimensions of the point cloud could be modified during the reconstruction

process, which will also proportionally change the scale of the inlier noise. Since the RANSAC

accepts only a single scale each time, when taking into account the different noise levels, the

estimation has to be done step by step with every tolerance value adjusted separately.

The inlier noise is usually less than 2-3 pixels in real images, and the point cloud scanned

by a 3D scanner has the measurement error within accuracy of 0.1 millimeters. Many times

13

RANSAC is successful and the threshold is not even mentioned. For example, in [56] RANSAC

was combined with the projection based M-estimator [28] to detect 3D geometric primitives,

but the method was tested on datasets with low noise obtained from 3D scanning. If the input

data are scaled and/or cropped before estimation, or the inlier noise varies in a sequence of

images, the RANSAC scale may no longer be valid for a correct result. This problem was

explicitly mentioned in [35], where the plane detection was implemented in the presence of

strong noise.

1.3 Research Contribution

A new robust algorithm to estimate multiple inlier structures from noisy dataset is presented

in this dissertation. It provides a general solution to detect, segment and classify inlier points

in the presence of outliers. The algorithm is applied to both 2D and 3D reconstruction of

geometric primitives of objects. To acquire 3D point clouds, the structure from motion in the

passive photogrammetric methods is used. Once the geometric primitives are extracted, they

can be used to support the modifications of the 3D point cloud in the inverse design.

The contributions in this dissertation are summarized as follows:

• General algorithm of robust estimation.

The new robust algorithm avoids using the user-specified inlier scales (tolerance of error)

before the estimation. Each structure is detected separately and the scale is estimated adaptively

from the input data. Therefore, the method can segment inlier structures with different noise

levels and work robustly without tuning any parameter. The confidence measure is strength

based, and the inlier structures with larger strengths are returned first. The efficiency and ro-

bustness is demonstrated with datasets corrupted by a large amount of outliers.

• Improvement in the Structure from Motion

The structure from motion starts from a 2D image sequence. The new algorithm first finds

the scales between every image pair, where the scale can vary in different pairs. With the robust

feature matching, the image registration process results in more precise 3D points. Reference

points/patterns are not required for the merge, since the 3D point correspondences are reliably

found in the stitching of multiple patches with relatively large distortions.

14

• Robust approach of 3D surface fitting in point cloud

In the current computer-aided design (CAD) systems, before applying any modifications of

the 3D point cloud, the surface normals or 3D mesh has to be generated to convert the point

cloud data into a solid model. These procedures are avoided as we directly extract and fit the

3D surfaces from the point cloud. Instead of the manual selection of points for fitting a single

surface, in the new method multiple surfaces are segmented in one estimation.

1.4 Dissertation Outline

The dissertation has seven chapters about the theoretical progress and practical application in

both 2D and 3D experiments of the algorithm Robust Estimation of Multiple Inlier Structures.

In Chapter 2, we briefly introduce the major steps in the Structure from Motion (SfM)

algorithm to reconstruct a 3D point cloud from a sequence of 2D images. We will give the

background knowledge for the latter chapters.

The detailed robust algorithm for estimating multiple inlier structures is presented in Chap-

ter 3, which is the major contribution in this dissertation. We will illustrate each step of the new

robust estimator, and discuss also the limitations and condition of robustness.

The algorithm will be applied in the estimation of 2D planar structures (Chapter 4). We ex-

tend the applications to the structure from motion algorithm (Chapter 5), and present examples

of the recovery of geometric primitives in 3D point cloud (Chapter 6).

Finally, in Chapter 7 we conclude the dissertation and discuss several open problems.

15

Chapter 2

Background: Photogrammetric Reconstruction of 3D Point Cloud

The increasing demand for 3D content from computer-aided design makes the 3D recon-

struction a popular topic in recent years. It has applications range from the computer graphics

and 3D data visualization, to the 3D printing and virtual reality. The photogrammetric techni-

ques based on a series of 2D images, is one of the most popular method to obtain the 3D

reconstruction from an ordinary camera. Starting from the essential matrix [60] introduced

in 1981, the connection between the image pixels and the 3D spatial points can be establis-

hed through numerous photogrammetric algorithms introduced over the past three decades in

computer vision.

An early method using multiple views was proposed by Tomasi and Kanade [88]. They

used an affine factorization approach to extract 3D information from image sequences, but the

orthographic projection had significant limitations. Given a sequence of images for an object

rotating about a single axis, the system in [40] generated a textured 3D model. Extensions for

more sophisticated projection methods can be reviewed in [21]. All the methods however were

limited by the available computing power and the problem formulations were simplified for

practical use.

Today’s computers are equipped with abundant computing power and the 3D reconstruction

can be solved with advanced imaging devices in a more practical way. The software packages,

such as VisualSFM [95], CMVS [42], Google’s StreetView [6] and Autodesk’s ReMake [2],

can reconstruct good 3D models either for educational or commercial purposes. In Fig.2.1a a

few sample images in the input sequence are shown, and by using 24 images the reconstructed

3D mesh model (Fig.2.1b) is generated with the commercial product Autodesk ReMake.

The photogrammetric reconstruction is a passive method starting from analyzing the 2D

images. It is different from the 3D scanning which actively interferes with the 3D surfaces of

16

(a)

(b)

Figure 2.1: 3D reconstruction in Autodesk ReMake [2]. (a) Four image samples from 24 input
images. (b) The reconstructed mesh model.

the physical parts. Examples of photogrammetric reconstruction can be found in [79, 82], and

illustrated how the missing depth information in 2D images is recovered to obtain the 3D scene.

The consistency among similar images provides a way to extract 3D geometric information. By

retracing the imaging process, the pose and the location of each camera can also be estimated.

Compared with the active approaches introduced in Subsection 1.1.1, the photogrammetric

methods give scalability in the acquisition of input data, regardless of the model sizes which

may vary from a tiny figurine to a huge building. Hundreds and thousands of 2D images can

be processed together to render a 3D scene, with each image containing several megapixels

providing enough details for the accuracy in most engineering applications.

Algorithms are proposed based on the patterns in the 2D images, such as the consistency of

the textures [13]. Others rely on the physical mechanisms involving the reflective properties and

sources of light, trying to retrieve the concealed geometric information from the shading and

contours [17, 27]. These require more complex problem formulations, and in some situations

the optical phenomenon cannot be fully simulated without prior knowledge on the materials or

imaging environment.

Based on the projective relations of the rigid bodies, many different Structure from Motion

17

(SfM) algorithms were proposed [47, 77]. In this dissertation we focus only on the photogram-

metric method using SfM algorithm with the major steps:

• 2D feature extraction and matching

• 3D points triangulation and image registration

• Bundle adjustment and outlier rejection

• Local refinement and hierarchical merging

In the following sections we will briefly introduce these procedures as the background of the

research in latter chapters. Most details can be found in Hartley and Zisserman’s Multiple View

Geometry [47].

2.1 Extraction and Matching of Image Features

All images in the 2D sequence should be first paired by matching pixels, where each pair corre-

sponds to a same 3D point in real world. The SfM algorithm begins with the most challenging

problem of the entire reconstruction pipeline, that to find the corresponding projections of a

3D point in separate 2D images. A typical image feature matching algorithm consists of three

steps:

• Locate the interest points in every 2D image

• Describe each interest point by a descriptor

• Compute the similarity of the descriptors between points in different images

The optical flow is a method to find correspondences across images. An early version was

proposed by Lucas and Kanade [63]. The corner points [45] were selected as the interest points,

and for each point the algorithm detected the changes of a local image region. The point pair

with maximal fit in the consecutive image frames provided the correspondence for the tracking.

In Fig.2.2 the tracking trajectories are shown for two frames using the OpenCV [9] implemen-

tation. More recent work was proposed in [22] which extracted dense correspondences. These

18

Figure 2.2: Optical flow tracking with Lucas-Kanade method [63].

(a) (b) (c)

Figure 2.3: SIFT feature extraction. (a) Original image. (b) Difference of Gaussians. (c)
Extracted SIFT features.

approaches are mostly for 2D image interpolation instead of 3D reconstruction. They work rea-

sonably well on continuous image sequence like video files, but when given a series of separate

pictures, the point correspondences may not be found reliably.

The Scale-Invariant Feature Transform (SIFT) published in 2004 by Lowe [62], is one of the

most successful image feature matching algorithms. SIFT first creates a series of smoothed and

resampled images in an image pyramid to formulate the scale space, where the size variations of

objects are represented by the changes in scales. The interest points are located as the extremas

in the pyramid after applying the difference of Gaussians (DoG) functions. From Fig.2.3a, an

example of DoG (σ1 = 1, σ2 = 3) is computed (Fig.2.3b), where the high-contrast region can

be observed.

For each interest point, the SIFT descriptor consists of 128 components describing the in-

tensity and direction information around a local image region. Fig.2.3c shows the SIFT features

extracted with OpenCV, where the radius of the circle indicates the scale in which the interest

19

Figure 2.4: SIFT feature matching.

point was found. The larger the circle is, the interest point was detected over a broader re-

gion in the image. In the search of the most likely point pair, the major direction of the image

gradient in a local region provides the rotationally invariant alignment of the descriptors. A

pairing example is shown in Fig.2.4. In the first step toward the 3D reconstruction of a point

cloud (Chapter 5), we will start from the SIFT matching in 2D images with OpenCV.

Several other methods to extract and describe image features were also proposed [68],

such as Speeded-Up Robust Features (SURF), Binary Robust Independent Elementary Featu-

res (BRIEF), Features from Accelerated Segment Test (FAST) and Oriented FAST and Rotated

BRIEF (ORB). All their implementations can be found in OpenCV. However, it should be noted

that these methods (including SIFT) need to be adapted to the specific environment, and false

point correspondences always exist due to the error-prone property. Without a robust method

filtering out the majority of the outliers, the raw matches from SIFT cannot be used directly in

the further steps.

2.2 Camera Model

The pinhole camera is a simplified but effective model to describes how a 3D point in real

world is projected to a 2D image pixel. Fig.2.5 1 illustrates the imaging process through a

pinhole camera. A 3D point with homogeneous coordinate X = [X,Y, Z, 1]> is projected into

the image coordinate system with x = [x, y, 1], and the depth (Z value) is absorbed by the

projective mapping (2.1). Note that the image plane is presented in front of the camera center.

1Image retrieved from [47, Fig. 6.1].

20

Figure 2.5: Pinhole camera geometry.

The same focal length f is in both x and y directions, later we will discuss the general case

x =
fX

Z
, y =

fY

Z
. (2.1)

When the 3D object undergoes a rotation R3×3 and/or translation t3×1, its coordinate in 3D is

then computed with a 4× 4 matrix

X′ =

 R3×3 t3×1

0>3 1

X. (2.2)

(2.2) can also be seen as moving the camera in the world coordinate system around a fixed 3D

point. Combine equations (2.1) and (2.2) we obtain a 3 × 4 matrix P for the pinhole camera

model, up to a scale

x = P3×4 X = K [R | t] X =


f 0 0

0 f 0

0 0 1



R11 R12 R13 t1

R21 R22 R23 t2

R31 R32 R33 t3

X. (2.3)

The null vector of P is the camera center C in the world coordinate, and P C = 0.

The first 3 × 3 upper triangular matrix in (2.3) is denoted by the intrinsic matrix K, which

is specified by the particular hardware of the camera. In the general formulation, this matrix

21

contains five degrees of freedom

K =


fx s px

0 fy py

0 0 1

 . (2.4)

where the two focal lengths in the horizontal and vertical directions (fx, fy), principal point

(px, py), and skew s can be independently parameterized. In practice, the two focal lengths are

considered equal with zero skew, and the principal point sits right at the center of the image.

These assumptions are usually valid when using an ordinary digital camera, and the images are

not cropped before processing. For our 3D point cloud reconstruction, all the K matrices will

contain only one parameter, that is the focal length f .

The extrinsic matrix [R | t] records the pose and location of the camera for taking an

image. It contains 12 entries (2.3) with 11 unknowns. The 3 × 3 rotation can be described by

the unitary rotation matrix R with only 3 degrees of freedom. Combined with the other 3 para-

meters related to translation, this 3× 4 matrix has only 6 parameters to be estimated. Different

parameterizations of extrinsic matrix exist, such as by using Euler angles and quaternions [64].

2.3 Epipolar Geometry

Inside a 2D image, the appearance of a 3D scene depends on two factors, the 3D shape of the

object and the camera setup. They uniquely define the environment where the image was ge-

nerated. Given enough images portraying the same 3D scene, the unknown camera parameters

can be retrieved with an inverse approach.

This problem is ill-posed since the inverse estimation of camera requires the coordinates

of the 3D points, while the Euclidean coordinates cannot be computed without knowing the

calibrated cameras. To tackle this chicken and egg problem, a reasonable condition assumed in

most SfM algorithms is that the image sequence portrays rigid objects. Then, the 3D points are

constrained by geometric relations, which enforces constraints on the cameras and encapsulates

the pose and location information.

The epipolar geometry depends only on the camera intrinsic parameters and relative pose,

22

Figure 2.6: Epipolar geometry.

as shown in Fig.2.6. The two camera centers are denoted by points C1 and C2 and a 3D spatial

point X is projected into the two image planes on point x1 and x2. By connecting these two

camera centers (the baseline), the epipoles are found as the intersection of the baseline with the

corresponding image plane, denoted e1 and e2. The 3D point X and two camera centers define

the epipolar plane.

When the 3D point X moves along the ray
−−−→
C1X to the point X′, the image projection x1

remains the same, while x2 shifts to a new pixel x′2. The point x′2 always stays on the epipolar

line l2, where l2 lies on the epipolar plane and passes through the epipole e2. Then the match

for point correspondences between two views becomes a 1D search problem along the epipolar

line.

We will follow the formulation in [98]. Let P1 and P2 denote the two camera matrices,

thus x1 = P1X, x2 = P2X. The 3D point X can be solved from the one-parameter family of

solutions of P1X = x1 as

X(λ) = P+
1 x1 + λC1. (2.5)

where P+
1 is the pseudo-inverse of P1, and λ indicates that the 3D point X can shift along the

direction
−−−→
C1X. The two particular points on this ray X(λ), namely P+

1 x1 (when λ = 0) and

C1 (when λ =∞), will be observed by camera P2 and both of them are located on the epipolar

line l2.

23

The epipolar line l2 can be computed from

l2 = (P2 C1)× (P2 P+
1 x1) = [e2]×P2 P+

1 x1. (2.6)

Since the point correspondence x2 is also on l2, thus x>2 l2 = 0 and finally we obtain

x>2 F x1 = 0, F = [e2]×P2 P+
1 . (2.7)

The 3 × 3 matrix F is called the fundamental matrix, which is rank two with 7 degrees of

freedom. x1 and x2 are the homogeneous coordinates of the paired image points. More detailed

properties of F can be found in [47, Chapter 9].

The correct point correspondences between two views satisfy the above relation (2.7) and

gives a unique fundamental matrix F. However, the camera matrices P1 and P2 extracted from

F are not unique since the relations are projective. Besides the robust 2D feature matching, the

SfM algorithm also has to establish the calibration of the cameras. In Section 5.3 we will have

several experiments on this topic.

2.4 Structure from Motion

The Structure from Motion algorithm uses a series of 2D images taken from different angles or

distances as the input. The output is the camera parameters of each frame and the reconstructed

3D points viewed by the corresponding cameras. Fig.2.7 shows the basic processing pipeline

of the SfM algorithms, also called as the incremental SfM. We first explain the major steps

followed by the detailed subsections.

The process begins with a selected image pair. By auto-calibration the focal length f of the

first two cameras is computed and through triangulation we obtain a group of 3D points visible

in both cameras. This is a vital step since several key parameters are estimated, and a poor

initialization could eventually lead to a bad reconstruction result. No perfect solution exists to

evaluate the overall performance by selecting a particular pair, but the robustness can still be

achieved from some ad-hoc techniques. For example, one can start from two images with the

most 2D feature matches, or find the pair overlapping with the most other images.

24

Figure 2.7: Structure from Motion algorithm pipeline.

After the initialization, the SfM algorithm undergoes a looping process where each iteration

tries to register a new image in the track. Bundle adjustment is applied locally once some new

3D points are triangulated, see Subsection 2.4.3. A track represents both the cameras and 3D

points collected in the reconstruction process sharing an overlapped 3D region (Fig.2.8) 2. If

no additional image can be added, the expansion of current track stopped. Then a new pair of

images is choosen and a new track begins again.

After all the images were processed, an overall bundle adjustment is performed to merge

different tracks hierarchically in the final step.

2.4.1 Extraction of Cameras

Once the two-view pair is initialized, a fundamental matrix F is computed based on the feature

matches. The computation details are explained in Subsection 4.2.1. For each fundamental

matrix F, there exist infinite possible combinations of camera matrices P1 and P2 satisfying

the relation (2.7)

P1 = [I | 0] P2 = [[e2]×F + e2v
>|λe2] (2.8)

2Structure from Motion (SfM), Theia Vision Library, image retrieved from http://www.theia-sfm.org/sfm.html.

25

Figure 2.8: Track expansion.

where I is a 3× 3 identity matrix, v is any 3-component vector, and λ is a non-zero scalar. The

proof of this ambiguity can be found in [47, Chapter 9.5].

To resolve this projective ambiguity, the camera has to be first calibrated. Only the focal

length f in (2.3) is unknown and the process will estimate it for the intrinsic matrix K of the

camera. The f depends on the quality of the lens and the camera settings, and once obtained,

it transforms the fundamental matrix into essential matrix E [60] from where a unique camera

pair can be extracted.

The accuracy of f directly affects the metric precision in the final reconstruction. In general

the camera used to take images is unknown to the SfM algorithm and is calibrated “automati-

cally” based on the input images. The estimated focal length should be bounded in a reasonable

range to avoid spurious values.

Several auto-calibration algorithms exist, as listed in [47, Chapter 19]. We focus on the

method using the Kruppa equation [38], which reveals additional constraints on the fundamen-

tal matrix F of an image pair. The proof can be read in [93], here we directly go into the result

as in [47, Chapter 19.4].

When the sequence of images is taken by the same camera (f is fixed), the problem is

simplified. Let F = U diag(σ1, σ2, 0)V> by SVD decomposition, ui and vi stand for the

26

columns in U and V.

u>2 KK>u2

σ21v
>
1 KK>v1

= − u>1 KK>u2

σ1σ2v>1 KK>v2

=
u>1 KK>u1

σ22v
>
2 KK>v2

. (2.9)

If only focal length f remains unknown, KK> is then a diagonal matrix diag(f2, f2, 1). Each of

the above relations (2.9) gives a quadratic equation in the unknown f2. The Kruppa equation

requires a large enough rotation between an image pair to be well constrained. Additional

ambiguities were described in [84].

Once K is obtained, the essential matrix can be computed from

E = K>FK. (2.10)

Generally, four pairs of camera matrices P1 and P2 can be extracted from the essential matrix

E. Let the first camera P1 = [I | 0], and E = U diag(1, 1, 0)V> by SVD decomposition,

note that U and V are no longer the same as in (2.9) but computed from E

P2 = [UWV>|+ u3] or [UW>V>|+ u3]

or [UWV>| − u3] or [UW>V>| − u3]

(2.11)

where W =


0 −1 0

1 0 0

0 0 1

 .
The mathematical derivations can be found in [47, Chapter 9.6]. Only one solution of the four

can reconstruct all of the 3D points in front of both P1 and P2, and the correct P2 can be

verified by checking the cheirality [72] [47, Chapter 21].

2.4.2 Triangulation of 3D Points and Image Registration

Given two camera matrices P1 and P2, where the same 3D point X is observed at x1 and

x2. Then the 3D coordinates of X can be computed from the linear triangulation method. The

relations x1 = P1X and x2 = P2X are transformed by direct linear transform (DLT) into a

form AX = 0.

27

Let Pj>
i stand for the j-th row of camera Pi, the scalar xi and yi are the horizontal and

vertical pixel coordinates in xi, A4×4 can be derived from xi × (PiX) = 0 as

A =



x1P
3>
1 −P1>

1

y1P
3>
1 −P2>

1

x2P
3>
2 −P1>

2

y2P
3>
2 −P2>

2


(2.12)

and the 3D homogeneous coordinate Xh = [Xh, Yh, Zh,Wh] is computed as the null vector

of A. By dividing with the last term Wh, the true position is found as X = Xh/Wh =

[X,Y, Z, 1].

Each time when a group of new 3D points are triangulated, potentially other images taken

from the similar angle or/and position can be registered since the same 3D points should exist

in the overlapped region. A corresponding camera matrix P will be estimated inversely from

the relation xi = PXi. The relation xi × (PXi) = 0 now is separated into the entries in

camera matrix to form another A2×12 for each xi ↔ Xi correspondence

Ai vec P =

 0> −X>i yiX
>
i

X>i 0> −xiX>i




P1

P2

P3

 = 0. (2.13)

If at least six xi ↔ Xi correspondences are provided, the 12 entries of P are solved from the

null vector. It is further decomposed into the form of (2.3), where the constraints on rotation

matrix are applied.

2.4.3 Bundle Adjustment

All results from the 3D triangulation and image registration are computed from DLT method,

which provides a total least squares (TLS) solution. Due to the noise and incorrect point corre-

spondences, the 3D point Xi, i = 1, ..., n may not be projected exactly by the Pj , j = 1, ...,m

camera into the image point xij . The relation xij = PjXi should be further improved. As

28

more cameras are registered and more points triangulated, the error accumulates and eventu-

ally will lead to an incorrectly reconstructed geometry. The bundle adjustment [89] reduces

the reprojection error in each iteration, which will significantly improve the track accuracy and

register more images into the track.

The bundle adjustment is a sparse damped least-squares (DLS) method, which is also

known as the Levenberg-Marquardt algorithm (LMA). It interpolates between the Gauss-Newton

and gradient descent methods with a damping factor. With the objective function

minimize
Pj ,Xi

m∑
j=1

n∑
i=1

‖PjXi − xij‖ (2.14)

only the visible 3D points in each camera are considered in the error measurement. The camera

parameters over all m views and a total of n 3D points will be optimized. If the camera is

parameterized by 11 unknowns up to scale, the above process involves 11m+ 3n variables.

The detailed procedures of bundle adjustment are listed in [47, Appendix 6], and a compre-

hensive description of bundle adjustment can be found in [89]. Large problems are implemen-

ted with multithreading to save processing time [97]. Several improvements were introduced in

[37] which achieved better convergence behavior. The implementation details in our research

will be explained in Chapter 5.

2.4.4 Hierarchical Merging

Multiple tracks result from the reconstruction process when the images cannot be continuously

paired. For example, the gaps existed in the sequence can prevent image registrations. Since

the bundle adjustment may not fully eliminate the drift errors, a track expansion will stop once

the error accumulates beyond a certain threshold. A very long track is also not preferred if it

captures only little changes of camera poses.

An overall bundle adjustment is to be done for the hierarchical merging process, even

though each track has already been locally optimized. The different coordinate systems of

the tracks have to be fused together based on 3D point correspondences. The merged model is

initialized following the concept of divide and conquer, with its errors distributed more evenly

inside each track. In Section 5.4 we will address this topic with experiments.

29

Chapter 3

Algorithm: Robust Estimation of Multiple Inlier Structures

In this chapter we present the new robust algorithm [99] to detect, estimate and segment inlier

structures from the noisy input dataset. The new method processes each structure indepen-

dently. The scales of the structures are estimated adaptively and no threshold is involved in

spite of different objective functions. The user has to specify only the number of elemental

subsets for random sampling. After classifying all the input data, the segmented structures are

sorted by their strengths and the strongest inlier structures come out at the top. Like any robust

estimators, this algorithm also has limitations which will be described in detail.

The robust estimation algorithm of multiple inlier structures is the main contribution in this

dissertation. It will be applied in the estimation of 2D planar structures (Chapter 4), robust ma-

tching of SIFT features (Section 5.2), hierarchical merging of multiple tracks (Section 5.4), and

recovery of geometric primitives in 3D point cloud (Chapter 6). No tuning of any parameters

is involved for different tasks, which is a clear advance compared with other robust methods.

3.1 Algorithms without the User-Specified Inlier Scale

In Subsection 1.2.2 we explicitly explained the drawbacks in RANSAC [39] and its other va-

riations. A scale externally specified by the user brings in the major disadvantage of using

RANSAC, that the scale (tolerance of errorr) has to be tuned for particular problems. For more

general applications, new algorithms were also proposed to avoid specifying an inlier scale

before the estimation.

In [94], several techniques were described which did not require a scale value from the user.

The proposed method derived the scale based on the k-th ordered absolute residual, where k

was 10% of the size of the input data. Similar as in [86], p+ 2 points were randomly selected,

where p was the size of the elemental subset. The k-th order statistics was iteratively improved

30

Figure 3.1: Incorrect homography estimation from RCMSA [73] when the model complexity
parameter is not well-tuned.

to get the final estimate. The significance of taking two additional points in a sample was not

justified and the parameter k varied largely in the experiments. The number of inlier structures

was given before the estimation, in order to get comparable results with the sparse subspace

clustering method [36].

Energy-based minimization approach can also be used in robust estimation, as it optimi-

zes the quality of the entire solution in the Propose Expand and Re-estimate Labels (PEARL)

algorithm [51]. The method started with RANSAC, then followed with alternative steps of ex-

pansion (inlier classification) and re-estimation to minimize the energy of the errors. PEARL

converged to a local optimum, generally with a small number of inlier structures. A synthetic

example in Figure 11 of [51] showed that PEARL can handle the estimation of multiple 2D

lines with different Gaussian noises, but it was not tried for real images. The amount of outliers

was relatively small in all the experiments.

The Random Cluster Model SAmpler (RCMSA) in [73] was similar to [51], but simulated

annealing was used to minimize the overall energy function. Small clusters were discarded

based on a function of the average fitting error. In the comparison of different algorithms,

RCMSA performed better than PEARL. However, their scalar segmentation error may not fully

justify the correctness of the conclusion. The data containing a larger number of inliers can

tolerate more outliers for the same segmentation error. The model complexity was used as one

of the parameters and had to be changed according to the specific estimation problem. It was

100 for the fundamental matrix and 10 for homography. Applying the values vice-versa, the

estimator will no longer work all the time (Fig.3.1). This kind of adjustment cannot be done

without prior knowledge.

31

(a) (b) (c)

Figure 3.2: Estimation of 2D lines in gpbM [69]. (a) Input image. (b) Histogram of peaks Jq
(number of times a peak occurs at ηq fraction). (c) Cumulative distribution function weighted
by its size ηq.

Most of the methods introduced above either used automatically a 2-3 pixels scale assump-

tion for RANSAC, or tried to avoid the scale threshold but introduced additional parameter(s)

for a particular task. If no empirical values of the parameters are known before the estimation,

many experiments are required in order to tune them correctly. In general, there is no syste-

matic way to predict the values of these parameters. The scale estimate problem can be solved

only if for each structure separately, the inlier scale is estimated adaptively from the input data.

The generalized projection-based M-estimator (gpbM) [69] solved the robust estimation

problem for each iteration in three independent steps: scale estimation, mean shift based reco-

very of the structure and inlier/outlier dichotomy. The only parameter to be specified by the

user was the number of trials for random sampling, which is required in any robust estimator

using elemental subsets. In the first step, the scale was estimated with all remaining data invol-

ved, by locating the highest value of the cumulative distribution function weighted by its size.

This implementation made a structure containing more points easier to be detected first. The

weights were critical to obtain the correct scale estimate, as Fig.3.2 1 shows. The correct mode

in Fig.3.2c (ηq = 0.35) cannot be identified from the other one (ηq = 0.15) without applying

the weights. This strategy may not work all the time due to the interaction between inliers and

outliers.

In the following sections, we propose a new robust estimator for multiple inlier structures

which also uses three independent steps: scale estimation, structure recovery, strength based

1Image retrieved from [69, Figure 3].

32

structure classification, but each step has a completely different implementation from that in

gpbM. The major innovations of the algorithm are summarized below.

• The scale estimation is carried out on a small set consisting of points in a single structure.

• The simplest mean shift algorithm is used.

• All the input data are classified into different structures first, without using any threshold.

• Structures are characterized by their strength (average density) and in general an inlier

structure has a stronger strength.

• The limitations of the new robust estimator are discussed in detail.

3.2 Robust Regression with Elemental Subsets

In the following subsections we will first explain how a structure is initialized from an elemental

subset (Subsection 3.2.1), and then define the error measurement from an input point to a

structure (Subsection 3.2.2).

3.2.1 Linearized Space of Carriers

The objective functions in estimation problems can be either linear or nonlinear. For example,

the plane estimation in 3D surface fitting is a linear problem, while the detection of cylinders

or spheres, and the computation of fundamental matrix F between two images, are examples

of nonlinear estimations.

The nonlinear objective functions in most estimation problems can be transformed into

linear relations in higher dimensions. These linear relations, containing terms formed by the

input measurements and their pairwise products, are called carriers. Each relation gives a

carrier vector. For linear objective functions, such as plane fitting, the input variables and the

carrier vector are identical.

In the estimation of fundamental matrix, the input data y are the point correspondences

from two images [x y x′ y′]> ∈ R4, with l = 4 dimensions. The objective function with

noisy image coordinates is

[x′ y′ 1] F [x y 1]> ' 0 (3.1)

33

which gives a carrier vector x ∈ R8 containing m = 8 carriers

x =
[
x y x′ y′ xx′ xy′ yx′ yy′

]>
. (3.2)

The linearized function of the carriers is

x>i θ − α ' 0 i = 1, . . . , nin (3.3)

where nin denotes the number of inliers. Vector θ ∈ R8 and scalar intercept α derived from

the 3 × 3 matrix F are to be estimated. The constraint θ>θ = 1 eliminates the multiplicative

ambiguity in (3.3).

In the general case, multiple linear equations can be derived from a single input yi

x
[c]>
i θ − α ' 0 c = 1, . . . , ζ i = 1, . . . , nin (3.4)

corresponding to ζ different carrier vectors x[c]. For example, the estimation of homography

(Subsection 4.2.2) has ζ = 2 carrier vectors derived from x and y image coordinates.

The Jacobian matrix is required for the first order approximation of the covariance of carrier

vector. From each carrier vector x[c], an m× l Jacobian matrix Jx[c]|y is derived. Each column

of the Jacobian matrix contains the derivatives of the m carriers in x[c] with respect to one

measurement from y. The Jacobian matrices derived from linear objective functions are not

input dependent, while those derived from nonlinear objective functions rely on the specific

input point. The carrier vectors are heteroscedastic for nonlinear objective functions. For

example, the transpose of the 8× 4 Jacobian matrix of the fundamental matrix

J>xi|yi =



1 0 0 0 x′i y
′
i 0 0

0 1 0 0 0 0 x′i y
′
i

0 0 1 0 xi 0 yi 0

0 0 0 1 0 xi 0 yi


(3.5)

depends on yi.

The l×l covariance matrix of the measurements σ2Cy with det Cy = 1, has to be provided

34

before estimation. This is a chicken and egg problem, since the input points have not yet been

classified into inliers and outliers. A reasonable assumption is to set Cy as the identity matrix

Iy, if no additional information is given. The input data are considered as independent and

identically distributed, and contain homoscedastic measurements with the same covariance.

The covariance of the carrier vector σ2C[c]
i is computed from

σ2C
[c]
i = σ2J

x
[c]
i |yi

Cy J>
x
[c]
i |yi

(3.6)

where the dimensions of C
[c]
i is m × m. The scale σ of the structure is unknown and to be

estimated.

3.2.2 Computation of the Mahalanobis Distance

In the general case, an elemental subset needs me = dmζ e input points to uniquely define θ and

α in the linear space. For example, three non-collinear points define a plane (m = 3, ζ = 1).

The homography (m = 8, ζ = 2) requires four point pairs, and eight pairs are necessary

for the fundamental matrix (m = 8, ζ = 1) if the 8-point algorithm is used. The projective

transformation (m = 15, ζ = 3) in 3D has 15 degrees of freedom, while it can be solved with

only five point correspondences.

When using elemental subset to initialize a structure, the m points inside should be first

normalized [47, Section 4.4], and give correspondingly m equations in the linear space. Then

the linear system can be solved up to a scale factor, and mapped back onto the original space.

For each θ initialized from an elemental subset, every carrier vector is projected to a scalar

value z[c]i = x
[c]>
i θ, c = 1, . . . , ζ. The average projection of the m vectors from an elemental

subset is α. The variance of z[c]i is σ2H [c]
i = σ2θ>C

[c]
i θ.

The Mahalanobis distance, scaled by an unknown σ, indicating how far is a projection z[c]i

from α, is computed from

d
[c]
i =

√(
x
[c]>
i θ − α

)> (
H

[c]
i

)−1 (
x
[c]>
i θ − α

)
=
|x[c]>
i θ − α|√
θ>C

[c]
i θ

c = 1, . . . , ζ. (3.7)

35

Each input point yi gives a ζ-dimensional Mahalanobis distance vector

di =
[
d
[1]
i . . . d

[ζ]
i

]>
i = 1, . . . , n. (3.8)

The worst-case scenario is taken to retain the largest Mahalanobis distance d[c̃i]i from all the ζ

values

c̃i = arg max
c=1,...,ζ

d
[c]
i . (3.9)

For different θ-s, the same input point may have its largest distance computed from different

carriers. When the structure to be estimated has a linear objective function, the Mahalanobis

distance and Euclidean distance are equivalent since the Jacobian matrix does not depend on

the specific input point, and Hi = 1 for all the points.

The symbols related to the largest Mahalanobis distance are: d̃i, the largest Mahalanobis

distance for input yi; x̃i, the corresponding m×1 carrier vector; z̃i, the scalar projection of x̃i;

C̃i, the m×m covariance matrix of x̃i; H̃i, the variance of z̃i; σ̂, the scale multiplying C̃i and

H̃i, which has to be estimated.

3.3 Estimation of Multiple Inlier Structures

The new algorithm is detailed in this section. The scale σ̂ for a structure is estimated in Sub-

section 3.3.1 by an expansion criteria. The estimated scale is used in the mean shift to re-

estimate the structure in Subsection 3.3.2. The iterative process continues until not enough

input points remain for a further estimation. In Subsection 3.3.3, all the estimated structures

are ordered by strengths with the strongest inlier structures returned first.

3.3.1 Scale Estimation

Assume that n input points remain in the current iteration. The estimation process starts with

M randomly generated elemental subsets, each giving a θ and an α.

For every point yi, compute the largest Mahalanobis distance d̃i

d̃i =
|x̃>i θ − α|√

θ>C̃iθ

≥ 0 i = 1, . . . , n. (3.10)

36

Sort the n-distances in ascending order, denoted d̃[i]. In total j = 1, . . . ,M sorted sequences

d̃[i,j] are found from all the trials.

Let nε � n represent a small amount of points

nε =
ε n

100
0 < ε� 100 (3.11)

where ε defines the size of nε in percentage of the input amount.

Among allM trials, find the sequence that gives the minimum sum of Mahalanobis distances

from the first nε points

min
M

nε∑
i=1

d̃[i,j]. (3.12)

This sequence is denoted as d̃[i]M and contains n points in total. The first ñε points are collected

as the initial set.

If inlier structures still exist and M is sufficiently large, these ñε points have a high pro-

bability to be selected from a single inlier structure, since it is more dense than the outliers.

Neither information on the number of structures, nor the inlier amounts for each structure is

known beforehand to establish ñε deterministically.

Two rules should be considered for the ratio ε%. First, ñε should be smaller than the size

of any inlier structure to be estimated. Therefore, a small ratio is preferred to detect potential

structures. In the following sections, all our experiments start with ε% = 5%. The second

rule is to have the size of ñε at least five times the number of points in the elemental subset, as

suggested in [47, page 182]. This condition reduces unstable results when relatively few input

points are provided.

To recover the scale σ̂, points belonging to the same structure have to be classified together

as many as possible. The following example justifies the use of expansion criteria for scale

estimation.

In Fig.3.3a two ellipses are shown; each of them has nin = 200 inlier points. They are

corrupted by different Gaussian noise with standard deviation σg = 5 and 10 respectively.

Another nout = 200 outliers are randomly placed in the 700 × 700 image. With M = 2000

and ε% = 5% (ñε = 30) we obtain the initial set in Fig.3.3b. The distances in d̃[i]M for the first

37

(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Scale estimation. (a) Input data. (b) Initial set for an iteration. (c) The first 400
points in the sequence d̃[i]M . (d) Histogram of point amounts with segment size ∆d0 = d̃[5%]M .
(e) Histogram of point amounts with segment size ∆d5 = d̃[10%]M . (f) Expansion criteria
applied to increasing sets.

400 points from 600 in total, are shown in Fig.3.3c.

Divide the sequence d̃[i]M into multiple segments (Fig.3.4a), and each segment has an equal

range of Mahalanobis distance, ∆d. Let nk denote the number of points within the k-th seg-

ment, k = 0, 1, 2, Then k = 0 represents the first segment where ñε = n0, and the average

density is also n0. The expansion process verifies the following condition for each k

nk+1

1
k

∑k
i=1 ni

≤ 0.5 (3.13)

where the numerator is the number of points in the (k + 1)-th segment and the denominator is

38

(a) (b)

Figure 3.4: Comparison of segment densities, condition (3.13). (a) k = 0. (b) k = 1.

the average point numbers inside all the k segments.

This can also be illustrated by the slope of the sorted distance sequence. When k = 0 in

Fig.3.4a, we check if the slope of the green segment becomes smaller than half of that in the red

one. If not, we extend the green segment to cover both n0 and n1 as in Fig.3.4b, then verify the

condition (3.13) again. Once the point density drops below half of the average in the previous

segments, the boundary to separate this structure from the outliers is found, k = kt. The value

of the scale estimate is kt∆d.

Due to the randomness of the input data, a single estimation of the scale is not enough. If

the size of initial set is too small compared with the true structure, the scale estimate can also

be too small to fully recover the complete structure in the mean shift.

In Fig.3.3d the expansion starts with ∆d0 = d̃[5%]M (the first segment is the initial set), and

stops at kt0 = 8, giving σ̂ = 8.06 (red bar). This is a relatively small estimate since a scale

larger than 10 is expected when σg = 5. In Fig.3.3e the sampling with a larger ∆d5 = d̃[10%]M

has its expansion stopped at kt5 = 5 giving σ̂ = 11.10. This shows that various estimates can

be generated from different segment layouts, and it is similar to the discretization effect over

the scale space in SIFT [62].

In Fig.3.3f the expansion process is applied to an increasing sequence of sets. The ∆d starts

from d̃[ε%]M and increases by 1% for each new sampling. The blue points in the figure indicate

the length of ∆d in percentage of points used as the segment size. Every expansion process is

performed separately, and stops at the corresponding red point when condition (3.13) is met.

The length of ∆d continues to increase until it reaches the bound, j = T + 1, where the sets

can no longer expand, as it is 23% in Fig.3.3f.

39

The scale estimate is found from this region of interest where the sets of points can expand.

In Fig.3.3f it ranges from 5% to 22%. The expansion process may not always be able to start

from ∆d = d̃[ε%]M , but stops immediately at k = 1. Then as ∆d increases, the starting point

of region of interest is at the place where the expansion process begins.

The largest estimate from the region of interest gives the scale σ̂

σ̂ = max
j=0,...,T

ktj∆dj in region of interest (3.14)

which is the farthest expansion inside the region of interest. In Fig.3.3f the scale estimate is

σ̂ = 12.54. From the sequence d̃[i]M , collect all the points within the scale estimate for the next

step.

If the scale estimator locates an outlier structure, σ̂ in general is much larger and the struc-

ture has weaker strength than inlier structures, as will be discussed in Section 3.3.3. The condi-

tion (3.13) is a heuristic criteria since the true distribution of the inliers is unknown. However,

it does not play a sensitive role in the estimation process, as will be demonstrated by different

experiments in Chapter 4 and Chapter 6. Some methods mentioned in Section 3.1 assumed a

Gaussian distribution, or proposed a sophisticated theoretical model to classify inliers. These

approximations may only be valid in specific problems.

3.3.2 Mean Shift Based Structure Recovery

From the points collected in the first step, another N � M elemental subsets are generated.

Most points in this set come from the same structure thus N = M/10 is enough.

For each trial all the input points are projected by θ to a one-dimensional space z̃i =

x̃>i θ, i = 1, . . . , n. The mean shift [31] moves the z from z = α to the closest mode

[
θ̂, α̂

]
= arg max

θ,α

1

nσ̂

n∑
i=1

κ
(

(z − z̃i)> B̃−1i (z − z̃i)
)

=
1

nσ̂
arg max

θ

(
arg max

z
fθ(z)

)
. (3.15)

40

The variance B̃i is computed from

B̃i = σ̂2H̃i = σ̂2θ>C̃iθ

= σ̂2θ>Jx̃i|yiJ
>
x̃i|yiθ (3.16)

with Cy = Iy.

The function κ(u) is the profile of a radial-symmetric kernelK(u2) defined only for u ≥ 0.

For the Epanechnikov kernel

κ(u) =

 1− u (z − z̃i)> B̃−1i (z − z̃i) ≤ 1

0 (z − z̃i)> B̃−1i (z − z̃i) > 1.
(3.17)

Let g(u) = −κ′(u) and for the Epanechnikov kernel, g(u) = 1 when 0 ≤ u ≤ 1 and 0 if

u > 1. All the points inside the window contribute equally in the mean shift. The convergence

to the closest mode is obtained by assigning zero to the gradient of (3.15) in each iteration. The

znew is updated from the current value z = zold by

znew =

[
n∑
i=1

g (u)

]−1[n∑
i=1

g (u)z̃i

]
. (3.18)

Many of the n input points have their projections more distant from zold than ±B̃i and their

weights are zeros.

The highest mode among all N trials gives the estimate ẑ = α̂. The vector θ̂ is obtained

from the same elemental subset which gives the highest mode. All the input points that can

converge into the±σ̂ region around α̂ are classified as inliers, resulting in nin points (Fig.3.5a).

The total least squares (TLS) estimate for the structure is computed and θ̂
tls

, α̂tls and σ̂tls are

obtained.

3.3.3 Strength Based Classification

After the mean shift step, the nin points are removed from the current input data before the next

iteration. If the remaining data are not enough for another initial set, the algorithm terminates

and all the recovered structures are sorted by their strengths in descending order (Fig.3.5b).

41

(a) (b)

Figure 3.5: Structure recovery. (a) Structure recovered after mean shift. (b) Structure sorted by
strengths (sR > sG > sB).

The strength of a structure is defined as

s =
nin
σ̂tls

. (3.19)

which can also be seen as the density in the linear space of that structure. The value nin

represents the point amount removed at each iteration and it could be either a structure of

inliers or outliers.

Structures with stronger strengths are detected first, and in general are inlier structures with

more dense points and smaller scales. The new method does not rely on any threshold to

separate inliers from the outliers. After all the input data are segmented, the difference between

the structures declared as inliers with stronger strengths and the first outlier structure is clear.

With the results sorted by strength, the user has an easy task to retain the inlier structures, as

the examples in Chapter 4 will show. If an ambiguous inlier/outlier threshold appears, like in

Fig.4.3d, the strongest inlier structures are still detected correctly.

3.4 Limitations

The major limitation of every robust estimator comes from the interactions between inliers and

outliers. As the outlier amount increases, eventually the inliers and outliers become less sepa-

rable in the input space. In our algorithm most of the processing is done in a linear space, but

the limitation introduced by outliers still exists. We will illustrate it in the following example.

In a 700× 700 image, a circle consists of nin = 200 inliers is corrupted by Gaussian noise

42

(a) (b)

(c) (d)

Figure 3.6: The inlier/outlier interaction. (a) Input data of a circle with radius 50. (b) Incorrect
final result obtained from a correct scale estimate. (c) Input data of a circle with radius 200. (d)
Good final result obtained from a correct scale estimate.

with σg = 10, together with nout = 1500 outliers. The first circle has a radius of 50 (Fig.3.6a),

and the other one has a radius of 200 (Fig.3.6c). In both these figures, the estimator finds the

correct scale estimates from the structure (blue circles) corresponding to the initial sets, where

σ̂50 = 23.65 and σ̂200 = 23.58.

In the true inlier structure, about 196 points should exist inside the scale σ̂50 = 23.65,

based on the Gaussian distribution. The number of outliers in the same location can be roughly

estimated as

(2π 50)(2 ∗ 23.65)
1500

700× 700
= 45 points.

thus about 241 points can be found in the true inlier structure. However, after the mean shift

step an incorrect final result (red circle) containing 261 points is obtained in Fig.3.6b, where

84 points are true inliers and 177 points from the outliers. Although the true structure appears

more dense in the input space, the mean shift converges to an incorrect mode due to the heavy

noise from outliers.

43

The circle in Fig.3.6c appears much weaker, however after 100 tests with randomly gene-

rated data (inlier/outlier), it returns more stable estimations than the smaller circle in Fig.3.6a.

In a result shown in Fig.3.6d, 346 points are classified as inliers, where 190 points are from

true inliers and 156 points from the outliers. The mean shift has a much lower probability to

converge to another, incorrect mode, and this inlier structure resists more outliers.

Similar limitation exists in RANSAC when many outliers are present. Even a correct scale

given by the user can still lead to an incorrect estimation. The methods proposed in [73] and

[86] returned incorrect results if too many outliers existed. The failure of RANSAC also occurs

due to not explicitly considering the underlying task [48].

In [92], a robust estimator was proposed to track objects in an image sequence, by combi-

ning an extended Kalman filter with a structure from motion algorithm. The Figure 5 in that

paper showed that the correct estimate was returned with the data containing more than 60%

outliers. For the homography estimation in Figure 6 of [70], more than 90% of the points were

outliers, and correct result were obtained after 10000 iterations of a contrario outlier elimina-

tion process. Since these results did not provide repetitive tests, the stability of the methods

cannot be verified.

The strength of inlier points is another factor with a strong influence on the inlier/outlier

interaction. Firstly, the level of the inlier noise affects the number of outliers that can be tolera-

ted. With the same number of inliers, structures with lesser inlier noise can be estimated more

robustly since a smaller scale estimate results in a stronger strength. The inlier structures with

weaker strengths generally have larger noises and the scale estimates are also larger. The out-

liers will have a stronger interaction with these weak inlier structures and can lead to spurious

results, see Fig.4.3f.

Secondly, when the inlier amount is too small, the initial set may not closely align with a

true structure. The scale estimation becomes unstable since the region of interest can someti-

mes cover a very narrow range of ∆d in the expansion process. The scale estimate could be

much smaller than the true value and only the minority of the points will converge to the inlier

structure. Instead of a single structure estimate, two or more split structures could be obtained.

In Fig.3.7a, the expansion process is applied to the same example as in Fig.3.3, but with

nout = 400. The expansion stops soon and the algorithm locates the region of interest between

44

(a) (b)

(c) (d)

Figure 3.7: Limitation of scale estimation. (a) Case 1: a small number of inliers (nin =
200, nout = 400). (b) Case 2: a larger number of inliers (nin = 400, nout = 400). (c) Unstable
estimate obtained from case 1. (d) More robust estimate obtained from case 2.

5% − 7% giving a small scale estimate. After applying the expansion criteria many times, the

range of expansion from different testing data are not stable (Fig.3.7c). In Fig.3.7b the number

of inliers is raised to nin = 400. The scale estimate becomes a more stable value with the

region of interest located between 5%− 22% (Fig.3.7d).

When the inlier/outlier interaction is strong, preprocessing on the input data is required to

obtain more inlier points, and/or reduce the outlier amount for a better performance. In Fig.4.7a

of Section 4.2.2, an example is given where homography estimation in 2D is used to segment

objects in 3D scene. Under the small translational motions, the two planes on the bus though

orthogonal in 3D, are not separable in 2D due to the relatively small amount of inlier points.

In Fig.4.8 we show that by using more inlier points, the estimator will recover more inlier

structures.

If an inlier structure appears split in several structures with fewer points, post-processing is

needed to merge them. The user can easily locate them by their strengths since most of these

split structures are still stronger compared with the outliers. The similarity of two structures

should be compared in the input space where measurements are obtained, as the derived carriers

45

in the linear space do not represent the nonlinearities of the inputs explicitly.

For two inlier structures with linear objective function, the merge can be implemented based

on the orientation of each structure and the distance between them. For two ellipses, the geo-

metric tools to determine the overlap area can be used [50]. The measurements of fundamental

matrices and the homographies are in the projective space instead of euclidean. If the recon-

structed 3D scene can be provided from auto-calibration [47, Chapter 19], the 3D information

should be applied for the segmentation or merge of two structures.

3.5 Conditions of Robustness

We have discussed several limitations for the algorithm without considering the number of trials

M for random sampling, which is the only parameter given by the user.

The M trials in this algorithm are used to estimate the scale. The required amount of M

depends strongly on the data to be processed. The complexity of the objective function, the

size of the input data, the number of inlier structures, the inlier noise levels, and the amount of

outliers, all are factors which can affect the required number of trials. If no information on the

size of M is known, the user can run several tests with different M -s until the results become

stable. Once M is large enough, the estimation will not improve by using larger sampling size.

With all the other robustness conditions satisfied, M has to be large enough to detect the

weakest inlier structure. This process gives a quasi-correct scale estimate and then the mean

shift recovers a desired inlier structure. Once the interaction between inliers and outliers is

apparent, the quality of the estimation cannot really be compensated by a larger M since the

initial set has become less reliable. Only through preprocessing of the input data will the

number of inlier points increase and a better result be obtained.

Three key conditions to improve the robustness of the proposed algorithm are summarized:

• Preprocessing to reduce the amount of outliers, while bring in more inliers.

• The sampling size M should be large enough to stably find the inlier estimates.

• Post-processing should be done in the input space when an inlier structure comes out

split or has to be separated.

46

3.6 Review of the Algorithm

The new robust algorithm is summarized below.

Robust Estimation of Multiple Inlier Structures

Input: yi, i = 1, . . . , n data points that contain an unknown number of inlier structures with

their scales unspecified, along with outliers. The covariance matrices for yi are Cy = Iy if not

provided explicitly.

Output: The sorted structures with inliers came out first.

• Compute the carriers x
[c]
i , c = 1, . . . , ζ, and the Jacobians J

x
[c]
i |yi

, for each input yi,

i = 1, . . . , n.

� Generate M random trials based on elemental subsets.

– For each elemental subset find θ and α.

– Compute the Mahalanobis distances from α for all carrier vectors x
[c]
i , c = 1, . . . , ζ.

Keep the largest distance d̃i for each point.

– Sort the Mahalanobis distances in ascending order.

– Among all M trials, find the sequence d̃[i]M with the minimum sum of distances

for ε% of the input points remained for processing.

• Apply the expansion criteria to an increasing sequence of sets and determine the region

of interest for a structure.

• In the region of interest find the largest estimate as σ̂ and collect all points inside this

scale.

• Generate N �M random trials from these points.

– Apply the mean shift to all still existing points, to find the closest mode from α.

– Find α̂ at the maximum mode among all N trials, and θ̂ from the same elemental

subset.

47

– The recovered structure contains nin points which converged to ±σ̂ from α̂.

• Compute the TLS solution for the structure and remove the nin points from the inputs.

• Go back to � and start another iteration.

• If not enough input points remain, sort all structures by their strengths and return the

result.

48

Chapter 4

Robust Method in the Recovery of 2D Structures

Several synthetic and real examples are presented in this section. In most cases a single carrier

vector exists, ζ = 1, except for the homography estimation which has two and ζ = 2. The

Epanechnikov kernel is used in the mean shift.

The input data for synthetic problems are generated randomly and Gaussian noise is added

to each inlier structure. The standard deviation σg is specified only to verify the results, while

not used in the estimation process. The values of the scales and point amounts for each structure

are returned as the output of the algorithm.

All the following experiments were tested on an i7-2617M 1.5GHz PC, and the processing

time for each example will be given.

4.1 Estimation of 2D Geometric Primitives

4.1.1 2D Line

In the first example multiple 2D lines are estimated. The noisy objective function is

θ1xi + θ2yi − α ' 0 i = 1, . . . , nin. (4.1)

The input variable y = [x y]> is identical with the carrier vector x.

Five lines are placed in a 700 × 700 plane (Fig.4.1a) and corrupted with different two-

dimensional Gaussian noise. They have nin = 300, 250, 200, 150, 100 inlier points, and σg =

3, 6, 9, 12, 15, respectively. Another 350 unstructured outliers are uniformly distributed in the

image. The amount of points inside each inlier structure is small compared to the entire data.

49

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Synthetic 2D line estimations. (a) Case 1: five lines with 350 outliers. (b) Case 2:
five lines with 500 outliers. (c) Recovered six structures, case 1. (d) Recovered five structures,
case 2. (e) Five strongest structures, case 1. (f) Four strongest structures, case 2.

With M = 1000, a test result is shown in Fig.4.1c. The algorithm recovers six structures

red green blue cyan yellow purple

scale : 9.6 18.7 28.1 37.1 44.2 370.8

inliers : 321 282 240 161 106 240

strength : 33.4 15.1 8.5 4.3 2.4 0.6.

The first five structures are inliers with stronger strengths as Fig.4.1e shows. The sixth structure,

is formed by outliers distributed over the whole image.

When the randomly generated inputs are tested independently for 100 times, the first four

50

lines are correctly segmented in all the tests. In the other six tests the weakest line (nin =

100, σg = 15) is not correctly located. Of the 94 correct estimations, the average result of the

scale estimates and the classified inlier amounts as well as their respective standard deviations

are
scale : 10.48 19.94 29.36 36.86 38.17

(1.17) (2.44) (5.30) (10.40) (18.29)

inliers : 335.9 285.8 240.8 155.6 93.4

(8.2) (9.5) (21.3) (27.0) (28.4).

The average processing time is 0.58 seconds. The estimated scale covers about 3σg area of an

inlier structure. In general, the number of classified inliers is larger than the true amount due to

the presence of outliers in the same area.

As the outlier amount increases, the weakest structure will gradually blend into the back-

ground, and the expansion criteria can hardly separate inliers and outliers for this structure.

In Fig.4.1b a case is shown where the outlier amount is raised to 500 instead of 350, and the

number of inliers remain the same. In Fig.4.1d five structures are returned

red green blue cyan yellow

scale : 12.0 18.6 33.8 41.5 483.6

inliers : 351 304 256 182 407

strength : 29.3 16.4 7.6 4.4 0.8.

The last structure is mixed with the outliers, and thus not estimated correctly. The first four

inlier structures are still retained based on the strength (Fig.4.1f). In 100 tests the weakest

line is detected 64 times, the fourth structure (nin = 150, σg = 12) 98 times, and the three

strongest structures are estimated correctly in all the trials.

In Fig.4.2a and Fig.4.2b, the Canny edge detection extracts similar sizes of input data (8310

and 8072 points) from two real images. Again with M = 1000, the six strongest line structures

are superimposed over the original image in Fig.4.2c. In Fig.4.2d the three line structures

together with the first outlier structure are shown. The processing time depends on the number

of structures that detected by the estimator, these two estimations take 7.44 and 4.35 seconds,

respectively.

51

(a) (b)

(c) (d)

Figure 4.2: 2D lines in real images. (a) Roof: Canny edges, 8310 points. (b) Pole: Canny
edges, 8072 points. (c) Roof: Six strongest inlier structures. (d) Pole: Three strongest inlier
structures and one outlier structure.

4.1.2 2D Ellipse

In the next experiment multiple 2D ellipses are estimated. The noisy objective function is

(yi − yc)
>Q(yi − yc)− 1 ' 0 i = 1, . . . , nin (4.2)

where Q is a symmetric 2×2 positive definite matrix and yc is the position of the ellipse center.

Given the input variable y = [x y]>, the carrier is derived as x = [x y x2 xy y2]. The condition

4θ3θ5 − θ24 > 0 also has to be satisfied in order to represent an ellipse. We also enforce the

constraint that the major axis cannot be more than 10 times longer than the minor axis, to avoid

classifying line segment as a part of a very flat ellipse.

The transpose of the 5× 2 Jacobian matrix is

J>x|y =

 1 0 2x y 0

0 1 0 x 2y

 . (4.3)

52

The ellipse fitting is a nonlinear estimation and biased, especially for the part with large cur-

vature. When the inputs are perturbed with zero mean Gaussian noise with σg, the standard

deviation of carrier vector x relative to the true value xo is not zero mean

E(x− xo) = [0 0 σ2g 0 σ2g]
> (4.4)

since the carrier contains x2, y2 terms. A bias in the estimate can be clearly seen when only

a small segment of the noisy ellipse is given in the input. Taking into account also the second

order statistics in estimation still does not eliminate the bias. See papers [54], [85] and their

references for additional methods.

In Fig.4.3a three ellipses are placed with 350 outliers in the background. The inlier struc-

tures have nin = 300, 250, 200 and σg = 3, 6, 9. The smallest ellipse with nin = 200 is

corrupted with the largest noise σg = 9. We use M = 5000 in the ellipse fitting experiments.

When tested (Fig.4.3c), four ellipses are recovered

red green blue cyan

scale : 12.1 28.9 48.0 1321.2

inliers : 337 292 222 248

strength : 28.0 10.1 4.6 0.2.

Based on results sorted by strength, the first three structures are inliers and are shown in

Fig.4.3e.

When the estimation is repeated 100 times, the three inlier structures are correctly located

97 times, while in the other three tests the smallest ellipse is not estimated correctly. From

the 97 correct estimations, the average scales, the classified inlier amounts, along with their

standard deviations are

scale : 11.60 21.59 32.87

(1.54) (3.64) (14.71)

inliers : 336.2 272.9 196.4

(8.2) (27.5) (53.2).

53

(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Synthetic 2D ellipse estimations. (a) Case 1: three ellipses and 350 outliers. (b)
Case 2: three ellipses and 800 outliers. (c) Recovered four structures, case 1. (d) Recovered
first four structures, case 2. (e) Three strongest structures, case 1. (f) Interaction between two
ellipses, case 2.

The average processing time is 3.28 seconds.

When the outlier amount reaches the limit, the inlier structure with weakest strength may

no longer be sorted before the outliers. The scale estimate becomes inaccurate due to the heavy

outlier noise, and the outliers can form more dense structure with comparable strength. When

800 outliers (Fig.4.3b) are placed in the image, a test gives the result in Fig.4.3d. The outlier

structure (blue) has a strength of 4.8, while the value of the inliers (cyan) is 3.9. However, the

first two inlier structures are still recovered due to their stronger strengths.

Fig.4.3b also gives an example to show one of the limitation explained in Section 3.4, when

54

(a) (b)

(c) (d)

Figure 4.4: 2D ellipses in real images. (a) Strawberries: Canny edges, 4343 points. (b) Sta-
dium: Canny edges, 4579 points. (c) Strawberries: Three strongest inlier structures. (d) Sta-
dium: Four strongest inlier structures (see also text).

the inlier strength is too weak to tolerate more outliers. In Fig.4.3f two inlier structures interact,

and the mean shifts converge to incorrect modes.

From Canny edge detection, 4343 and 4579 points are obtained from two real images con-

taining several objects with elliptic shapes, as shown in Fig.4.4a and Fig.4.4b. WithM = 5000,

the three strongest ellipses are drawn in Fig.4.4c, superimposed over the original images. The

processing time is 18.90 seconds in this case. In Fig.4.4d the estimation takes 23.14 seconds

to detect four strongest ellipses, which are inlier structures. After 100 repetitive tests using the

data shown in Fig.4.4b, only the first two ellipses (red and green) are detected reliably in 98

times. The other two ellipses (blue and cyan) have smaller amounts of inliers and therefore are

less stable. The data acquired from Canny edge detection do not necessarily render the overall

inlier structures in a more dense state. Preprocessing on the edge data is generally required for

better performance.

4.2 Estimation of Projective Geometric Relations from 2D Images

4.2.1 Fundamental Matrix

The next experiment shows the estimation of the fundamental matrices. The corresponding li-

near space was introduced in Subsection 3.2.1. The 3× 3 matrix F is rank-2 and a recent paper

55

(a) (b)

(c) (d)

Figure 4.5: Motion segmentation with different objective functions. In the following figures,
the input points (white) are shown in the first view, the processed structures (colored) in the
second view. (a) The input points. Fundamental matrix: (b) Translation only. (c) Translation
and rotation. Homography: (d) Translation only.

[29] solved the non-convex problem iteratively by a convex moments based polynomial opti-

mization. It compared the results with a few RANSAC type algorithms. The method required

several parameters and in each example only one fundamental matrix was recovered.

The fundamental matrix cannot be used to segment objects with only translational motions,

as proved in [24]. The input shown in Fig.4.5a comes out in Fig.4.5b as a single structure

instead of two. Only when one of the books has a large enough rotation, the correct output is

obtained (Fig.4.5c). Applying the homography estimation (Subsection 4.2.2) to the translatio-

nal case, the two books can be easily separated (Fig.4.5d).

Each example of Fig.4.6 shows the movement of multiple rigid objects. The point corre-

spondences are extracted by OpenCV with a distance ratio of 0.8 for SIFT [62], giving 608,

614 and 457 matches, respectively. With M = 5000, the structures are retained as

Fig.4.6a red green blue

scale : 0.56 0.73 11.78

inliers : 407 101 51

strength : 727.3 139.3 4.33.

56

(a)

(b)

(c)

Figure 4.6: Fundamental matrix estimation. (a) Image pair from Hopkins 155 dataset with two
inlier and one outlier structures. (b) The books with three inlier and one outlier structures. (c)
The dinabooks from [73] with four inlier and one outlier structures.

Fig.4.6b red green blue cyan

scale : 0.46 0.40 1.12 10.42

inliers : 192 96 221 47

strength : 413.4 242.8 196.8 4.5.

Fig.4.6c red green blue cyan yellow

scale : 0.22 0.72 0.65 0.70 23.9

inliers : 135 117 84 48 43

strength : 623.0 161.5 129.0 68.2 1.8.

The estimations take 1.75, 2.30 and 2.10 seconds for these three cases. In real images, the

outlier structures can be easily filtered out since they have much larger scales than the inliers.

It can be observed that the scales of the inlier structures are very close, therefore the methods

57

with fixed thresholds may be used here. However, if the images are scaled before estimation,

the error in the inliers will change proportionally. Correct scale estimate can only be found

adaptively from the input data.

As discussed in Section 3.4, the first (red) and the fourth (cyan) structures obtained from

Fig.4.6c can be fused as a single structure. This merge has to be done by post-processing in the

input space but also requires a threshold from the user.

The SIFT matches are error-prone and false correspondences always exist. If the images

contain repetitive features, such as the exterior of buildings, parametrization of the repetitions

can reduce the uncertainty [76]. Preprocessing of the images is not described in this disserta-

tion, therefore we will not explain it further.

4.2.2 Homography

The last example in this section is for 2D homography estimation. In [74], a universal fra-

mework for RANSAC, the Universal RANSAC (USAC), was introduced. This method failed

in homography estimation when a wide angle existed between two images [59]. In the latter

paper, a very dense sampling of the grid is used and combined with probabilistic reasoning to

obtain the inlier rate estimate. Only one inlier structure can be recovered each time.

Each inlier structure of 2D homography is represented by a 3×3 matrix H, which connects

two planes inside the image pair

y′i ' Hyi, i = 1, . . . , nin (4.5)

where y = [x y 1]> and y′ = [x′ y′ 1]> are the homogeneous coordinates in these two images.

The homography estimation has ζ = 2. The input variables are [x y x′ y′]>. Two

linearized relations can be derived from the constraint (4.5) by the direct linear transformation

(DLT)

Aih =

−y>i 0>3 x′iy
>
i

0>3 −y>i y′iy
>
i



h1

h2

h3

 ' 02 . (4.6)

The matrix Ai is 2 × 9 and both rows satisfy the relations with the vector derived from the

58

(a)

(b)

Figure 4.7: Homography estimation with image pairs from Hopkins 155 dataset [8]. (a) Three
inlier and one outlier structures. (b) Three inlier and one outlier structures.

matrix vec(H>) = h = θ.

The carriers are obtained from the two rows of Ai

x[1] = [−x −y −1 0 0 0 x′x x′y x′]>

x[2] = [0 0 0 −x −y −1 y′x y′y y′]>. (4.7)

The transpose of the two 9× 4 Jacobians matrices are

J>
x
[1]
i |y

=


−I2×2

04×4

x′iI2×2 02

0>2 y>i

0>2 0>2 0



J>
x
[2]
i |y

=

04×3

−I2×2

04

y′iI2×2 02

0>2 0>2 0

0>2 y>i

 . (4.8)

Based on the discussion in Subsection 3.2.2, for every θ only the larger Mahalanobis distance

is used for each input yi, i = 1, . . . , n.

The motion segmentation involves only translation in 3D in Fig.4.7a and Fig.4.7b, both

59

images are taken from the Hopkins 155 dataset [8]. With M = 2000, the processing time is

1.12 and 1.09 seconds for the inputs containing 990 and 482 SIFT point pairs, respectively. As

mentioned in Section 3.4, in Fig.4.7a the estimator cannot separate these two 3D planes on the

bus because the 2D homographies corresponding to them are very similar. The condition (3.13)

does not stop where it should since the points on either 2D planes are not dense enough. The

example shows that the desired results can only be obtained by increasing the amount of inliers

from preprocessing. In Fig.4.7b, the three objects can be correctly separated in spite of the very

small motions, due to the stronger strengths in all the inlier structures.

Fig.4.7a red green blue cyan

scale : 1.62 1.12 4.49 203.11

inliers : 713 101 67 105

strength : 440.2 89.5 14.9 0.5

Fig.4.7b red green blue cyan

scale : 0.20 0.17 0.56 5.16

inliers : 107 88 165 89

strength : 529.6 517.7 293.4 17.3.

The importance of preprocessing can also be seen in [80], where the geometric and appea-

rance priors were used to increase the amount of consistent matches before estimation, when

the PROSAC [30] failed in the presence of many incorrect matches.

The significance of inlier amounts is demonstrated in Fig.4.8. The point pairs from OpenCV

SIFT are used in Fig.4.8a and Fig.4.8c, while the more dense points from datasets [73] are tested

in Fig.4.8b and Fig.4.8d for comparison. After the estimations, the structures are sorted by their

strengths until the first outlier structure appears, where a large increase in the scale estimate can

be observed.

60

(a) (b)

(c) (d)

Figure 4.8: Homography estimation. (a) Merton College with 536 point pairs. Four inlier and
one outlier structures. (b) Merton College with 1982 point pairs. Five inlier and one outlier
structures. (c) Unionhouse with 619 point pairs. Three inliers and one outlier structures. (d)
Unionhouse with 2084 point pairs. Five inliers and one outlier structures.

Fig.4.8a red green blue cyan yellow

scale : 1.41 0.89 2.01 1.37 14.26

inliers : 157 87 158 51 44

strength : 110.8 97.2 78.5 37.0 3.1

Fig.4.8b red green blue cyan yellow purple

scale : 0.97 0.92 2.55 0.41 0.97 798.0

inliers : 507 478 529 55 127 286

strength : 521.5 518.9 207.6 133.3 130.1 0.4

Fig.4.8c red green blue cyan

scale : 0.59 0.48 0.74 60.34

inliers : 176 87 91 204

strength : 295.9 181.0 123.3 3.4

61

Fig.4.8d red green blue cyan yellow purple

scale : 0.67 1.35 0.57 1.83 1.53 82.18

inliers : 495 508 162 513 69 210

strength : 738.7 376.7 282.3 280.1 44.9 2.6.

The processing time for these four examples is 1.29, 3.07, 1.36 and 3.78 seconds, respecti-

vely. This is a faster implementation than RCMSA [73] which cost 24.58 and 25.40 sec for the

same image pairs in Fig.4.8b and Fig.4.8d on the same computer. With denser inlier points,

more inlier structures can be detected.

62

Chapter 5

Robust Method in the Reconstruction of 3D Point Cloud with
Photogrammetry

In this chapter we demonstrate the use of the estimator for multiple inlier structures in the struc-

ture from motion (SfM) algorithm. The presentation follows the processing pipeline introduced

in Fig.2.7, but now we will detail the implementation of each procedure. We follow an example

to illustrate the entire process, from the capture of 2D images to the final output as 3D point

cloud, and this example will also be used for 3D surface extraction in Chapter 6.

5.1 Capture of the 2D Image Sequence

All the image sequences used in this dissertation are extracted from videos taken with one of

the three digital cameras (Fig.5.1a):

• Canon PowerShot SX500 IS, 16-megapixel.

• GoPro Hero 4, 12-megapixel.

• iphone SE camera, 12-megapixel.

The cameras capture short videos with different sizes, resolutions and qualities. For the Canon

and GoPro cameras we resize the 2D images to 640× 480, while the iphone videos are scaled

to 1024 × 576 resolution. In Section 2.2 we have shown that only the focal lengths f have to

be estimated from the cameras to obtained the intrinsic matrices K.

The hand-held camera records a video circling around a 3D physical model, where shaking

and defocusing can happen due to the movement. For the SfM algorithm a total of 50-100

images are extracted. In Fig.5.1b five samples are shown from the video. The 3D reconstruction

example from this 2D sequence will be followed in Section 5.2 to Section 5.4.

63

(a)

(b)

Figure 5.1: Capture of a 2D image sequence. (a) The three cameras used to capture different
videos. (b) Five 2D frames extracted from the video used in the example.

5.2 Robust Matching of Image Features

The video was captured by the iphone SE camera and 70 images were extracted. To obtain the

SIFT features, see Section 2.1, for every frame in the 2D image sequence a built-in functions

of OpenCV [9] 1 was applied. The same value 0.8 is used in the SIFT distance ratio test. The

amount of SIFT features relies on the size of the image and the scene complexity. From every

1024× 576 image, around 7, 000 ∼ 10, 000 SIFT points were extracted (Fig. 5.2).

After the SIFT feature extraction, the raw matching with FLANN [71] has to be applied to

every two-view image pair. If the 2D images are not arranged according to their corresponding

camera locations, the matching algorithm has to exhaust all the possible image pairs. This is

an expensive computation if many images are to be processed, e.g., half the entire processing

time for building Rome [14], and multithreading solution were proposed [97]. In our example,

we take advantage that the image sequence is extracted from a continuous video and the good

image pairs will be detected among adjacent frames.

1For more details, check OpenCV documentation on SIFT feature matching at http://docs.opencv.org/2.4/-
modules/nonfree/doc/feature detection.html.

64

Figure 5.2: Extraction of SIFT features in 2D image sequence.

Figure 5.3: Robust filtering of outlier SIFT matches.

5.2.1 Robust Filtering of Outlier Matches

The raw matching compares only the similarity between two SIFT descriptors. The obtained

point correspondences will not satisfy the geometric verification using the fundamental matrix

F and neither the rigid scene assumption between two images. Therefore, outlier pairs always

exist and robust filtering of outliers is required.

The fundamental matrix estimation (Subsection 4.2.1) is applied to each pair of images.

Since the images are ordered, each image will be paired with the neighbouring frames to find

the inlier SIFT matches, until the epipolar geometry can no longer be estimated. We retain,

like in Fig.5.3, only the strongest structure as the inlier because generally the target 3D rigid

object occupies most of the scene. The raw matching gives 379 matches between these two

sample frames, and after the robust filtering, 314 pairs (green) are retained and the red points

are discarded as outliers. Thus, 83% pairs in this example are classified as the inlier structure.

In Subsection 3.3.3, we have shown that the new robust algorithm segments all the input

data into different structures, and does not rely on any threshold to identify the inlier structures

from outliers. A special case appears when the fundamental matrix cannot be found with a

decent scale estimate, from a pair of images taken in two distant locations. Once happened,

even the strongest structure should not be claimed as inlier.

65

Figure 5.4: Paired image indices after robust filtering of outlier features.

From the experiments in Subsection 4.2.1, the scales of correct fundamental matrices in

real images are around σ̂ = 1.0. This value can be used as the threshold to eliminate unreliable

image pairs. This is a rough elimination but can reduce a lot of the possible errors. Although it

appears similar to the user-given scale in RANSAC, this value has a completely different role:

• The σ̂ = 1.0 is not used as a threshold to classify inliers.

• It is only an upper bound of inlier noise to avoid false result.

• The new robust algorithm works as before for the strongest structure.

In our example, the paired image indices are shown in Fig.5.4, where each frame is matched

with around 10 other images. The good pairs are recorded only in the entry of the smaller image

index, e.g., the two particular frames (< 4 > and < 11 >) in Fig.5.3 are listed after frame 4,

while not shown repetitively in frame 11’s. Thus when counting the total pairs of frame 4, those

in entries of frames 0, 1, 2 and 3 should also be checked.

66

5.3 Track Initialization and Expansion

Let concentrate on a single track in this section. For the auto-calibration, we require the rotation

between the pair selected as initial two-view pair to be wider than 5◦, as discussed in Subsection

2.4.1. The approximate focal length f is estimated from the Kruppa equation (2.9). The value

of f , though imprecise, provides the starting point for the 3D point triangulation, and will be

optimized through bundle adjustment.

The drift error accumulates as more images are registered in the track, in [32] a method

was proposed to detect and remove drift, by enforcing the geometric constraints on the start

frame and end frame. While this error cannot be fully eliminated since in general the bundle

adjustment converges to a local minimum, the metric accuracy of the reconstructed 3D point

cloud heavily relies on the 2D image sequence. A rule of thumb for the track expansion, is to

register as many images as possible, and at the same time maintain the reprojection error in a

reasonable range. In the next subsection, we stop the track expansion once the error increases

beyond a threshold, and then reduce the drift distortion through the overall bundle adjustment

in Section 5.4.

5.3.1 Bundle Adjustment in Track Expansion

The bundle adjustment reduces the reprojection error as was explained in Subsection 2.4.3. In

this subsection we list the Jacobian matrices of the parameters, for both cameras and the 3D

points.

Each camera matrix is parameterized by 8 parameters, namely the focal length f , the 3-

component vector r = [r1, r2, r3] for the rotation axis, the angle of rotation φ, and another

3-component vector t = [t1, t2, t3] for the translation. Let cφ = cosφ and sφ = sinφ, from the

Rodrigues’ rotation formula, the 3 × 3 rotation matrix R can be expressed by the axis-angle

67

formulation [67, page 49]

R(r, φ) = cφ


1 0 0

0 1 0

0 0 1

+ (1− cφ)


r21 r1r2 r1r3

r1r2 r22 r2r3

r1r3 r2r3 r23

+ sφ


0 −r3 r2

r3 0 −r1

−r2 r1 0



=


cφ+ r21(1− cφ) r1r2(1− cφ)− r3sφ r1r3(1− cφ) + r2sφ

r1r2(1− cφ) + r3sφ cφ+ r22(1− cφ) r2r3(1− cφ)− r1sφ

r1r3(1− cφ)− r2sφ r2r3(1− cφ) + r1sφ cφ+ r23(1− cφ)

 .
(5.1)

The Jacobian of R with respect to the angle φ and axes r are

∂R
∂φ

=


−sφ+ r21sφ r1r2sφ− r3cφ r1r3sφ+ r2cφ

r1r2sφ+ r3cφ −sφ+ r22sφ r2r3sφ− r1cφ

r1r3sφ− r2cφ r2r3sφ+ r1cφ −sφ+ r23sφ

 (5.2)

∂R
∂r1

=


2r1(1− cφ) r2(1− cφ) r3(1− cφ)

r2(1− cφ) 0 −sφ

r3(1− cφ) sφ 0

 (5.3)

∂R
∂r2

=


0 r1(1− cφ) sφ

r1(1− cφ) 2r2(1− cφ) r3(1− cφ)

−sφ r3(1− cφ) 0

 (5.4)

∂R
∂r3

=


0 −sφ r1(1− cφ)

sφ 0 r2(1− cφ)

r1(1− cφ) r2(1− cφ) 2r3(1− cφ)

 . (5.5)

We concluded in Section 2.2 that a 3 × 4 camera matrix P without knowing the focal length,

has only seven degrees of freedom, the one additional constraint applied here is ||r|| = 1.

The implementation of bundle adjustment in [47, Appendix 6] requires the Jacobians of

the reprojected image coordinate x̂ij = [x̂ij , ŷij], with respect to the camera parameters in Pj

and the 3D points Xi, denoted by aj = [fj , φj , r1j , r2j , r3j , t1j , t2j , t3j] and bi = [Xi, Yi, Zi]

68

respectively, where

x̂ij =
P1
>
j Xi

P3
>
j Xi

, ŷij =
P2
>
j Xi

P3
>
j Xi

. (5.6)

Plug (5.1) into P = K [R | t], and let P′ = [R | t] represent the extrinsic matrix, the

following expressions of Jacobians can be derived.

For focal length f
∂x̂ij
∂fj

=
x̂ij
fj
,

∂ŷij
∂fj

=
ŷij
fj
. (5.7)

For φ, r1, r2 and r3 in aj

∂x̂ij
∂aj

=
1

P′3
>
j Xi

[
fj

(
∂Rj

∂aj

)>
1

− x̂ij
(
∂Rj

∂aj

)>
3

]
Xi

∂ŷij
∂aj

=
1

P′3
>
j Xi

[
fj

(
∂Rj

∂aj

)>
2

− ŷij
(
∂Rj

∂aj

)>
3

]
Xi.

(5.8)

For t1, t2 and t3 in aj

∂x̂ij
∂t1j

=
∂ŷij
∂t2j

=
fj

P′3
>
j Xi

,
∂x̂ij
∂t2j

=
∂ŷij
∂t1j

= 0,

∂x̂ij
∂t3j

=
−x̂ij

P′3
>
j Xi

,
∂ŷij
∂t3j

=
−ŷij

P′3
>
j Xi

.

(5.9)

For X,Y and Z in bi

∂x̂ij
∂bj

=
1

P′3
>
j Xi

[
fjP

′
1
>
j − x̂ijP

′
3
>
j

]
∂ŷij
∂bj

=
1

P′3
>
j Xi

[
fjP

′
2
>
j − ŷijP

′
3
>
j

]
.

(5.10)

We take 100 iterations for convergence in each bundle adjustment. If the average reprojection

error within any 2D frame registered in the track, after the optimization, is larger than one

image pixel, the track expansion process stops. In Fig.5.5 the detailed information is listed for

generating a track number 4 from Fig.5.6. Each line records a specific image registered in the

track, the initial average reprojection error, the value after optimization and the focal length

adjusted after each iteration.

69

Figure 5.5: A track expansion and bundle adjustment.

5.4 Robust Merge of Tracks

Every track contains about 10,000 spatial points. No significant change in the reconstruction

can be observed since we discarded all the 3D points which had their reprojection error larger

than one pixel.

As shown in Fig.5.6, a total of 10 tracks are obtained from the 70 image frames. Each track

is represented by a curve illustrating the range being covered. A geometric verification strategy

was introduced in [78] to give more 2D correspondences for image registration, and obtain a

larger 3D point cloud. In our example, the tracks will be paired together by collecting the 3D

points triangulated from the same 2D SIFT features in the overlapped frames. These 3D-3D

point correspondences provide a stronger relation (point to point) to verify geometry, compared

to the epipolar geometry which matches a point to a line. When enough frames are fused, the

image gaps among tracks are reduced and the merged structure registers as many images as

possible. In the example all the 70 images in the 2D sequence were collected by the merge.

5.4.1 Robust Pairing of Tracks

The robust merge of tracks involves the estimation of multiple 4 × 4 transformations H-s (3D

homographies), to fuse the 3D points into the merged coordinate system. In spite of the outlier

70

Figure 5.6: Ten tracks obtained from 70 image frames.

elimination process in each track, incorrect point correspondences could still exist, especially

at both ends of the track.

In Fig.5.7c, the Track 5 (blue) is plotted in the 3D coordinate system of Track 4 (red).

Besides the differences in the coordinate systems, the two point groups have different scalings

and distortions due to the inaccuracy of focal length estimates. In order to obtain a metric

reconstruction, the k-th track should be multiplied by the respective 4 × 4 transformation Hk.

This topic was further discussed in [47, Chapter 19].

The estimation of H is a nonlinear problem, where the objective function is similar to (4.5),

y′i ' Hyi, i = 1, . . . , nin (5.11)

while in this case y = [X Y Z 1]> and y′ = [X ′ Y ′ Z ′ 1]> are the homogeneous forms of 3D

coordinates X and X′ in these two tracks.

71

(a) (b)

(c)

Figure 5.7: Point clouds reconstructed in the tracks. (a) Track 4. (b) Track 5. (c) Track 5 (blue)
plotted in the 3D coordinate system of Track 4 (red).

From (5.11), for every 3D point correspondence three linear relations can be derived

h>1 yi −X ′i h>4 yi = 0

h>2 yi − Y ′i h>4 yi = 0

h>3 yi − Z ′i h>4 yi = 0.

(5.12)

Let vec(H>) = h, and h>i stand for the i-th row of H, the entries of H are solved by the direct

linear transformation (DLT)

Aih =


−y>i 0>3 0>3 X ′iy

>
i

0>3 −y>i 0>3 Y ′i y
>
i

0>3 0>3 −y>i Z ′iy
>
i





h1

h2

h3

h4


' 03 . (5.13)

The matrix Ai is 3 × 16 and ζ = 3. The elemental subset of H contains five 3D point cor-

respondences to initialize the 15 unknowns in the 4 × 4 matrix up to scale. The three carrier

vectors can be extracted from Ai, and three 16× 3 Jacobian matrices are also obtained. These

derivations are done in a similar way as in (5.7) and (5.10), here we will not detail the steps.

72

Figure 5.8: Pairing of tracks (see explanation in text).

(a)

(b)

Figure 5.9: Merge of Track 4 (red) and Track 5 (blue). (a) A top view. (b) A side view.

We take M = 500 valid elemental subsets, where each randomly initialized H has to be

validated first by checking its cheirality constraint (Subsection 2.4.1). This is a critical step to

guarantee a quasi-affine transformation and preserve the convex hull. The detailed algorithm

to verify the cheirality was given in [72] and [47, Chapter 21]. After the robust pairing process

of every track pair, we find the inlier structures shown in Fig.5.8. For example, the Track 4 is

connected with Track 5 and 8. From Track 5 out of the inital 1247 3D point correspondences,

a total of 1096 pairs are retained as inliers, giving 12% of the input discarded as outliers.

73

5.4.2 Bundle Adjustment in Hierarchical Merging

In Fig.5.9, the merged point cloud combining both Track 4 and Track 5 is shown. All the four

side surfaces can be observed in Fig.5.9a, as the two tracks registered more than half of the

images according to Fig.5.6. The merged structure, however, can still have large projective dis-

tortion as shown in the side view in Fig.5.9b. This error can be reduced if the bundle adjustment

on Hk-s is applied.

Let Xi denote the i-th 3D point in the merged coordinate system, and Xik stand for the

corresponding point found in the k-th track, the bundle adjustment tries to reduce the error

minimize
Hk,Xi

t∑
k=1

n∑
i=1

‖HkXi −Xik‖ (5.14)

by optimizing Hk-s in all the t tracks, and the 3D coordinates of points in the merged system

Xi. This gives 15t+ 3n unknowns in the problem.

Similar as in Subsection 5.3.1, the Jacobians of measurements Xik with respect to the

parameters are derived. Let ak denote the entries in Hk, and bi = [Xi, Yi, Zi], with

X̂ij =
H1
>
k Xi

H4
>
k Xi

, Ŷij =
H2
>
k Xi

H4
>
k Xi

, Ẑij =
H3
>
k Xi

H4
>
k Xi

, (5.15)

the Jacobian matrix for ak is

Aik =
∂X̂ij

∂ak
=

1

H4
>
k Xi


X>i 0 0 −X̂ijX

>
i

0 X>i 0 −ŶijX>i

0 0 X>i −ẐijX>i


3×16

(5.16)

and for bi

Bik =
∂X̂ij

∂bi
=

1

H4
>
k Xi


H1
>
k − X̂ijH4

>
k

H2
>
k − ŶijH4

>
k

H3
>
k − ẐijH4

>
k


3×4

. (5.17)

The 3D error reduced in each iteration is listed in Fig.5.10. Once all the possible tracks were

merged, the bundle adjustment (Subsection 5.3.1) enforcing constraints on cameras is applied

again to the merged point cloud. The final result is shown in Fig.5.11.

74

Figure 5.10: Track merging with bundle adjustment.

(a)

(b)

Figure 5.11: Point cloud obtained after hierarchical merging. (a) A top view. (b) A side view.

5.5 3D Points Triangulated from Stereo Views

From the SIFT features, the sparse 3D poins and the camera parameters can be estimated

through the SfM algorithm. Since most of these 2D features were extracted only from high-

contrast regions in the images, like the boundary between textures, the sparse points may not

be dense enough to capture the detailed shape information. For example, the plane representing

the sewer cover reconstructed in Fig.5.12b and Fig.5.12c, cannot be detected without removing

the very dense outliers scattered around.

In order to triangulate more 3D points, more 2D matches among images should be found

75

(a) (b)

(c) (d)

Figure 5.12: More 3D Points obtained from stereo views. (a) One frame in the 2D image
sequence. (b) & (c) 3D point cloud reconstructed from SIFT features. (d) Colored 3D Points
reconstructed from stereo views.

first. Several image rectification methods were proposed which generate a stereo pair from

two images. In [61] each 2D pairing becomes a 1D search along the horizontal direction. The

accurate camera parameters are obtained after bundle adjustment, and then required by the

stereo matching to give valid 3D points. OpenCV function based on [46] is used in our method.

After the stereo matching, these additional 3D points fill the space among the SIFT points, as

shown in Fig.5.12d with colors.

76

Chapter 6

Robust Method in the Recovery of 3D Geometric Primitives

In this section the robust algorithm will be applied to 3D point clouds. The majority of the ex-

amples were also presented in [100]. For each type of surface we first derive the carrier vector

and the Jacobian matrix. The inlier structures for synthetic cases are generated by CloudCom-

pare software [4] and corrupted by Gaussian noise.

The real 3D datasets are constructed either from the 3D mesh models in Autodesk ReMake

[2] or the photogrammetric methods using 2D images (Chapter 5). The outliers come from the

incorrect point correspondences in 2D and/or 3D matches, and introduce much higher noise

than the inliers. Like in Chapter 4, the processing time to generate the geometric primitives

from 3D point cloud is measured on an i7-2617M 1.5GHz computer.

6.1 Estimation of 3D Geometric Primitives

In this section we present the recovery of different categories of 3D primitives. The limitations

will be explained in Section 7.2.

6.1.1 3D Plane

Multiple planes are estimated in the first example. The planes are estimated in 3D space with

the input data Y = [X Y Z]>. The objective function for each 3D plane satisfied by its points

nin � n is

θ1Xi + θ2Yi + θ3Zi − α ' 0 i = 1, . . . , nin. (6.1)

This is a linear case and the carrier vector X is the same as Y.

In Fig.6.1 a synthetic case is shown. A pyramid shaped solid model (Fig.6.1a) is given and

the point cloud is extracted by evenly sampling points on its surfaces. With side length of the

77

(a) (b)

(c) (d)

Figure 6.1: Synthetic plane estimation. (a) A pyramid model with side length a = 1. (b) Point
cloud extracted with 5000 points, σg = 0.01. (c) & (d) Five planes estimated (viewed from
different angles).

pyramid a = 1, this dataset consists of 5000 points uniformly distributed, and are corrupted

by three-dimensional Gaussian noise with standard deviation σg = 0.01 (Fig.6.1b). After

M = 1000 trials, the input point cloud is segmented into five plane structures, as shown in

different colors in Fig.6.1c and Fig.6.1d. The entire processing time for the estimation is 1.70

seconds.

From the total of 5000 points, the scale estimates and the amount of points in each structure

are shown below

red green blue cyan yellow

scale : 0.038 0.032 0.037 0.034 0.033

inliers : 2205 827 817 581 570

where the scale estimates are slightly different in these planes, and no outliers are classified.

The average value of the scale estimate is 0.348 which is around 3σg. The point clouds obtained

from 3D scanners usually have their measurement error within accuracy of 0.01-0.1 mm, thus

78

(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Plane detection in point cloud. (a) From Fig.1.8, a total of 5463 points selected.
(b) Three planes recovered. (c) An image from the sequence in Fig.5.11. (d) A total of 23077
points selected. (e) & (f) Six planes recovered (viewed from different angles).

the Gaussian noise σg = 0.01 is relatively larger compared to the scale of the model (side

length a = 1). In Subsection 7.2.2 we will discuss how the estimation becomes unstable when

σg further increases.

The model reconstructed from 8 images in Autodesk ReMake (Fig.1.8) is used in Fig.6.2a,

where the 5463 vertices of the mesh are kept for the plane estimation. After 2.48 seconds with

M = 1000, five structures are returned. The first three planes with the strongest strengths are

kept, as shown in Fig.6.2b. The surface normals can be obtained directly from the segmented

planes, instead of the mesh in Fig.1.8.

The plane estimation is also applied to the point cloud in Fig.6.2d generated in Fig.5.11

with the photogrammetric method. Outliers also exist in the retained 23077 points. Since only

79

(a) (b)

(c) (d)

Figure 6.3: Synthetic sphere estimation. (a) Input data. (b) The initial set. (c) First structure
obtained after mean shift. (d) Three structures sorted by strengths (sR > sG > sB).

the main structure is portrayed, the majority of the outliers are located on top of the cubic base.

After 7.04 seconds, with M = 1000, the estimator locates six planes, as shown in Fig.6.2e and

Fig.6.2f with 21758 inlier points in total. Sharp edges of the model are well preserved after the

estimation.

6.1.2 3D Sphere

The spherical surface fitting is a nonlinear estimation problem, where the objective function of

a sphere is

(X − a)2 + (Y − b)2 + (Z − c)2 − r2 ' 0 (6.2)

with Y = [X Y Z] ∈ R3 and the carrier vector X ∈ R4 given by

X =
[
X2 + Y 2 + Z2 X Y Z

]>
. (6.3)

80

(a) (b)

(c) (d)

Figure 6.4: Sphere detection in point cloud. (a) An image from the sequence. (b) A total of
10854 points selected. (c) & (d) Two spheres recovered (viewed from different angles).

A sphere can be found from four points (ζ = 1), with any three non-collinear and all four

non-coplanar.

The 4× 3 Jacobian matrix of a spherical surface is derived as

JXi|Yi
=



2Xi 2Yi 2Zi

1 0 0

0 1 0

0 0 1


(6.4)

and relies on the specific 3D coordinates of the input point Yi.

A synthetic example is shown in Fig.6.3. Two spheres are placed in the 3D space and each

of them consists of nin = 200 points, along with nout = 200 outliers (Fig.6.3a). The smaller

sphere has a radius of r1 = 2, and the other one r2 = 3. These inlier structures are corrupted

by Gaussian noise with standard deviation σg = 0.05 and 0.1, respectively. The initial set

(nε = 30), obtained after M = 1000 trials, is shown in Fig.6.3b. With the scale estimate

σ̂ = 0.079, the first estimated structure is obtained as in Fig.6.3c. After all 3D points were

81

processed, the strongest three structures are shown in Fig.6.3d, where the third one (blue) is

an outlier structure. where the third one (blue) is an outlier structure. The estimation stably

segmented the two inlier structures in all of the 100 trails.

A sample image of a toy with spherical surfaces is shown in Fig.6.4a. In Fig.6.4b the 3D

point cloud is generated from 36 images with [2], containing 10854 points. A large number

of points in the planes should be rejected as outliers since only spheres will be detected. Two

different types of surfaces cannot be estimated simultaneously and this problem will be further

discussed in Subsection 7.2.2. WithM = 1000, we locate two inlier structures, as shown in red

and green colors in Fig.6.4c and Fig.6.4d. A total of 3504 points are inliers and the estimation

took 7.24 seconds. More than 7000 points were rejected as outliers.

The processing time depends on the total amount of inlier structures. When more structu-

res exist, more iterations are needed to segment all points into different surfaces. If a larger

input data size is given, more Mahalanobis distances are also calculated since the computation

involves all the data points. This issue will be discussed in Chapter 7.

6.1.3 3D Cylinder

A 3D cylinder aligned with the Z-axis is defined by the equation

(X − a)2 + (Y − b)2 − r2 = 0 (6.5)

a, b stand for the 2D coordinates where Z-axis passes through the XY-plane, and r is the radius.

With the input variable Y = [X Y Z]>, this relation can be reformulated by a quadric matrix

[Yi 1] Q′ [Yi 1]> ' 0 i = 1, . . . , nin (6.6)

where Q′ is a 4× 4 symmetric matrix

Q′ = λ

D′ d′

d
′T a2 + b2 − r2

 D′ =


1 0 0

0 1 0

0 0 0

 d′ =


−a

−b

0

 . (6.7)

82

When an euclidean transformation is applied M =

R t

0T 1

, a general cylinder under rotation

and translation is found with

Q = M−TQ′M−1 =

D d

dT d

 . (6.8)

A sphere, ellipsoid, paraboloid and hyperboloid of two sheets can all be represented by this

quadric matrix, and are projectively equivalent. The 4× 4 quadric matrix Q has nine unknown

parameters up to a scale. To define a general cylinder, only five degrees of freedom are required,

four for its axis of rotation and one for radius.

Several solutions of the cylinders were described in [25], computed at elemental subsets

with various numbers of points from 5 to 9. The nine-point-solution is used in this experiment,

where the carrier vector is derived as X = [X2 XY XZ Y 2 Y Z Z2 X Y Z]. A general

quadric solution from each randomly initialized elemental subset is found from A vechQ = 0,

where vech is the vectorization of the lower part of a symmetric matrix Q, and A a 9 × 10

matrix formed by stacking carrier vectors.

An elemental subset consisting of nine points gives an over-determined solution, and the

parameters in θ should be constrained for a cylinder. From equations (6.7) and (6.8), it is easy

to prove that two of the three singular values of matrix D are identical and the third one is zero,

and d is an eigenvector of D. These constraints should be verified for each elemental subset.

The transpose of the 9× 3 Jacobian matrix is

J>xi|yi =


2Xi Yi Zi 0 0 0 1 0 0

0 Xi 0 2Yi Zi 0 0 1 0

0 0 Xi 0 Yi 2Zi 0 0 1

 . (6.9)

In Fig.6.5a two cylinders are placed with 500 outliers. Each cylinder has its rotation axis in a

randomly generated direction. The inlier structures have radius r = 2, 3, the number of inliers

nin = 400, 300 and σg = 0.06, 0.1. The i.i.d. inlier noise is applied in 3D dimension, which is

roughly ±10% of the size of radius.

83

(a) (b)

(c) (d)

Figure 6.5: Synthetic cylinder estimations. (a) Two synthetic cylinders and 500 outliers. (b)
Two inlier and one outlier structures are recovered. (c) Point cloud with 2000 points. (d) Three
cylinders estimated.

With M = 5000 the result becomes stable and three strongest structures are returned

red green blue

scale : 0.28 0.48 5.56

inliers : 413 337 449

strength : 1487.1 705.0 80.8.

in 25.02 seconds. The first two structures are inliers and the first outlier structure has a much

weaker strength, as shown in Fig.6.5b. After testing the randomly generated data for 100 trials,

in 96 trials the stronger cylinder is correctly segmented, while the weaker one in 94 trials.

In Fig.6.5c a synthetic point cloud containing three cylinders is extracted by sampling points

on a solid model. This dataset consists of 2000 points and the radius of each cylinder is r = 1, 2

and 3, respectively. Gaussian noise with standard deviation σg = 0.01 is applied independently

on all three dimensions, and no outliers are introduced at the input. With M = 2000, three

84

(a)

(b) (c)

Figure 6.6: 3D cylinder estimations with VisualSFM [96, 42]. (a) Sample real images used for
3D reconstruction. (b) The 3D cloud of input points. (c) Three inlier and one outlier structures
are recovered.

correct cylinders are retained after 15.83 seconds (Fig.6.5d).

The amount of points in each structure along with the scale estimates are shown in the table

below
red green blue

scale : 0.075 0.079 0.058

inliers : 670 568 318.

The remaining 444 points from the 2000 are not estimated correctly, and are returned in the

end as an outlier structure with a large scale. The 3D cylinder estimation is based on a non-

linear objective function and the scale estimate σ̂ is not equal to the distance measured in the

Euclidean space.

The VisualSFM software [96, 42] is used to generate the point cloud of a 3D scene captured

by a 2D image sequence containing 25 pictures. Five sample images are shown in Fig.6.6a.

The point cloud consists of 12103 points (Fig.6.6b). Compared with the synthetic data, the

inliers in the point cloud are more dense and have much smaller noise. A smaller sampling size

M = 2000 gives a stable result. The processing takes 44.75 seconds and as Fig.6.6c shows, the

three inlier structures (red, green and blue) and the first outlier structure (cyan) are recovered.

85

(a) (b)

(c) (d)

Figure 6.7: Detection of a cylindrical pole in 3D point cloud. (a) A sample image portraying
one cylinder. (b) A total of 7241 points selected. (c) & (d) One cylinder recovered (viewed
from different angles).

A cylindrical pole is shown in Fig.6.7a. From 54 images we generate the point cloud

(Fig.6.7b) through the structure from motion (SfM) algorithm. The dataset contains 7241 points

with most on the ground being outliers for cylinder detection. With M = 2000, after 18.55

seconds the single cylinder is located in the noisy dataset containing 568 points, as the red

points shown in Fig.6.7c and Fig.6.7d. More than 6500 points are discarded as outliers.

In Fig.6.8a another sample image is shown. A total of 6500 vertices are obtained in Fig.6.8b

from the mesh rebuit in [2], by using 22 images. The two bottles with cylindrical shapes

are detected in 12.65 seconds. The two inlier structures are shown in Fig.6.8c and Fig.6.8d

containing 2262 points.

The two examples show the advantage of using robust surface fitting. In the modification

of the point cloud, the major problem comes from the lack of surface continuity information.

Designers prefer to apply changes directly to a surface, while in the 2D user interface of CAD

software, the scattered points on the surface may not be easily selected. With the presented

86

(a) (b)

(c) (d)

Figure 6.8: Detection of cylindrical objects in 3D point cloud. (a) A sample image containing
two cylinders. (b) A total of 6500 points selected. (c) & (d) Two cylinders recovered (viewed
from different angles).

robust algorithm, the points only on a 3D surface are picked as a group, without collecting

unwanted points from the background.

Other categories of quadrics can be estimated in a similar way like the cylinders. For

example, a paraboloid is detected by removing the constraint that d is an eigenvector of matrix

D. More details can be found in [47, Chapter 3].

6.2 Recovery of Parametric Features

The goal of feature recognition is to regenerate the mechanical design features, e.g., an extruded

or a revolved feature from geometric primitives. The Automatic Feature Recognition (AFR) to

handle this problem is considered as the ideal solution for the design automation, which could

potentially achieve the simultaneous design and development of a product in the concurrent

engineering [81]. The details of existing AFR algorithms were reviewed in [44] and can be

categorized into two types.

• Graph-based feature recognition [53].

87

(a) (b)

Figure 6.9: Recovery of parametric information in cylinders. (a) The augmented cylindrical
surface recovered from Fig.6.7. (b) Two cylindrical surfaces recovered from Fig.6.8.

• Hint-based feature recognition [90].

Methods involving the use of artificial neural networks were introduced in [19].

The major concern on all these approaches is about efficiency. The total amount of surfaces

in a solid model can be very large, which gives too many possible combinations of features to

be extracted. In [90], the “hint” was used to reduce the computation, e.g., two parallel planes

could be a hint for an extrusion. However, the process to identify a hint cannot always be

reliable when the tolerance and noise is considered.

A completely automatic feature recognition system is not possible at this moment. Some

guidance from the designer will always be required to extract the accurate topological and

geometric relations. In Fig.6.9 several augmented cylindrical surfaces in the 3D point clouds

are shown. Each cylinder is defined by its parameters where the height is also recovered.

Compared with the 3D point cloud and the mesh model, the modification of a structure becomes

much easier and the texture mapping can also be applied. However, when the 3D point cloud is

not dense enough, the height of a cylinder may not be accurately evaluated, and the adjustment

should be done manually by the designer. The post-processing such as the stitching and surface

interpolation is also required, to refine a solid model for reuse in the inverse design.

88

Chapter 7

Conclusion and Future Directions

7.1 Conclusion

A new robust algorithm was presented which does not require the inlier scales to be specified

by the user prior to the estimation. It estimates the scale for each structure adaptively from

the input data, and can handle inlier structures with different noise levels. In a strength based

classification, the inlier structures with larger strengths are returned first, while a large quantity

of outliers are removed.

In the structure from motion resulting in a 3D point cloud as the output, the new algorithm

estimates first the scale between every image pair. The robust matching of 2D image featu-

res improves the image registration process. As more images are processed, more detailed 3D

information is captured for the point cloud. In the hierarchical merging, the 3D point corre-

spondences are more reliably found among the different patches with relatively large projective

distortions. No 3D reference points are used when these segments of point clouds are stitched

together.

The geometric primitives are segmented directly from the 3D point cloud without obtaining

the surface normals or building a 3D mesh. The efficiency and robustness of the method was

also demonstrated with datasets corrupted by a large amount of outliers. In many current 3D

surface fitting approaches, the user has to manually select first most of the inlier points from a

surface, and estimated only one surface each time.

In the new robust algorithm multiple surfaces are detected in one process, where the de-

signer has a much more convenient way to select the 3D points as a group from one inlier

surface, without an error-prone process to avoid the outliers. In the future, new CAD design

tools can be created to modify the 3D point clouds, and make the inverse design process even

89

more effective.

The Python/C++ program for the robust estimation of multiple inlier structures is posted on

our website at

rci.rutgers.edu/riul/research/code/

MULINL/index.html.

7.2 Open Problems

In this section we will summarize several open problems which have not yet been solved com-

pletely, and may appear when the new robust algorithm is used. Some of these issues only

affect the quality of the robustness in the method and can be improved by pre-processing the

input and/or post-processing the output. See Section 3.4 and 3.5. For the other problems we

discuss below the possible solutions, but further research will still be needed.

7.2.1 Scale Estimation in DataSet without i.i.d. Noise

In Chapter 6 we assumed that the noise in the reconstructed 3D points are independent and

identically distributed. However, when the input data do have different covariance in each

dimension, the inlier covariances have the form

CY =


σ2X 0 0

o σ2Y 0

0 0 σ2Z

 (7.1)

with three scales unknown. The covariance propagation of the carrier vector (3.6) places the

σ-s into the product of the Jacobian matrices, and cannot be estimated directly by our method.

A possible solution is to start with a uniform σ, that is, σ2I3×3. Normally, when the errors

in various dimensions do not differ by more than one order of magnitude, the algorithm still

work. It finds a result close to the true inlier structure, but not with the correct amount of points.

Focused on a local region in the input space where the structure was estimated, apply the scale

estimation in this region but for each dimension separately. More accurate σ̂-s will be found

and the inlier estimate is updated for each dimension.

90

(a) (b)

Figure 7.1: Heteroscedastic noise in the 3D triangulation. (a) Error is low in the front view. (b)
Stronger error is observed along the depth direction.

For example, the measured points obtained from 3D triangulation have different errors as

the depth varies. The more distant a point is away from the camera, the larger error in Z (depth)

is introduced. As shown in Fig.7.1a, the noise viewed in the front is relatively small, while from

a side view in Fig.7.1b, the error along the depth direction is much larger. A correct estimation

in a 3D point cloud should consider that the error along the Z direction is not identical to those

in X and Y .

When the heteroscedasticity of the input points is taken into account, the computation of

the input covariance CY requires the specific location of each 3D point. This problem was

addressed in [15] by using the method proposed in [66]. For our examples in Chapter 5, the

heteroscedastic error in depth was reduced by using a circular 2D image sequence. Since the

3D scene were viewed from several wide angles and different depths, the distortion along Z

direction lessened and was considered the same in all three dimensions. By using the technique

in [66], and starting with an equal 2D inlier noise variance in two dimensions of the image, the

different 3D variances can also be computed.

7.2.2 Problems in the Recovery of 3D Geometric Primitives

When the input point cloud is heavily corrupted with both inlier noise and large amount of

outliers, the scale estimate is no longer accurate due to the interaction between the inliers and

outliers. The structure detected first could inaccurately take away some points from other inlier

structures. As a result, the following structures become less detectable and give unreliable

segmentations.

91

(a) (b)

(c) (d)

Figure 7.2: Inaccurate segmentations from increased inlier noise with the synthetic point cloud
in Fig.6.1. (a) σg = 0.03. (b) Six planes are detected. (c) σg = 0.05. (d) Incorrect segmentation
of the planes.

In Fig.7.2a and Fig.7.2c, the same point cloud as in Fig.6.1 are used, but applied with

stronger Gaussian noises, σg = 0.03 and 0.05. Two side views are used here to show the noise

levels. With the same trial size of M = 1000, the six planes are detected from Fig.7.2b, while

in Fig.7.2d the estimator segments the data into only two planes. Once the noise level reaches

the limitation, a larger size of M will still not improve the quality of the result.

Every geometric primitive estimated in the previous chapters were governed by a single

objective function. But in general a 3D shape can also be defined by multiple constraints, like a

ring shaped object in Fig.7.3, where a 3D ellipse is to be estimated by cutting a paraboloid with

a plane. The inlier points thus should satisfy both the equations of a paraboloid and a plane, the

estimate is an m× k matrix Θ and a k-dimensional vector α, in this case k = 2.

The covariance of Zi is σ2Hi = σ2Θ>CiΘ, with σ2 unknown. This gives a k × k sym-

metric Mahalanobis distance matrix for i = 1, . . . , n, and since ζ is one dimensional

Di =

√(
X>i Θ−α

)>
H−1i

(
X>i Θ−α

)
(7.2)

92

(a) (b)

Figure 7.3: Estimation of a 3D ellipse. (a) An ellipse obtained by cutting a paraboloid with a
plane. (b) Inlier points of the 3D ellipse.

which could be expressed as the union of k vectors

Di = [di:1 . . . di:k]. (7.3)

A possible solution is to order the Mahalanobis distances d[i:∗] for each column separately, and

collect the inputs corresponding to the minimum sum of distances for ε% of the data. The k×k

matrices are reduced to k initial sets, one for each dimension.

Apply independently k times the expansion process described in Subsection 3.3.1 and de-

fine the k × k diagonal scale matrix

Sk =


σ̂1 · · · 0

· · · · · · · · ·

0 · · · σ̂k

 . (7.4)

The k × k covariance matrix Bi is computed as

Bi = S>k Θ>CiΘ Sk. (7.5)

The second step in the algorithm, the mean shift, is now also multidimensional and further

experiments will be needed to verify the feasibility of this solution. Once the paraboloid and

the plane were estimated robustly, their intersection gives the 3D ellipse.

93

Figure 7.4: An open problem to segment both 3D planes and cylinders.

Another limitation appears when a point cloud contains different types of surfaces. There

exists no easy way to estimate both of them in a same process. For example, in Fig.7.4 both

planes and cylinders are portrayed, the estimation starting with the planes may also fit some

points from the cylinders into the planes. These points attracted to the planes should be rejected

and returned into the dataset for latter cylinder estimation. Moreover, the surface details may

not be captured by the dense samples, when only sparse points are available. Without enough

inlier points, incorrect surfaces could be generated. In photogrammetric approaches starting

from 2D sequences, these problems appear more frequently and manual adjustments on the

output point clouds are required. With a user-guided system/interface, the correctness of the

segmentations is easily verified by the designer.

Finally, a large point cloud may contain too many surfaces to be segmented, as shown in

Fig.7.5 1. Due to the low inlier ratio of each single structure, the required size of M increases

rapidly and eventually becomes impractical for a fast implementation.

A possible solution of this problem is as follows. First, instead of applying the surface

fitting algorithm on the entire input, the dataset is separated into smaller clouds by the designer,

and the 3D points can also be downsampled if necessary. Then the estimation can be carried

out independently for each segment. The respective robust outputs are merged together in post-

processing to fuse surfaces in two adjacent segments, and eliminate possible contradictions.

1Fig.7.5 is retrieved from SPARC DESIGN, http://www.sparc-design.com/what-are-point-clouds/.

94

Figure 7.5: An open problem to extract surfaces from a large point cloud.

7.3 Future Work

The future work contains all the issues described as open problems in the previous section.

Besides that, it also covers the further improvements in the computer-aided design (CAD) sys-

tems. A challenging problem in the inverse CAD is to reconstruct an editable 3D solid model,

and a popular topic in the computer graphics community since 1990s. As discussed in Section

6.2, even with state-of-the-art dense 3D point clouds and robust multi-view stereo algorithms,

this is not an easy task.

New design tools are still expected in today’s mechanical CAD software to accelerate the

design process, and make it more convenient and less error-prone. By using our robust al-

gorithm of multiple inlier structures, the 3D points on one surface can be easily grouped, as

illustrated in Fig.7.6. Similar to the pixel editing in Photoshop, modification of the cloud data-

set can be directly done on the point level, without generating a compact solid model.

Two problems have to be solved first to realize the above concept:

• Real time processing for the surface estimation in 3D point cloud.

• A user interface to support the entire design pipeline.

To reach real time processing, multi-threading and parallel computation are necessary. Most

of the processing time in our robust algorithm currently is spent on the initialization of elemen-

tal subsets, calculation of the Mahalanobis distances and the sorting. All of these procedures

95

Figure 7.6: Surface selection tool based on robust estimation algorithm.

can be adapted into the parallel process on multi-core CPU and Graphics Processing Unit.

When an interactive user interface is developed, which could also gain access to all the levels

of the structure-from-motion pipeline, direct modification of the 3D point cloud can be easily

achieved in the CAD systems.

Finally, a compatible user interface to edit point cloud, is probably the greatest challenge

beyond the algorithms. The virtual reality provides a solid platform to visualize the 3D data,

while it is still an open question how to best display the points, and provide feedback to the

designers. Different from the current feature-based modeling, the new design tools should

adapt into the work on point level.

“Just as propeller powered aircraft could not compete with jets, neither will today’s CAD

software be able to compete with new products on the imminent horizon.” [7]

96

References

[1] “3D Systems, Inc. Stereolithography Interface Specification, July 1988.”

[2] “Autodesk ReMake.” https://remake.autodesk.com/.

[3] “CATIA, Dassault Systèmes.” www.3ds.com/catia/official-site.

[4] “CloudCompare release history.”
http://www.cloudcompare.org/release/history.txt.

[5] “Geomagic.” http://www.geomagic.com/.

[6] “Google maps.” https://www.google.com/streetview/.

[7] “History of CAD/CAM, CADAZZ, 2004.”
http://www.cadazz.com/cad-software-history.htm.

[8] “Hopkins 155 dataset.” http://www.vision.jhu.edu/data/hopkins155/.

[9] “OpenCV.” http://opencv.org/.

[10] “PTC Creo.” http://www.ptc.com/cad/creo.

[11] “Siemens NX.” https://www.plm.automation.siemens.com/en us/products/nx/.

[12] “Solidworks, Dassault Systèmes.” http://www.solidworks.com/.

[13] Y. Adato, Y. Vasilyev, O. Ben-Shahar, and T. Zickler, “Toward a theory of shape from specular
flow,” in ICCV2007, 2007.

[14] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz, and R. Szeliski, “Buil-
ding Rome in a day,” Communications of the ACM, vol. 54(10), pp. 105–112, 2011.

[15] M. Agrawal and K. Konolige, “Real-time localization in outdoor environments using stereo vi-
sion and inexpensive gps,” in ICPR2006, volume 3, 2006, pp. 1063–1068.

[16] M. E. Algorri and F. Schmitt, “Surface reconstruction from unstructured 3D data,” in Computer
graphics forum, Blackwell Science Ltd, volume 15(1), 1996, pp. 47–60.

[17] G. A. Atkinson and E. R. Hancock, “Recovery of surface orientation from diffuse polarization,”
IEEE Trans. Image Process, vol. 15, pp. 1653–1664, 2006.

[18] B. Babic, N. Nesic, and Z. Miljkovic, “A review of automated feature recognition with rule-based
pattern recognition,” Computers in Industry, vol. 59, no. 4, pp. 321–337, 2008.

[19] B. Babic, N. Nesic, and Z. Miljkovic, “A review of automated feature recognition with rule-based
pattern recognition,” Computers in Industry, vol. 59(4), pp. 321–337, 2008.

[20] H. Badino, D. Huber, Y. Park, and T. Kanade, “Fast and accurate computation of surface normals
from range images,” in ICRA1996, IEEE Int. Conf. on Robotics and Automation, 2011, pp. 3084–
3091.

[21] S. Baker and I. Matthews, “Lucas-Kanade 20 years on: A unifying framework,” Intl. J. of Com-
puter Vision, vol. 56(3), pp. 221–255, 2004.

[22] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A database and
evaluation methodology for optical flow,” Intl. J. of Computer Vision, vol. 92(1), pp. 1–31, 2011.

[23] R. Bartels, J. Beatty, and B. Barsky, An introduction to splines for use in computer graphics and
geometric modeling. Morgan Kaufmann, 1995.

97

[24] S. Basah, A. Bab-Hadiashar, and R. Hoseinnezhad, “Conditions for motion-background segmen-
tation using fundamental matrix,” IET Comput. Vis., vol. 3, pp. 189–200, 2009.

[25] C. Beder and W. Förstner, “Direct solutions for computing cylinders from minimal sets of 3D
points,” in ECCV2010, volume 3952, Springer, 2010, pp. 135–146.

[26] P. Benkő, R. R. Martin, and T. Várady, “Algorithms for reverse engineering boundary represen-
tation models,” Computer-Aided Design, vol. 33(11), pp. 839–851, 2001.

[27] E. Boyer and M. Berger, “3D surface reconstruction using occluding contours,” Intl. J. of Com-
puter Vision, vol. 22, pp. 219–233, 1997.

[28] H. Chen and P. Meer, “Robust regression with projection based M-estimators,” in ICCV2003,
2003, pp. 878–885.

[29] Y. Cheng, J. A. Lopez, O. Camps, and M. Sznaier, “A convex optimization approach to robust
fundamental matrix estimation,” in CVPR2015, 2015, pp. 2170–2178.

[30] O. Chum and J. Matas, “Matching with PROSAC - Progressive sample consensus,” in
CVPR2005, volume I, 2005, pp. 220–226.

[31] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,” IEEE
Trans. Pattern Anal. Mach. Intel., vol. 24, pp. 603–619, 2002.

[32] K. Cornelis, F. Verbiest, and L. V. Gool, “Drift detection and removal for sequential structure
from motion algorithms,” IEEE Trans. Pattern Anal. Machine Intell., vol. 26(10), pp. 1249–1259,
2004.

[33] A. P. Cracknell and L. Hayes, Introduction to Remote Sensing. CRC Press, second edition, 2007.

[34] B. Curless, “From range scans to 3D models,” Computer Graphics, vol. 33, no. 4, pp. 38–41,
1999.

[35] J. E. Deschaud and F. Goulette, “A fast and accurate plane detection algorithm for large noisy
point clouds using filtered normals and voxel growing,” in 3D Processing, Visualization and
Transmission Conference, 2010.

[36] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory, and applications,”
IEEE Trans. Pattern Anal. Mach. Intel., vol. 35, pp. 2765–2781, 2013.

[37] C. Engels, H. Stewénius, and D. Nistér, “Bundle adjustment rules,” Photogrammetric computer
vision, vol. 2, pp. 124–131, 2006.

[38] O. D. Faugeras, Q. Luong, and S. Maybank, “Camera self-calibration: Theory and experiments,”
in ECCV1992, 1992, pp. 321–334.

[39] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography,” Comm. Assoc. Comp. Mach, vol. 24,
pp. 381–395, 1981.

[40] A. W. Fitzgibbon, G. Cross, and A. Zisserman, “Automatic 3D model construction for turn-
table sequences,” in Workshop 3D Structure from Multiple Images of Large-scale Environments,
SMILE, 1998, pp. 154–169.

[41] Y. Furukawa and C. Hernández, “Multi-view stereo: A tutorial,” Foundations and Trends R© in
Computer Graphics and Vision, vol. 9(1-2), pp. 1–148, 2015.

[42] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multi-view stereopsis,” IEEE Trans.
Pattern Anal. Mach. Intel., vol. 32, pp. 1362–1376, 2010.

[43] S. Gumhold, X. Wang, and R. S. MacLeod, “Feature extraction from point clouds,” in IMR, 2001.

[44] J. Han, M. Pratt, and W. C. Regli, “Manufacturing feature recognition from solid models: a status
report,” IEEE Transactions on Robotics and Automation, vol. 16(6), pp. 782–796, 2000.

98

[45] C. Harris and M. Stephens, “A combined corner and edge detector,” in 4th Alvey Vision Confe-
rence, 1988, pp. 147–151.

[46] R. I. Hartley, “Theory and Practice of Projective Rectification,” IJCV, vol. 35(2), pp. 115–127,
1999.

[47] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge Uni-
versity Press, second edition, 2004.

[48] T. Hassner, L. Assif, and L. Wolf, “When standard RANSAC is not enough: Cross-media visual
matching with hypothesis relevancy,” Machine Vision and Applications, vol. 25, pp. 971–983,
2014.

[49] A. Henn, G. Gröger, V. Stroh, and L. Plümer, “Model driven reconstruction of roofs from sparse
LIDAR point clouds,” ISPRS Journal of photogrammetry and remote sensing, vol. 76, pp. 17–29,
2013.

[50] G. B. Hughes and M. Chraibi, “Calculating ellipse overlap areas,” Comput. Visual Sci., vol. 15,
pp. 291–301, 2012.

[51] H. Isack and Y. Boykov, “Energy-based geometric multi-model fitting,” International J. of Com-
puter Vision, vol. 97, pp. 123–147, 2012.

[52] H. Jin, S. Soatto, and A. Yezzi, “Multi-view stereo reconstruction of dense shape and complex
appearance,” Intl. J. of Computer Vision, vol. 63(3), pp. 175–189, 2005.

[53] S. Joshi and T. C. Chang, “Graph-based heuristics for recognition of machined features from a
3D solid model,” Computer-Aided Design, vol. 20(2), pp. 58–66, 1988.

[54] K. Kanatani, “Ellipse fitting with hyperaccuracy,” IEICE Trans. Inf. & Syst., vol. E89-D, pp.
2653–2660, 2006.

[55] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,” ACM Transactions on
Graphics (TOG), vol. 32(3), p. 29, 2013.

[56] I. Lavva, E. Hameiri, and I. Shimshoni, “Robust methods for geometric primitive recovery and
estimation from range images,” IEEE Trans. Sys. Man and Cybernetics B, vol. 38, pp. 826–845,
2008.

[57] K. H. Lee and H. Woo, “Direct integration of reverse engineering and rapid prototyping,” Com-
puters & Industrial Engineering, vol. 38, no. 1, pp. 21–38, 2000.

[58] M. Lhuillier and L. Quan, “A quasi-dense approach to surface reconstruction from uncalibrated
images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27(3), pp. 418–433, 2005.

[59] R. Litman, S. Korman, A. Bronstein, and S. Avidan, “Inverting RANSAC: Global model de-
tection via inlier rate estimation,” in CVPR2015, 2015, pp. 5243–5251.

[60] H. C. Longuet-Higgins, “A computer algorithm for reconstructing a scene from two projections,”
Nature, vol. 293, pp. 133–135, 1981.

[61] C. Loop and Z. Zhang, “Computing rectifying homographies for stereo vision,” in CVPR1999,
volume 1, 1999, pp. 125–131.

[62] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International J. of Com-
puter Vision, vol. 60, pp. 91–110, 2004.

[63] B. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo
vision,” in Int. Joint Conf. on Artificial Intelligence, 1981, pp. 674–679.

[64] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An Invitation to 3-D Vision: From Images to
Geometric Models. Springer, 2004.

[65] M. Mantyla, D. Nau, and J. Shah, “Challenges in feature based manufacturing research,” Com-
mun. ACM, vol. 39(2), pp. 77–85, 1996.

99

[66] B. Matei and P. Meer, “Optimal rigid motion estimation and performance evaluation with boot-
strap,” in CVPR1999, volume 1, 1999, pp. 339–345.

[67] C. McGlone, E. Mikhail, and J. Bethel, Manual of Photogrammetry. ASPRS, fifth edition, 2004.

[68] O. Miksik and K. Mikolajczyk, “Evaluation of local detectors and descriptors for fast feature
matching,” in 21st International Conference on Pattern Recognition, 2012.

[69] S. Mittal, S. Anand, and P. Meer, “Generalized projection-based M-estimator,” IEEE Trans. Pat-
tern Anal. Mach. Intel., vol. 34, pp. 2351–2364, 2012.

[70] L. Moisan, P. Moulon, and P. Monasse, “Automatic homographic registration of a pair of images,
with a contrario elimination of outliers,” Image Proc. Online, vol. 2, pp. 56–73, 2012.

[71] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic algorithm confi-
guration,” VISAPP, vol. 1, pp. 331–340, 2009.

[72] D. Nistér, “Untwisting a projective reconstruction,” Intl. J. of Computer Vision, vol. 60(2), pp.
165–183, 2004.

[73] T. T. Pham, T. J. Chin, J. Yu, and D. Suter, “The random cluster model for robust geometric
fitting,” IEEE Trans. Pattern Anal. Mach. Intel., vol. 36, pp. 1658–1671, 2014.

[74] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J. Frahm, “USAC: A universal framework
for random sample consensus,” IEEE Trans. Pattern Anal. Mach. Intel., vol. 35, pp. 2022–2038,
2013.

[75] R. Raguram, J.-M. Frahm, and M. Pollefeys, “A comparative analysis of RANSAC techniques
leading to adaptive real-time random sample consensus,” in ECCV2008, volume 5303, Springer,
2008, pp. 500–513.

[76] F. Schaffalitzky and A. Zisserman, “Geometric grouping of repeated elements within images,” in
Shape, Contour and Grouping in Computer Vision, Springer, 1999, pp. 165–181.

[77] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspon-
dence algorithms,” Intl. J. of Computer Vision, vol. 47, pp. 7–42, 2002.

[78] J. L. Schönberger and J. M. Frahm, “Structure-from-motion revisited,” in CVPR2016, 2016, pp.
4104–4113.

[79] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A comparison and evaluation
of multi-view stereo reconstruction algorithms,” in CVPR2006, 2006, pp. 519–528.

[80] E. Serradell, M. Özuysal, V. Lepetit, P. Fua, and F. Moreno-Noguer, “Combining geometric and
appearance priors for robust homography estimation,” in ECCV2010, volume 6313, Springer,
2010, pp. 58–72.

[81] G. Sohlenius, “Concurrent engineering,” CIRP Annals-Manufacturing Technology, vol. 41(2),
pp. 645–655, 1992.

[82] C. Strecha, W. V. Hansen, L. V. Gool, P. Fua, and U. Thoennessen, “On benchmarking camera
calibration and multi-view stereo for high resolution imagery,” in CVPR2008, 2008, pp. 1–8.

[83] K. H. Strobl, E. Mair, T. Bodenmüller, S. Kielhöfer, W. Sepp, M. Suppa, D. Burschka, and G. Hi-
rzinger, “The self-referenced DLR 3D-modeler,” in IEEE/RSJ Intelligent Robots and Systems,
IROS 2009, 2009, pp. 21–28.

[84] P. Sturm, “Critical motion sequences for the self-calibration of cameras and stereo systems with
variable focal length,” in 10th British Machine Vision Conference, 1999, pp. 63–72.

[85] Z. L. Szpak, W. Chojnacki, and A. van den Hengel, “Guaranteed ellipse fitting with a confidence
region and an uncertainty measure for centre, axes, and orientation,” J. Math. Imaging Vision,
vol. 52, pp. 173–199, 2015.

100

[86] R. B. Tennakoon, A. Bab-Hadiashar, Z. Cao, R. Hoseinnezhad, and D. Suter, “Robust model fit-
ting using higher than minimal subset sampling,” IEEE Trans. Pattern Anal. Mach. Intel., vol. 38,
pp. 350–362, 2016.

[87] R. B. Tilove and A. A. G. Requicha, “Closure of boolean operations on geometric entities,”
Computer-Aided Design, vol. 12, no. 5, pp. 219–220, 1980.

[88] C. Tomasi and T. Kanade, “Shape and motion from image streams under orthography: A factori-
zation approach,” Intl. J. of Computer Vision, vol. 9(2), pp. 137–154, 1992.

[89] B. Triggs, P. McLauchlan, R. I. Hartley, and A. Fitzgibbon, “Bundle adjustment - a modern
synthesis,” Vision Algorithms, pp. 298–372, 1999.

[90] J. H. Vandenbrande and A. A. G. Requicha, “Spatial reasoning for the automatic recognition of
machinable features in solid models,” IEEE Trans. Pattern Anal. Machine Intell., vol. 15, pp.
1–17, 1993.

[91] T. Varady, R. R. Martin, and J. Cox, “Reverse engineering of geometric models - An intro-
duction,” Computer-Aided Design, vol. 29(4), pp. 255–268, 1997.

[92] A. Vedaldi, H. Jin, P. Favaro, and S. Soatto, “KALMANSAC: Robust filtering by consensus,” in
ICCV2005, volume 1, 2005, pp. 633–640.

[93] T. Viéville and D. Lingrand, “Using singular displacements for uncalibrated monocular vision
systems,” in ECCV1996, 1996, pp. 207–216.

[94] H. Wang, T.-J. Chin, and D. Suter, “Simultaneously fitting and segmenting multiple-structure
data with outliers,” IEEE Trans. Pattern Anal. Mach. Intel., vol. 34, pp. 1177–1192, 2012.

[95] C. Wu, “VisualSFM: A visual structure from motion system,” http://ccwu.me/vsfm/, 2011.

[96] C. Wu, “Towards linear-time incremental structure from motion,” in Inter. Conf. of 3D Vision,
2013, pp. 127–134.

[97] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz, “Multicore bundle adjustment,” in CVPR2011,
2011, pp. 3057–3064.

[98] G. Xu and Z. Zhang, “Epipolar geometry in stereo, motion and object recognition,” Kluwer
Academic Publishers, 1996.

[99] X. Yang and P. Meer, “Robust estimation of multiple inlier structures.” Submitted to
IEEE Trans. Pattern Anal. Mach. Intell., 2017. For a previous version, see also URL
https://arxiv.org/abs/1609.06371.

[100] X. Yang, P. Meer, and H. C. Gea, “Robust recovery of 3D geometric primitives from point cloud.”
Submitted to ASME IDETC/CIE 2017.

[101] G. Zeng, S. Paris, L. Quan, and F. Sillion, “Accurate and scalable surface representation and
reconstruction from images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29(1), pp. 141–158,
2007.

[102] W. Zhang, H. Wang, Y. Chen, K. Yan, and M. Chen, “3D building roof modeling by optimizing
primitive’s parameters using constraints from LiDAR data and aerial imagery,” Remote Sensing,
vol. 6(9), pp. 8107–8133, 2014.

