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A New Approach to Robust Estimation of
Parametric Structures

Xiang Yang Peter Meer Fellow, IEEE and Jonathan Meer

Abstract—Most robust estimators require tuning the parameters of the algorithm for the particular application, a bottleneck for practical
applications. The paper presents the Multiple Input Structures with Robust Estimator (MISRE), where each structure, inlier or outlier,
is processed independently. The same two constants are used to find the scale estimates over expansions for each structure. The
inlier/outlier classification is straightforward since the data is processed and ordered with the relevant inlier structures listed first. If the
inlier noises are similar, MISRE’s performance is equivalent to RANSAC-type algorithms. MISRE still returns the correct inlier estimates
when inlier noises are very different, while RANSAC-type algorithms do not perform as well. MISRE’s failures are gradual when too
many outliers are present, beginning with the least significant inlier structure. Examples from 2D images and 3D point clouds illustrate
the estimation.

Index Terms—scale estimation, density based classification, structures segmentation
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1 INTRODUCTION

T His paper describes the Multiple Input Structures with
Robust Estimator (MISRE). MISRE has three advantages

relative to other robust estimators. First, each structure, inlier
or outlier, is processed independently. Second, the same two
constants are used in every estimation, rather than being
specified by the user. Finally, its failures are gradual when
too many outliers are present in the data, with the stronger
structure(s) still recovered. MISRE’s performance is equivalent
to RANSAC-type algorithms when inlier scales are similar, but
MISRE is superior when inlier scales are very different.

A structure is defined as the estimated points in an iteration.
Inlier structures have an objective function which can be
linear, e.g., a 3D plane, or nonlinear, e.g., a homography
between two 2D images. The outliers do not have a defined
configuration. Robust estimators are NP-hard [6] and have to
be approximated in an algorithm. The building block in robust
regressions is the elemental subset. An elemental subset is a
randomly chosen minimum number of input points required to
estimate the objective function. The returned parameters are
correct only for inlier structures.

RANdom SAmple Consensus (RANSAC) [15] was the first
algorithm for robust estimation in computer vision. Before
estimation, the user must specify a scale for the inliers.
RANSAC can fail if there are multiple inlier structures, if an
image is resized, if in a sequence of images the scale changes
greatly, or if the relevance of a hypothesis is not explicitly
considered [19]. Modern cameras and sensors generally keep
the inlier scales small and therefore predictable; the scale is
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generally not explicitly given. However, the scale threshold is
always present in the code, even if the user is not aware of it.

The literature on variants of RANSAC is enormous. Re-
views published in [8], [36] on PROSAC [9], MLESAC [45],
Lo-RANSAC [10] describe how these algorithms use different
ways to generate random sampling and/or probabilistic rela-
tionships. More recently, binomial constraints [4], maximum
consensus [25], [41], graph-cut RANSAC [1], latent-RANSAC
[23], convolutional neural networks for robust estimation [5],
[31], have been tried.

The scale threshold for inliers can be based on Gaussian
distributions in an universal framework for RANSAC (USAC)
[35]. Using a statistical distribution for the inliers is not valid
at all times, and USAC was outperformed using probabilistic
reasoning [26].

Two algorithms, J-linkage [44] and T-linkage [28], use
RANSAC to obtain the inliers by clustering through an itera-
tive process. Sec.6.1 shows that these two algorithms cannot
handle the estimation of 2D lines if the inlier scales are
different.

A soft-thresholding RANSAC [30] obtains the correct result
with 90% outliers. In a more sophisticated example, [46] use
RANSAC combined with a structure from motion algorithm
and extended Kalman filter to tolerate 60% outliers. However,
the validity of these algorithms depends on the constants
chosen, necessitating input from the user. As another approach,
the k-th ordered absolute residual can yield useful results [47],
but only if the number of inlier structures is specified before
estimation [13], a major limitation.

Propose Expand and Re-estimate Labels (PEARL) applies
an energy-minimization-based procedure to computer vision
[21]. Beginning with RANSAC, alternative steps of expansion
for inlier classification and re-estimation of the errors are done
in sequence. The Random Cluster Model SAmpler (RCMSA)
[34] is similar, but uses simulated annealing for the energy
minimization.

In some cases, constants are found only in the code and
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Fig. 1. Homography estimation in RCMSA [34]. Top left:
first image with input points. Top right: second image
classified with model complexity value 10. Bottom left:
model complexity 50. Bottom right: model complexity 100.

must be adjusted to tailor an algorithm for a particular task.
For example, model complexity in RCMSA influences the
estimation, shown for Raglan castle (Fig.1). The required
model complexity for homography is 10, but for fundamental
matrix, it is 100. The estimator does not work if the model
complexity is not correctly chosen.

Building a robust estimator with each inlier structure es-
timated independently fell short in [29]. The generalized
projection-based M-estimator (gpbM) localized the inlier
scales in dense regions using a cumulative distribution type
function computed with all points still active. But the estimator
uses only a small, given percentage of the points [29, Fig.3],
making it not completely independent between the structures.
The algorithm stops once the processing fell below an other
given scalar constant.

While the goal of robust estimators is the same, to find inlier
structures with maximum point supports while thresholding
out outliers, the aforementioned RANSAC-type estimators
rely on application-dependent thresholds. The Multiple Input
Structures with Robust Estimator (MISRE) takes a different
approach, using the same two constants to identify structures
and succeeds in estimating the scale of each structure, inlier
or outlier, independently. The algorithm first rewrites the
nonlinear objective function of the input into a linear function.
The set-up of the estimation for the linear expression is
presented in Section 2.

The detailed algorithm is described in Section 3. In all the
2D or 3D experiments, MISRE uses the same two constants to
estimate the scales. The number of elemental subsets is given
by the user, but MISRE is not sensitive to this value above a
certain level, as shown in Section 3.5.

In Section 4, several applications are presented, both for
2D images and 3D point clouds. The use of MISRE in the
structure from motion algorithm (SfM) is also described.

Like all robust estimators, MISRE fails if the number of
outliers increases above a limit defined by the input data. Sec-
tion 5 shows that failures start with the least significant inlier
structure, since the structures are estimated independently.

Section 6.1 compares the performance of several other ro-

bust estimators to MISRE. Extensions of MISRE are sketched
in Section 6.2.

2 FROM INPUT TO PARAMETER ESTIMATION

When a nonlinear objective function f(y) is transformed into
a linear function xT θ−α, the products of the elements of an
input measurement also become separate variables. The linear
function’s coefficients are called carriers

f(y) −→ x>θ − α =
m∑
i=1

xiθi − α (1)

and the parameters are transformed into the vector θ and scalar
α. The number of unknowns in θ are equal to the number of
unknowns derived from f(y).

For example, f(y) is a nonlinear objective function for an
ellipse

f(y) = (y − yc)
>Q(y − yc)− 1 (2)

if Q is a symmetric 2 × 2 positive definite matrix and yc
is the position of the ellipse center. From the input variable
y = [x y]> ∈ R2, dimension l = 2, the carrier vector x =
[x y x2 xy y2]> ∈ R5, dimension m = 5, is obtained.
The condition 4θ3θ5 − θ24 > 0 has to be satisfied for (2) to
represent an ellipse.

A single input y can result in multiple carrier vectors

x[c]>θ − α c = 1, . . . ζ (3)

corresponding to ζ different x[c]. For example, the objective
function of 2D homography

f(y) = [x′ y′ 1]> −H [x y 1]> (4)

connects the projective coordinates of two planes in two 2D
images and the 3 × 3 matrix H has to be found. The input
variable y = [x y x′ y′]> has ζ = 2 carrier vectors because
there are x and y correspondences.

The set of equations in (3) are set equal to zero for an
elemental subset. me = dmζ e are needed input points to
define θ and α. The intercept α is the average projection
of the m carrier vectors m−1

∑ζ
c=1

∑me
i=1 x

[c]>
i θ. An ellipse

(l = 2, m = 5, ζ = 1) needs five points. A homography
(l = 4, m = 8, ζ = 2) needs four point pairs to give
eight correspondences. The constraint θTθ = 1 reduces
the ambiguity of θ to orthonormal matrices. The input is
normalized and each obtained structure is mapped back to the
original space [18, Sec.4.4.4].

An inlier structure has an l × l covariance matrix σ2Cy,
where σ is unknown. The σ can change with each structure.
The matrix Cy has to be provided before estimation, which
is possible only if there is additional information about the
inliers. Otherwise, the inliers are set as independent and
identically distributed with Cy equal the identity matrix Il×l.
Section 6.2 sketches a solution for finding [σ2

1 . . . σ
2
l ]Il×l.

The y and x[c] define the m × l Jacobian matrix for a
carrier vector. Each column of the Jacobian matrix contains the
derivatives of the m carriers with respect to one of the l input
measurements. For nonlinear objective functions, the Jacobian
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depends on the input points. For example, the transpose of the
5× 2 Jacobian matrix for the ellipse is

J>xi|yi =

[
1 0 2xi yi 0
0 1 0 xi 2yi

]
. (5)

The m×m covariance of a carrier vector σ2C
[c]
i , with Cy =

Il×l, is
σ2C

[c]
i = σ2J

x
[c]
i |yi

J>
x
[c]
i |yi

(6)

with the scale σ of the structure unknown.
For a θ, the c-s carrier vector is projected to the scalar

z
[c]
i = x

[c]>
i θ. The variance of z[c]i is σ2H

[c]
i = σ2θ>C

[c]
i θ.

The Mahalanobis distance, without the scale σ, specifies how
far the projection z[c]i is from α

d
[c]
i =

√(
x
[c]>
i θ − α

)> (
H

[c]
i

)−1 (
x
[c]>
i θ − α

)
(7)

=
|x[c]>
i θ − α|√
θ>C

[c]
i θ

≥ 0 c = 1, . . . ζ i = 1, . . . n

being zero for the elemental subset.
Each input point yi gives a ζ-dimensional vector

di =
[
d
[1]
i . . . d

[ζ]
i

]>
. (8)

To be conservative, we retain the largest Mahalanobis distance
d
[c̃i]
i = d̃i among the ζ values

c̃i = arg max
c=1,...,ζ

d
[ci]
i . (9)

The carrier vector x
[c̃i]
i = x̃i yields the covariance matrix

C̃i, the scalar projection z̃i with variance H̃i, and the largest
Mahalanobis distance d̃i (without σ). Since the variance is the
same for each component of yi, it does not matter which di
is chosen for d̃i. For the same θ, but a different i, the d̃i can
be different and the Mahalanobis distances are therefore no
longer rotational invariant. For each structure, inlier or outlier,
the scale σ has to be estimated.

3 MULTIPLE STRUCTURES RECOVERY

Each structure corresponds to an iteration with n ≤ nT points,
where nT is the total number of data points.

The largest Mahalanobis distances d̃i, i = 1, . . . , n, are
used in each of the M elemental subset trials. The user
specifies M , as discussed in Section 3.5. MISRE uses the
minimum sum of ascendingly ordered Mahalanobis distances,
corresponding to a fixed percent of the entire data, as the
starting point for the expansion for a structure. The current
expansion terminates when the average number of points in
the processed segments is at least twice the number of points
in the next segment. When the next expansion no longer
can begin, the current structure’s expansions end. The largest
Mahalanobis distance in the region of interest is the scale
estimate. The iterations continue until insufficient data remains
and then all the structures are sorted. This strategy separates
the scale estimates of the inliers from those of the outliers if
there are not too many outliers present.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Two synthetic ellipses and outliers. (a) Input data.
(b) Mahalanobis distances of the first 400 points of the
first d̃[i](w). (c) The nε points in red in the structure. (d)
Stylized example of a d̃[i](w) sequence. (e) Expansion with
∆d5. (f) Expansion with ∆d10.

An iteration consists of three steps: scale estimation (Section
3.1), refinement with mean shift (Section 3.2) and finding the
density of the structure (Section 3.3). The same two constants
are used for every scale estimate. When too few data points
remain for a new scale estimation, the structures are classified
by their densities (Section 3.4). Multiple Input Structures
with Robust Estimator (MISRE) does not distinguish between
inlier and outlier structures; designating structures as inliers
or outliers is done by the user.

3.1 Scale Estimation
The first MISRE constant is the number nε, satisfying two
conditions. First, it is five percent of the total data, 0.05nT ;
second, it must be five times larger than the number of points
in an elemental subset [18, p.182]. The second condition ap-
plies when the elemental subset in large, e.g., 2D homography,
and the number of total samples is small. The value of nε is
the same for all the iterations. The five percent condition is
conservative, since estimated inlier structures normally make
up more than five percent of the data. Section 3.5 shows that
this level is an adequate starting point.

For an elemental subset, the largest Mahalanobis distances
d̃i, i = 1, . . . , n, are sorted in ascending order d̃[i]. The M dif-
ferent elemental subsets give d̃[i](j), j = 1, . . . ,M sequences.
The sequence with the minimum sum of Mahalanobis distances
for nε points

min
j∈M

nε∑
i=1

d̃[i](j) (10)

defines the working sequence d̃[i](w), i = 1, . . . , n, with the
parameters θ̂w and α̂w. For a sufficiently large M , the sorted
points at the beginning of the working sequence come from
the same structure, if there still is a significant inlier structure.
Subsequent structures have different d̃[i](w), until the number
of points becomes less than nε.

Two synthetic ellipses, each with nin = 200 inlier points,
along with and nout = 200 outliers, are used to illustrate the
MISRE algorithm throughout this section (Fig.2a). The inlier
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points are corrupted by Gaussian noise with σg = 5, 10, but the
specific distribution is not relevant. The number of elemental
subsets is M = 2000 per iteration.

From the total of 600 input points, the first 400 sorted
Mahalanobis distances for the first d̃[i](w) are shown in Fig.2b.
The nε = 0.05 × 600 = 30 points are drawn in red for the
structure with σg = 5 (Fig.2c).

Divide the sequence d̃[i](w), i = 1, . . . , n, into equal Maha-
lanobis distances of ∆dη , where ∆dη corresponds to the first
η percentage of the points (Fig.2d). The number of points in
the first segment is n1 = η%nT . For an η, the expansion
increases each time by one ∆dη . The k-th∆dη segment has
nk points.

The second MISRE constant is the ratio to stop (r to s),
equal to two: if an expansion’s average number of points in the
of already-processed segments is larger than twice the number
of points in the next segment, the expansion finishes

1

k

k∑
i=1

ni > 2 nk+1 k = 1, 2, 3 . . . (11)

When (11) is satisfied, the boundary between the structure
and the rest of the points has been found, k = ktη . Section 3.5
shows that MISRE’s performance is not meaningfully affected
by different values of r to s.

Due to the randomness of the data, the scale estimate cannot
be obtained only from one expansion. In Fig.2e, the expansion
with ∆d5 stops at kt5 = 8 (red bar) giving σ̂ = 8.06. In Fig.2f,
the expansion with ∆d10 stops at kt10 = 5, giving σ̂ = 11.10.

The region of interest is defined from ∆dη = ∆d5, the
lowest limit in the scale estimation, to the first η where ∆dη
no longer can expand. If the first expansion begins at η > 5%,
the region of interest begins there as well.

Each iteration starts from the same number of points
corresponding to nε eliminating the potential bias between
a structure detected first and a structure detected later. The
independent expansions increase by 1% each time to η =
6%, 7% . . . where the percentages correspond to the total
number of data points.

In Fig.3a, the blue points indicate the Mahalanobis distances
corresponding to the length of ∆dη . An expansion process
ends at the red point where condition (11) is met. The region
of interest in the example is from ∆d5 to ∆dηf , which is 22%
in this example. Condition (11) holds for η = 23% and ∆d23
can no longer expand, as seen in Fig.3b.

The estimated scale is the largest Mahalanobis distance in
the region of interest

σ̂ = max
η=5%,...,ηf

ktη∆dη. (12)

In Fig.3a, the scale estimate is σ̂ = 12.54 with nσ̂ points
between α̂w ± σ̂. The scale estimate returned in an iteration
is the maximum among many scales in the region of interest.
This is similar to a nonparametric bootstrap-type estimator
because only the σ-s in the region of interest participate [12].

Fig.2b is a typical example for an inlier structure. Once η
is large enough that the second segment of ∆dη takes points
from the steeper slope given by outliers (Fig.3a), the region
of interest will end shortly (Fig.3b).

(a) (b)

Fig. 3. Finding the scale estimate. (a) Independent ex-
pansions in the region of interest. (b) For η% = 23%, ∆dη
no longer can expand.

3.2 Refinement with Mean Shift

From the nσ̂ data points falling inside the scale estimate (12)
another N = M/10 elemental subsets are generated. Since σ̂
is known, this number of trials is sufficient.

The complete variance of z̃i is

B̃i = σ̂2H̃i = σ̂2θ>C̃iθ = σ̂2θ>Jx̃i|yiJ
>
x̃i|yiθ. (13)

All the n > nσ̂ data points participate in the mean shift [11].
With z̃i = x̃>i θ, i = 1, . . . , n, the Epanechnikov kernel has
the profile for nonnegative squared Mahalanobis distances

κ(u) =

{
1− u (z − z̃i)> B̃−1i (z − z̃i) ≤ 1

0 (z − z̃i)> B̃−1i (z − z̃i) > 1.
(14)

Mean shift returns the modes of the function

arg max
α̂

n∑
i=1

κ
(

(z − z̃i)> B̃−1i (z − z̃i)
)

(15)

and we look for the closest mode from α, the scalar estimate.
The derivative g(u) = −κ′(u)

g(u) = 1 0 ≤ u ≤ 1 g(u) = 0 u > 1 (16)

and all the points inside a window contribute equally. Let the
current value be z = zold. The next value znew is computed
by taking the gradient of (15) equal to zero

znew =

[
n∑
i=1

g (ui)

]−1[ n∑
i=1

g (ui)z̃i

]
(17)

with z̃i-s more distant from zold than ±
√
B̃i having weights

g(ui) equal to zero. Many of the n points do not converge.
The mode estimate comes from the elemental subset whose
window at convergence has the most points z̃i, giving α̂.

From the points converging to α̂, the nonrobust total least
squares (TLS) estimate finds θ̂

tls
, α̂tls and σ̂tls. There are

nst points in the region α̂tls ± σ̂tls. In Fig.4a the estimated
structure has nst = 219 points in red and σ̂tls = 12.37.

3.3 Density of the Structure

The density for a structure is the ratio between the number of
points in the structure and the TLS scale of the structure

ρ =
nst
σ̂tls

. (18)
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(a) (b)

Fig. 4. Recovered structures after mean shift. (a) First
structure. (b) The three recovered structures.

For Fig.4a the density is ρ = 17.7. The nst points are removed
from the input and the processing of a next structure begins.

3.4 Sorting Based on Density
The processing continues until the remaining input data be-
comes smaller than nε. The detected structures are sorted in
descending order based on the densities. Until this point, we
did not distinguish between inlier and outlier structures.

In Fig.4b three structures were estimated
red green blue

nr. points : 219 210 163
TLS scale : 12.37 28.4 708.7
density : 17.7 7.4 0.23

The significant inlier structures are first because the inlier scale
estimates are much smaller than the outlier scale estimates.
If there are too many outliers present in the data, there can
be interaction between the inliers and outliers. However, this
occurs in a different way than in RANSAC, as discussed in
Section 5.

The user must specify the cutoff between inlier structures
and outliers after estimation by noting where the increase in
σ̂tls is substantial and marked from one structure to the next.
This is equivalent with the number of returned inlier structures.
If the number of outliers is not too great, the increase in σ̂tls

is always much larger when moving from the weakest inlier
structure to the outliers.

In the example above, there is a large jump in σ̂tls from the
second (green) to the third (blue) structure, indicating that the
third structure is outliers.

3.5 Sensitivity to Parameter Values
The constants used in MISRE, ε and ratio to stop (r to s),
provide a wider range of robustness than other algorithms.
This is illustrated in Fig.5, which shows how estimation varies
with values of ε and r to s. There are two inlier structures,
the ellipses in Fig.2a: nin = 200 with σg = 5, drawn in red,
and σg = 10, drawn in green. There are nout = 200. Each
inlier structure is 33% of the data. Five times each ellipse’s
elemental subset, 5× 5 = 25 points, are only equal to 4.17%
of the total data. Therefore nε = 0.05 × 600 = 30. Each
measurement is based on 100 trials.

In Fig.5a ε varies from 3% to 32%, while r to s is set to 2
and M = 2000. A structure containing fewer than 50% inlier
points is considered “missed.” Below 5%, the second condition

(a) (b)

(c) (d)

Fig. 5. The ε and r to s with ±σ, using Fig.2a as the ex-
ample. The red and green graphs correspond to ellipses
with different levels of noise, described in Section 3.5. (a)
r to s = 2, M = 2000 and ε from 3% to 32%. (b) The
output function of ε. (c) ε = 5%, M = 2000 and r to s from
1.5 to 4. (d) The output function of r to s.

for nε is not satisfied. For ε = 3% the standard deviation is
large and MISRE can return a few structures which are correct
but consist of fewer points. The σg = 10 structure is missed
several times (Fig.5b). For ε = 4% and higher, the standard
deviation is stable and the output is correct. Once the estimator
begins with expansions larger than 20%, however, the two
inlier structures are not always returned correctly (Fig.5b). If
the starting size ε is too small, it may not capture an inlier
structure. If ε is large enough that it is close to the number of
points of the inlier structure, it may begin to capture outliers
as well. As such, we choose 5% as the minimum to start the
expansions. In practice, though, an inlier structure does contain
such a small percentage of the data.

In Fig.5c, the r to s varies from 1.5 to 4, while ε = 5%
and M = 2000. When an inlier structure is analyzed, r to s
establishes the border between the inliers and the outliers. As
r to s increases beyond 2.25, not every trial ends correctly
(Fig.5d), though performance does not degrade quickly nor
catastrophically, even as r to s doubles. The structure with
σg = 10 has somewhat more errors. Performance diminishes
as it becomes more difficult to distinguish the difference
between inliers and outliers with larger r to s. We choose the
conservative r to s = 2, which errs on the side of detecting
inliers.

The number of elemental subsets M depends on the size of
the input data, the complexity of the objective function, the
noise levels of the inlier structures, the interaction among inlier
structures, the amount of outliers, etc. If there is no additional
information about the inlier structures, no theoretical M can
be set.

The M varies here from 50 to 5000, while ε = 5% and
r to s = 2.

M 50 100 200 500 1000 2000 5000
correct 56 78 84 94 100 100 100

The user should set an initial value for M and experiment
with larger values. Once the results of an estimation do not
differ for increasing values of M , further increases do not
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refine the solution. We choose M = 2000.
When the estimation gives a stable result, the estimate

can only be improved through more elaborate pre-processing.
If the number of outliers is reduced without significantly
reducing the number of inliers, the estimation begins from
a “better” input. For example, [40] shows that when the
number of consistent matches increases before estimation, the
estimator was better than PROSAC [9].

In real scenes, the inlier points are very rarely sufficiently
separated from the outliers. An estimator that can take a
wide range of inputs cannot achieve bechmark performances
in all situations, even if the thresholds are adjusted. MISRE
estimates the correct inlier structures in a large variety of
conditions. However, the output may not return 100% of the
structure; post-processing with specific thresholds is needed to
achieve a particular output.

3.6 Pseudocode of the MISRE Algorithm
Input: yi, i = 1, . . . , nT . Covariance Cy = Iy.

M elemental subsets for each structure.
Output: Sorted structures.
• For yi, i = 1, . . . , nT compute the carriers x

[c]
i

c = 1, . . . , ζ and the Jacobians J
x
[c]
i |yi

.
� n input points. M elemental subsets.

– For each θ and α find:
∗ The largest Mahalanobis distance d̃i.
∗ Sort d̃i in ascending order, d̃[i].

– Minimum sum of Mahalanobis distances for nε
points, d̃[i](w) the working sequence for i = 1, . . . , n.

• Region of expansions are from nε points until the first η
with no expansion. The largest expansion is σ̂.

• Between α̂w ± σ̂ there are nσ̂ points.
• nσ̂ points define another N = 0.1M elemental subsets.

– Mean shift trials use n > nσ̂ points:
∗ Find the closest mode to α for each trial.

– The strongest mode is α̂.
– TLS estimate given by the converged points.
– Between α̂tls ± σ̂tls there are nst points.
– Compute the density of the structure ρ = nst/σ̂

tls.
– Remove nst points from the input.

• Back to � until fewer than nε points remain.
• Sort by decreasing densities. Return the results.

The program is available at
https://github.com/MISRE

written in Python/C++ with a few 2D and 3D examples. For
robust processing in 3D, access to a complete structure from
motion (SfM) algorithm or the Autodesk commercial software
program is also needed.

4 EXPERIMENTS

In RANSAC-type estimators, users must specify parameters
before estimation, which can differ depending on the task.
MISRE always uses the same constants, making the algorithm
more straightforward. When using real images, the scales
of the inlier structures are often similar and small. Both

RANSAC-type estimators and MISRE will correctly estimate
the number of inlier structures in these cases, as will be seen
in Section 6.1.

In other data, like the synthetic experiments shown below,
the scales can be very different for each inlier structure.
Section 6.1 will show how RANSAC-type estimators can fail
in such cases. Further, while some RANSAC-type algorithms
assume Gaussian noise, e.g. [35], MISRE does not take the
type of noise distribution into account.

Examples from 2D images and 3D point clouds are es-
timated here with MISRE. Lines, ellipses, fundamental ma-
trices, and homographies are the 2D examples. For the 3D
examples, planes, spheres, and cylinders are estimated. A 3D
point cloud is obtained from a sequence of 2D images, either
by structure from motion (SfM) algorithm or by the software
program ReMake from Autodesk [37]. The interaction between
SfM and MISRE for estimation of the 3D point cloud is
described in Section 4.5.

Pre-processing and post-processing are not part of MISRE.
Pre-processing increases the number of inliers relative to the
number of outliers. Post-processing takes the given output
and attempts either to fuse several similar inlier structures
which are judged by the user to be a single structure, or
to recover additional inlier structures. These processes are
context-specific with thresholds and therefore are not part of
the generality of MISRE. The fusion problem is discussed at
the end of Section 4.4.

The processing times are measured with an i7-2617M
1.5GHz processor. The estimated structures are colored in
this order: red, green, blue, cyan, yellow, purple, sorted by
descending densities.

4.1 Lines Estimated in 2D
A 2D line has a linear objection function

f(y) = θ1x+ θ2y − α (19)

with the input variable y = [x y]> identical to x, the carrier
vector. M = 1000 for all 2D line experiments.

Five synthetic lines with nin = 300, 250, 200, 150, 100
inlier points are corrupted with 2D Gaussian noise, σg =
3, 6, 9, 12, 15 and these are nout = 350 outliers (Fig.6a). The
“weakest” line has nin = 100 points and is corrupted with
σg = 15. The estimation stops when the number of points is
less than nε = 68.

In Fig.6a the lines intersect and the expansions can pick-
up alternatively one of the lines. The scale estimate being the
maximum in the region of interest this gives the correct value
for one of the lines.

In Fig.6b, six estimated structures are identified

red green blue cyan yellow purple
nr. points : 321 282 240 161 106 240
TLS scale : 9.6 18.7 28.1 37.1 44.2 370.8
density : 33.4 15.1 8.5 4.3 2.4 0.6

where the first five are inlier structures, followed by outliers
with σ̂tls being much larger than the others.

Running 100 tests, the first four lines are correctly seg-
mented every time and the “weakest” line having the smallest
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Estimation of lines in 2D. (a) nout = 350. Five
synthetic inlier lines. (b) First five structures are inliers
followed by outliers. (c) The inlier structures. (d) Roof.
(e) Canny edges. (f) First six structures are inliers. (g)
Pole. (h) Canny edges. (i) First three structures are inliers
followed by outliers.

density becomes outliers in six out of 100 estimations. The
average processing time is 0.58 seconds.

The roof image (Fig.6d) and the pole image (Fig.6g) extract
similar-sized input data with Canny edge detection, with 8310
in Fig.6e and 8072 points in Fig.6h. The estimations stop
when the number of points are less than nε = 416 or 404,
respectively.

For the roof, the first six structures, shown in Fig.6f, are
inliers. The purple and cyan lines are not continuous in the
roof image itself. The processing time is 7.44 seconds. The
outliers have several short lines and an ellipse. The short lines
might be recovered by post-processing. In Section 6.2, we
will sketch how more than one type of inlier structures can be
recovered through multiple estimation.

For the pole, the first three inlier structures are followed by
outliers in Fig.6i. The processing time is 4.35 seconds. The
outliers are more diverse. A few shorter lines around the two
wooden crossbars might be estimated by post-processing. The
two ellipses might be recovered by multiple estimation.

4.2 Ellipses Estimated in 2D
Ellipse estimation was introduced in Section 2. The input
variable y has a nonlinear objective function

f(y) = (y − yc)
>Q(y − yc)− 1 (20)

satisfying several conditions. y = [x y]> gives the carrier
vector x = [x y x2 xy y2]>. Ellipse estimation is biased,
especially if only the large curvature part of an ellipse is given.

(a) (b) (c)

Fig. 7. Estimation in 2D of three synthetic ellipses. (a)
nout = 350. (b) First three structures are inliers followed
by outliers. (c) The inlier structures.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Ellipses in 2D real images. (a) Strawberries. (b)
Canny edges. (c) First three are inlier structures. (d)
Stadium. (e) Canny edges. (f) First four structures. See the
text also.

Taking the covariance matrix of the Gaussian inlier noise for
each point into account does not eliminate the bias, e.g., [22],
[42].

To avoid classifying line segments as very flat ellipses, we
assume the major axis cannot be more than 10 times longer
than the minor axis. The Jacobian matrix was given in (5). For
all ellipse experiments, M = 5000.

Three synthetic ellipses with nin = 300, 250, 200 inlier
points are corrupted with Gaussian noise, σg = 3, 6, 9
and nout = 350 outliers (Fig.7a). The smallest ellipse has
nin = 200 and is corrupted with the largest noise σg = 9.
The estimation stops when the number of points is less than
nε = 55.

The four structures in Fig.7b have three inlier structures
followed by outliers (Fig.7c). The nonlinear transformation of
the input influences the estimated inlier scales.

red green blue cyan
nr. points : 337 292 222 248
TLS scale : 12.1 28.9 48.0 1321.2
density : 28.0 10.1 4.6 0.2

Repeating the test 100 times, the smallest ellipse (blue)
becomes outliers ten times, the middle ellipse (green) becomes
outliers six times, while the strongest ellipse (red) is always
correct. The average processing time is 3.28 seconds.

The strawberries image (Fig.8a) and the stadium images
(Fig.8d) extract similar-sized input data with Canny edge
detection, with 4343 in Fig.8b and 4579 input points in Fig.8e.
The estimations stop when the number of points are less than
nε = 218 or 229, respectively.

The first three inlier structures for the strawberries are
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(a)

(b)

(c)

Fig. 9. Fundamental matrices estimation. (a) Truck on a
street. (b) Books on a table. (c) Dinabooks from [34].

drawn in Fig.8c. The processing time is 18.90 seconds. The
blue ellipse is estimated based only on its support.

The first four structures for stadium are shown in Fig.8f.
The processing time is 23.14 seconds. By running 100 test,
with only with the elemental subsets changing, the first two
ellipses (red and green) are estimated reliably 98 times. The
other two ellipses (blue and cyan) are less stable and only
pre-processing can help to obtain better results.

4.3 Estimation of Fundamental Matrices

The nonlinear objective function for the fundamental matrix

f(y) = [x′ y′ 1] F [x y 1]> (21)

connects projective point correspondences between two 2D
images and the estimation returns a 3× 3 matrix F of rank-2.

The two 2D images are projections from 3D scene. Objects
staying together in 3D have one structure in 2D. Objects
moving separately in 3D need separate fundamental matrices
in 2D. In [34, Sec. 6.2.2], fundamental matrices are estimated
under the title “Two-view motion segmentation”.

If only quasi-translational motions are present in 3D, only
homography can be used instead of fundamental matrix esti-
mation [2]. See also [49, Sec. 4.2.1]. Some algorithms consider
this problem but do not explicitly address it [34].

The input variable y = [x y x′ y′]
>

has an eight-dimensional carrier vector x =
[x y x′ y′ xx′ xy′ x′y yy′]

>. The transpose of the

8× 4 Jacobian matrix is

J>xi|yi =


1 0 0 0 x′i y

′
i 0 0

0 1 0 0 0 0 x′i y
′
i

0 0 1 0 xi 0 yi 0
0 0 0 1 0 xi 0 yi

 . (22)

Eight point pairs are required for the 8-point algorithm to
define θ and α. The processing is in the projective framework
and additional information is needed to recover the Euclidean
framework.

All fundamental matrix experiments have M = 5000. The
scale-invariant feature transform (SIFT) [27] is used for the
point correspondences. The distance ratio is 0.8 and some
correspondences are outliers. For repetitive features use [38].

The three example, truck in Fig.9a, books in Fig.9b, and
dinobooks in Fig.9c, have 608, 614, and 457 point pairs,
respectively. The estimations stop when the number of points
are less than nε = 40, five times the required points for a
fundamental matrix. For each pair, the image on the left shows
all the processed points, while the image on the right shows
the overlayed structures. The tables below report the results in
the same order as the three examples.

red green blue || red green blue cyan
nr. points : 407 101 51 || 192 96 221 47
TLS scale : 0.56 0.73 11.78|| 0.46 0.40 1.12 10.42
density : 727.3 139.3 4.3 || 413.4 242.8 196.8 4.5

red green blue cyan yellow
nr. points : 135 117 84 48 43
TLS scale : 0.22 0.72 0.65 0.70 23.9
density : 623.0 161.5 129.0 68.2 1.8

The processing times are between 1.75 and 2.3 seconds.
Since all inlier scale estimates are small, a scale value of, for
example, two pixels for RANSAC returns the correct output
in all three cases. MISRE’s advantage is in estimating each
structure separately with the same two constants.

In Fig.9a, the first two structures are inliers followed by
outliers. The red structure is only the camera’s action on the
static background. The green structure is the truck.

In Fig.9b, the first three structures are inliers followed by
outliers. The red and green structures are moved separately.
The blue structure also contain points from the static back-
ground of the table, which is to be expected since it did not
shift much.

In Fig.9c, the first four structures are inliers followed by
outliers. The blue and green structures are moved separately.
The first (red) and the fourth (cyan) inlier structures might be
fused together in post-processing. With more elaborate pre-
processing, the points which are now outliers (yellow) around
the blue structure, might be detected as belonging to the blue
structure.

4.4 Homographies Estimated in 2D

The nonlinear objective function for 2D homography

f(y) = [x′ y′ 1]> −H [x y 1]> (23)

connects the projective coordinates between two 2D image
planes and the 3× 3 matrix H has to be found.
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The homography is based on projections from 3D scenes.
Well-separated planes in 3D may not be well-separated in 2D
and the homography will return just a single plane correspon-
dence; see below for an example.

The input variable y = [x y x′ y′]> give two carrier
vectors x[1], x[2] for x and y correspondences, where (θ, α)
is vecH> = h

[
−x −y −1 0 0 0 x′x x′y x′

0 0 0 −x −y −1 y′x y′y y′

]h1

h2

h3

 (24)

The homography has α = 0 and the transposes of 9 × 4
Jacobian matrices are

J>
x
[1]
i |yi

=

−I2×2 04×4

x′iI2×2 02

0>2 xi yi 1
0>2 0>2 0


J>
x
[2]
i |yi

=

04×3

−I2×2
04

y′iI2×2 02

0>2 0>2 0
0>2 xi yi 1

 . (25)

For a θ the larger Mahalanobis distance, d̃i, is used for each
yi, i = 1, . . . , n. For all 2D homography experiments, M =
2000.

Two examples are from the Hopkins 155 dataset, the street
in Fig.10a and the table in Fig.10b. These 2D image pairs
have clear homographies because they have relatively small
translations in 3D.

The SIFT correspondences return 990 and 482 point pairs,
respectively. The estimations stop when the number of points
are less than nε = 50 or 40, where the latter number is bound
by the minimum number required for estimation. For each pair,
the image on the left shows all the processed points, and the
image on the right shows the overlayed structures.

red green blue cyan || red green blue cyan
nr. points : 713 101 67 105 || 107 88 165 89
TLS scale : 1.62 1.12 4.49 203.11|| 0.20 0.17 0.56 5.16
density :440.2 89.5 14.9 0.5 || 529.6 517.7 293.4 17.3

The processing times are 1.12 and 1.09 seconds.
In Fig.10a the first three structures are inliers followed

by outliers. The two orthogonal 3D planes on the bus are
estimated as one plane in 2D. A user-given RANSAC scale of
two pixels (σ = 2) will not capture all of the inlier points on
the car (the blue structure), which has σ̂tls = 4.49.

In Fig.10b, the first three structures are inliers followed by
outliers. The quasi-affine viewpoint results in the objects being
described with only one plane each. Several outliers (cyan)
are around the green structure. Better pre-processing might
recover these outliers as part of the green structure.

The importance of having more inliers is illustrated in
Fig.10c and Fig.10d with the Merton College 2 image pair
from the Oxford Visual Geometry Group archives. The SIFT
gives 713 and 1940 point correspondences, respectively, with
the second correspondence equal to the value given in [34].
MISRE continues until the number of points are less than
nε = 40 or 97.

Both MISRE and RCMSA [34] return the same number

(a)

(b)

(c)

(d)

Fig. 10. Homography estimation in 2D. (a) Street. (b) Table.
(c) Merton College 2. 713 point pairs. (d) 1940 point pairs.

of estimated inlier structures. In Fig.10c, MISRE estimates
the first two structures as inliers followed by outliers (blue).
In Fig.10d, the first four structures are inliers followed by
outliers (yellow). If there are more inlier points in the input,
more inlier structures can be detected.

A single inlier structure, as judged by the user, can appear as
several similar inlier structures in the figure. Post-processing
with user-specified thresholds is required. The carriers do not
explicitly represent the nonlinearities and the post-processing
should be executed in the input space. The examples in this
paper did not require fusion.

For two lines or two planes, the orientations of two struc-
tures and the distance between them is sufficient to determine
the thresholds for fusion. For two 2D ellipses, determining the
overlap area is enough [20]. The fundamental matrices and 2D
homographies are executed in a projective framework from
scenes projected from 3D. Without additional information
about the 3D relation of the two 2D images, recovery of an
euclidean framework is not possible [18, Chap.19].
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4.5 Structure from Motion

A structure from motion algorithm (SfM) starts with a 2D
sequence of images and ends with a 3D point cloud [14], [16].
See also [49, Chap.5]. The programs are taken from [48]. In
this subsection we just want to show how MISRE interacts
with SfM when the 3D point cloud is built.

The procedure is represented in Fig.11a from [39]. The
construction of SfM is incremental, starting with small parts
of the 3D scene defining 3D tracks, then fusing the tracks into
a 3D euclidean point cloud.

Seventy 2D images, called also as 2D frames, are selected
automatically from a video taken around a lamp post. A few
images are shown in Fig.11b.

The point correspondences are found by SIFT followed
by a hierarchical k-means tree algorithm [32]. All the 2D
frames have the same inlier vs. outlier threshold for the
correspondence between a pair of 2D images. Distant pair
of 2D images are above the threshold and are discarded.
Fundamental matrix estimation with MISRE (Section 4.3) is
used to eliminate most of the outliers. For example, an image
pair with 379 correspondences after the matching are reduced
to 314 correspondences after MISRE.

Choose the lowest average error between two 2D frames
with a rotation of at least 5◦. In our case, the two frames are
close in the sequence. Compute the 3D projective coordinates
for all matches in the chosen 2D image pair. Starting with this
initial 2D pair, do 2D-3D bundle adjustment taking frames on
both sides [18, Appen.6]. Once the average reprojection error
for a frame is larger than one pixel, the track expansion termi-
nates. For us, a 3D track has maximum 10 to 15 consecutive
frames in 2D. In total, 10 overlapping tracks in 3D are obtained
from the 70 frames in 2D (Fig.11c).

Each track has a different 3D coordinate system. To merge
them, each track has to be multiplied with a 3D homography.
A MISRE approach similar to Section 4.4 is used in 3D [49,
p.72]. The cheirality of the tracks has to be also checked [18,
Chap.21]. For example, the overlap between tracks 4 and 5
(Fig.11d) is reduced from 1247 to 1096 point pairs after the
fusion (Fig.11e).

Projective distortions can remain after hierarchical merging
around both ends of two fused tracks. The final 2D-3D
bundle adjustment is executed with all the 2D frames and
camera definitions participating, obtaining the 3D point cloud
(Fig.12d).

A stereo algorithm [17] [51] can significantly increase the
3D point cloud after the SfM is finished. Currently, MISRE
cannot process such large clouds [49, p.75].

Obtaining the 3D point cloud from the sequence of 2D
images can be very long; therefore, the processing time begins
when the estimation from the 3D point cloud begins.

4.6 Planes Estimated in 3D

The 3D plane has linear objective function

f(y) = θ1X + θ2Y + θ3Z − α (26)

with the input data y = [X Y Z]> identical with x, the carrier
vector. M = 1000 for all 3D plane estimation.

(a)

(b) (c)

(d) (e)

Fig. 11. Structure from motion. (a) The procedure. (b)
Few 2D images of the lamp post. (c) Different tracks. (d)
Track 5 (blue) plotted in the coordinated system of track 4
(red). (e) The merged two tracks seen from the top.

The synthetic pyramid shown in Fig.12a has 5000 points in
the 3D point cloud, distributed around five planes (Fig.12b).
The base has the most points. The pyramid has length one
in all three dimensions. The points are corrupted with 3D
Gaussian noise σg = 0.01 and there are no outliers. The type
of noise distribution is not taken into account. The estimation
stops when the number of points is less than nε = 250.

In Fig.12c the densities are very large.

red green blue cyan yellow
nr. points : 2205 827 817 581 570
TLS scale : 0.038 0.032 0.037 0.033 0.034

density/103 : 58.0 25.8 22.0 17.6 16.6

The processing time is 1.70 seconds. The base is almost not
visible in Fig.12c. In 100 tests the estimation segments the
five inlier structures every time.

When the Gaussian noise increases to σg = 0.03, the
estimator returns six inlier structures, with one plane appearing
as two. Increasing the noise to σg = 0.05, the estimator fails,
with two incorrectly-placed planes [49, Sec. 7.2.2]. Increasing
M beyond 1000 does not improve the output.

In Fig.12d the 3D point cloud of 23077 points from the
SfM output of Fig.11 is shown. The estimation stops when
the number of points is less than nε = 1154. The first six
structures, including the ground, are inliers with 21757 points
and there are 1320 outliers (Fig.12e). Fig.12f shows a side
view with only five planes visible. The processing time is 7.04
seconds.

The commercial software ReMake was used for the cube
sequence. The 2D sequence has only eight images, with only
the faces with numbers 1, 2 and 7 in the input. An image
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12. Plane estimation in 3D. (a) Five synthetic planes.
(b) 3D point cloud. (c) Five structures are inliers. See
the text also. (d) 3D point cloud from Fig.11. (e) First six
structures are inliers. Top view. (f) First five structures are
inliers. Side view. (g) Cube sequence. A 2D image. (h) 3D
point cloud. (i) First three structures are inliers.

is shown in Fig.12g. The 3D point cloud has 5463 points
(Fig.12h). The estimation stops only when the number of
points is less than nε = 274. The first three inlier structures
with a total of 4718 points are shown in Fig.12i. The 745
outlier points are not shown. The processing time is 2.48
seconds.

4.7 Spheres Estimated in 3D
The nonlinear objective function for the 3D sphere

f(y) = (X − a)2 + (Y − b)2 + (Z − c)2 − r2 (27)

has the input variable y = [X Y Z]> with the carrier vector
x =

[
X Y Z X2 + Y 2 + Z2

]>
. The center of the sphere

is [a b c]> with the radius r. The transpose of the 4 × 3
Jacobian matrix is

J>xi|yi =

 1 0 0 2Xi

0 1 0 2Yi
0 0 1 2Zi

 . (28)

M = 1000 for all sphere estimation.
In a 123 block, two synthetic spheres nin = 200 with radii

r = 2, 3, are corrupted by 3D Gaussian noise σg = 0.05, 0.1
and there are nout = 200 outliers (Fig.13a). The estimation
stops when the number of points is less than nε = 30.

Fig.13b shows the σg = 0.05 sphere in red with the scale
estimate σ̂tls = 0.079. The first two structures are inliers,
followed by outliers in Fig.13c. The processing time is 5.35
seconds. In 100 tests, the two inlier structures are always
estimated.

(a) (b) (c)

(d) (e) (f)

Fig. 13. Sphere estimation in 3D. (a) Two synthetic
spheres. (b) The structure estimated with r = 2. (c)
First two structures are inliers followed by outliers. (d) Toy
sequence. A 2D image. (e) 3D point cloud. (f) First two
structures are inliers.

ReMake processes 36 images of the 2D toy sequence, with
one shown in Fig.13d, and returns 10854 points in the 3D
point cloud (Fig.13e). The estimation stops when the number
of points is less than nε = 543. The processing time is 7.24
seconds. The first two structures are inliers with a total of 3504
points. The number of outliers is 7350, twice as many as the
inliers, mostly around the planes in the 3D scene (Fig.13f).

The two small sphere-type objects in Fig.13e are not de-
tected as inlier structures because they are not large enough.
In Section 5 we will discuss this type of limitation. Estimation
of two different type of inliers, planes and spheres in this case,
is discussed in Section 6.2.

4.8 Circular Cylinders Estimated in 3D

Several solutions for the circular cylinder estimation are de-
scribed in [3] with elemental subsets between five to nine
points. We choose the most general, nine-point solution which
can estimate any quadric from the 4× 4 symmetric matrix P.
Applying constrains to this quadric, any particular estimation
can be accomplished [18, Sec.3.2.4].

Start with a cylinder aligned with the Z-axis

(X − a)2 + (Y − b)2 − r2 (29)

where [a b]> is the center in the XY-plane and r is the radius.
In 3D, this is equivalent with function [y 1] P′ [y 1]>, where
P′ is a 4× 4 symmetric matrix

P′ =

[
D′ d′

d
′T a2 + b2 − r2

]
D′ =

1 0 0
0 1 0
0 0 0

d′ =

−a−b
0

 (30)

A rigid 3D transformation

M =

[
R t
0T 1

]
P = M−TP′M−1 =

[
D d

dT d

]
(31)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 14. Cylinder estimation in 3D. (a) Two synthetic
cylinders. (b) Estimated three stuctures. (c) Three syn-
thetic cylinders: input and estimation. (d) Circular pole se-
quence. A 2D image. (e) 3D point cloud. (f) First estimated
structure is inliers. (g) Medicine sequence. A 2D image.
(h) 3D point cloud. (i) First two estimated structures are
inliers.

obtains the desired cylinder f(y) = [y 1] P [y 1]> with a
4× 4 symmetric matrix P having nine parameters.

The input variable y = [X Y Z]> gives the carrier vector
x = [X Y Z X2 XY XZ Y 2 Y Z Z2]>. The transpose
of the 9× 3 Jacobian matrix is

J>xi|yi =

 1 0 0 2Xi Yi Zi 0 0 0
0 1 0 0 Xi 0 2Yi Zi 0
0 0 1 0 0 Xi 0 Yi 2Zi

 . (32)

A circular cylinder has five degrees of freedom, four for the
axis and one for a radius. From (30) and (31), two of the three
singular values of matrix D are identical and the third one is
zero. The vector d is an eigenvector of D. These constraints
have to be verified for each elemental subset. M = 2000 for all
cylinder estimation except Fig.14a, which needs M = 5000
because this example has a much greater corruption of the
inliers.

In a 163 block, two synthetic cylinders, nin = 400, 300
with radii r = 2, 3, are corrupted by 3D Gaussian noise σ =
0.06, 0.1 and there are nout = 500 outliers (Fig.14a). The
rotation axis is randomly generated. The estimation stops when
the number of points is less than nε = 60.

The estimated structures in Fig.14b are
red green blue

nr. points : 413 337 449
TLS scale : 0.28 0.48 5.56
density : 1475 702 80.6

(a) (b)

Fig. 15. Ratio of inliers/outliers limits recovery. Based on
Fig.2a. (a) Unstable estimate, nin = 200, nout = 400. (b)
Stable estimate, nin = 400, nout = 400.

with the first two structures as inliers, followed by outliers. The
processing time is 25.02 seconds. The height of the cylinders
can be recovered from the inlier points. In 100 tests, the
weaker cylinder becomes outliers six times; in four of those
tests, the stronger cylinder does so as well.

Having no outliers in the input does not guarantee that there
are no outliers in the output. A synthetic 3D point cloud of
2000 points (nε = 100) has three cylinders with radii r =
1, 2, 3, corrupted with 3D Gaussian noise σ = 0.01 with no
outliers (Fig.14c). The first three structures are inliers with
total of 1556 points; the estimated scales are between 0.06
and 0.08. However, the other 444 points are outliers having
a larger scale estimate σ̂tls = 0.27. The processing time is
15.83 seconds.

A 2D image from 54 images in the circular pole sequence
is shown in Fig.14d. The SfM algorithm returns 7241 points
in the 3D point cloud (Fig.14e). The estimation stops when
the number of points is less than nε = 362. The first structure
is inliers, containing 568 points, and 6673 points are outliers,
mostly around the ground plane (Fig.14f). The processing time
is 18.55 seconds. There are many more outliers than inliers.

The 22 images in the medicine sequence, with one shown in
Fig.14g, are processed with ReMake. The 3D point cloud has
6500 points (Fig.14h). The estimation stops when the number
of points is less than nε = 325. The first two structures are
inliers with a total of 2262 points, followed by 4238 outliers
(Fig.14i). Processing time is 12.56 seconds. The yellow cap in
Fig.14g is too small to be detected as a separate inlier structure.
Pre-processing might help to increase the number of points
belonging to the cap.

5 LIMITATIONS OF MISRE
Every robust estimator fails when the amount of outliers
increases beyond a certain limit, with that limit depending on
the method. Most robust estimators are considered to have
failed completely once they do not return a desired inlier
structure, e.g., [7], [19], [34].

In MISRE the structures are estimated independently. At
first, only the inlier structure with the lowest density becomes
outliers as the data become more degraded. The stronger-
density inlier structures are still estimated correctly.

The synthetic examples used in this section are illustrated
in Fig.2a; Fig.6a and Fig.16a; Fig.7a and Fig.17a were the
advantage of MISRE can be observed directly.
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(a) (b) (c)

Fig. 16. Estimation of lines in 2D. (a) nout = 500. (b) First
four structures are inliers followed by outliers. (c) The inlier
structures.

(a) (b) (c)

Fig. 17. Estimation in 2D of three synthetic ellipses. (a)
nout = 800. (b) First outliers (blue) comes before the
weakest ellipse (cyan). (c) Interaction between the two
weaker ellipses.

By increasing the number of outliers to nout = 400 in
Fig.2a, the scale estimate σ̂ becomes unstable (Fig.15a). If
the number of inliers is also increased to nin = 400, the scale
estimate becomes stable again (Fig.15b), and remains stable
for 100 tests. Having a similar inlier/outlier ratio yields similar
performance even with more data.

When five synthetic lines were processed with nout = 350
(Fig.6a), the “weakest” inlier structure with the fewest points
and largest inlier noise becomes outliers six times out in 100
tests (Fig.6c). When the number of outliers increase to nout =
500 in Fig.16a, the “weakest” inlier structure becomes outliers
in 34 of 100 tests (Fig.16b), the next structure becomes outliers
in only two of those tests. The three strongest-density inlier
structures are estimated correctly in all 100 tests. The inlier
structures estimated in a specific test are shown in Fig.16c.

Three synthetic ellipses estimated with nout = 350 (Fig.7a),
have the smallest ellipse become outliers in ten out of 100
tests, while the middle ellipse becomes outliers in six tests.
When the number of outliers increase to nout = 800 (Fig.17a),
the largest ellipse (red) is still correct in 100 repetitions. The
smallest ellipse becomes outliers 53 times; in three of those
cases, the ellipse is still returned, but not ranked as the third
estimate. For example, in Fig.17b, the ellipse has a density of
3.9 (cyan), listed after the first outlier “structure” (blue) with
density 4.8. The middle ellipse becomes outliers in 19 cases,
including one in which it is recovered but in the incorrect
order. In some cases, the two weaker inlier structures can
interact when the mean shifts converge to the incorrect modes
(Fig.17c). More elaborate pre-processing is needed for more
stable results.

The size of an inlier structure is also important in how many
outliers can be removed. The two circles with nin = 200

(a) (b)

(c) (d)

Fig. 18. The scale estimate is not always sufficient.
(a) Circle radius 50. (b) The result after mean shift is
incorrect. (c) Circle radius 200. (d) The result is correct.

inliers but different radii, 50 in Fig.18a and 200 in Fig.18c, are
shown with nout = 1500 outliers. The circles are corrupted by
Gaussian noise, σg = 10. The correct scale estimates σ̂50 =
23.65 and σ̂200 = 23.58 are found in Fig.18b and Fig.18d,
shown with blue points. The next step, the mean shift, can
give different results based on the radii.

Inside 50 ± σ̂50 in Fig.18b, there are 241 blue points: 196
true inlier points and 45 outliers. But the highest mode, drawn
in red, returns 261 points: 84 true inlier points and 177 outliers.
The increase in the number of outliers leads the dense but
small nonlinear input to converge to the incorrect mode.

In the case of r = 200, the mean shift classifies 346 points
as inliers: 190 true inlier points and 156 outliers, drawn with
red in Fig.18d. The estimate is stable in 100 tests. This circle
has a larger radius but is less visible in Fig.18c.

6 DISCUSSION

This paper introduces MISRE, an algorithm which estimates
each structure independently. A predefined threshold between
inlier structures and outliers is no longer necessary. The robust
estimators discussed in Section 1 can return the same number
of inlier structures as MISRE as long as the inlier noises
are similar and the estimations are set up correctly. However,
MISRE has three significant advantages. First, each structure is
estimated independently. Second, MISRE uses the same two
constants all the time to estimate the scales. Finally, when
MISRE fails, it does so in a predictable way, with the weakest
inlier structure becoming outliers first.

6.1 Comparison with Other Robust Estimators
J-linkage and T-linkage algorithms taken from the web and
implemented with multi-label optimization and MATLAB
wrapper are applied to the data in Fig.6a. All the thresholds
are the default settings in the code. In Fig.19a, J-linkage [44]

Authorized licensed use limited to: Rutgers University. Downloaded on May 14,2020 at 15:23:17 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.2994190, IEEE
Transactions on Pattern Analysis and Machine Intelligence

14 YANG ET AL.: ROBUST ESTIMATION OF PARAMETRIC STRUCTURES

(a) (b) (c)

(d) (e) (f)

Fig. 19. Comparison with J-Linkage and T-Linkage.
Fig.6a is the input for (a) J-Linkage. (b) T-Linkage. (c)
Church sequence. A 2D image. (d) 3D point cloud. (e) J-
Linkage. (f) MISRE.

(a) (b) (c)

Fig. 20. Three 2D homography estimators. The right
image shown only. (a) GpbM. (b) RCMSA. (c) MISRE.

fails completely, because the lines have different scales and J-
linkage is ill-suited to such applications. Similarly, T-linkage
[28] returns only two inlier structures, the green and blue
points. The strongest structure, the red points, is an outlier
in Fig19b. The two detected inlier structures have the highest
number of data points and the smallest scales in Section 4.1;
T-linkage is therefore correct only for the two smallest scales.

A 2D image from the 48 images in the church sequence
is in Fig.19c. The SfM algorithm returns 11094 points in the
3D point cloud (Fig 19d). The estimated scales are similar
and J-linkage also works. The processing time is 330 seconds
because of the large 3D input (Fig.19e). The processing time
for MISRE is 10.2 seconds (Fig.19f).

The performance in 2D homography is compared for three
estimators: gpbM [29], RCMSA [34] and MISRE. The union
house pair from the Oxford Visual Geometry Group has 2084
point pairs: 1739 inliers and 345 outliers. The results are
presented with the structures superimposed over the right
image of each pair for each estimator (Fig.20).

The gpbM estimates only four inlier structures (Fig.20a).
Both RCMSA (Fig.20b) and MISRE (Fig.20c) estimate five
inlier structures. In all three cases the inlier structures are
followed by outliers. The gpbM is implemented with C++
and MATLAB and computes the estimates in an iterative way.
The processing time is 495 seconds. The processing time for
RCMSA, running the implementation from the web, is 25.40
seconds. The processing time for MISRE is 3.78 seconds.

(a) (b) (c)

Fig. 21. Post-processing of several inlier structure types.
Example: Fig.13e. (a) Two spheres. (b) Three planes. (c)
Post-processing together.

An indirect comparison between MISRE and four other
robust estimators can be inferred from [34, Table 2], which
compares those estimators to RCMSA. The four estima-
tors are: Propose Expand and Re-estimate Labels (PEARL)
[21]; Facility Location via meSSage passing (FLoSS) [24];
Quadratic prOgramming to maximize Mutual preFerence (QO-
MF) [50]; and optimization with Adaptive Reversible Jump
Markov Chain (ARJMC) Monte Carlo [33]. These four meth-
ods were optimized separately to achieve the best perfor-
mances. The median time of processing is compared for nine
pairs of images, each with fifty repetitions. The medians
were computed based on the lowest segmentation errors and
RCMSA had the fastest processing time. MISRE returns the
same number of inlier structures as RCMSA, but without
needing to specify parameters.

Statistical measurement of an algorithmic process should
not use the median of the estimates. Since up to half of the
results may be extreme, this approach can mask substantial
variance. The mean of a process gives a more accurate
portrayal of the performance. For example, in [43, Table II]
the performance metrics for the checkerboard sequence from
the Hopkins 155 dataset frequently have significant differences
between the mean and median.

In conclusion, MISRE performs as well as other robust
algorithms when inlier noises are similar. For varying inlier
scales, MISRE still returns the correct estimates, while the
other estimators can fail. As discussed in Section 3.5, MISRE’s
goal is not to maximize the performance of a robust estimator,
but rather to be more versatile, usable, and less reliant on user
input.

6.2 Future Research

Here, we briefly discuss three other estimation problems
whose implementation is left for further experiments: finding
multiple types of structures in a scene; independent, identically
distributed inputs with different σ-s for each dimension; and
objects defined by more than one mathematical relation.

First, in many instances, more than one type of inlier
structure has to be estimated; see the examples in Fig.6h,
Fig.13e or Fig.14h. Different types of inlier structures often
have different scales, too.

Take, as an example, the 3D point cloud of Fig.13e. The
two spheres were estimated in Fig.13f and are reproduced in
Fig.21a. We can also estimate planes, as in Section 4.6, and
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three planes are recovered in Fig.21b. Note the very small
plane in the background of the image.

Do post-processing in the input space. The two inlier
structure estimations give a total of five inlier structures. Each
3D inlier point is assigned to the closest structure, plane
or sphere. The resulting five inlier structures are shown in
Fig.21c.

Pre-processing can further improve the results for the toy
sequence (Fig.13d). It can increase the number of points in
the background planes and/or recover more points for the two
small sphere-type objects which appear as outliers in Fig.21a.

Second, the input y may have independent, identically dis-
tributed inliers having very different variances [σ2

1 . . . σ
2
l ]Il×l.

For example, the noise along the Z-axis changes with the depth
in structure from motion. The σj-s cannot be separated in the
covariances of the carriers (6).

If σ̂2Il×l gives reasonable estimates, run MISRE several
times and retain the same inlier structure. The σ̂tls is between
the smallest σ̂tlssmt and the largest σ̂tlslrt value. The σ̂tlslrt has
nst points around the estimate θ̂lrt and α̂lrt. Go back to
the original space with these values. For each of the l-
dimensions, do a separate mean shift with window of size
σ̂tlssmt. Similar to Section 3.2, σ̂j , j = 1, . . . l are obtained from
the points converging to the mode closest to the projection
of the estimates. Compute an l-dimensional nonlinear TLS in
the input space. Further research is needed to establish the
reliability of this procedure.

Third, there may be two different intersecting types of
inlier structures, even taking y with σ2Il×l. For example, two
surfaces in 3D, a cylinder and a plane, intersect in a 2D ellipse
in 3D. In the linear space they are

y⇐⇒ x(1),x(2) x(1)>θ1 − α1 x(2)>θ2 − α2.

Solve the two relations separately, obtaining nst1, σ̂
tls
1 and

nst2, σ̂
tls
2 as the two inlier structures. Retain only those points

which are inside both structures, nst. Do nonlinear TLS in the
input space with the nst points. The validity of this approach
should be verified through experiments.

For geometrically-defined objects, the Multiple Input
Structures with Robust Estimator (MISRE) estimates each
structure independently. The advantages of MISRE become
more apparent when the scale estimates for the inlier
structures are vastly different. As such, this estimator can
be of value in a number of other fields, like mechanical
measurement or statistical analysis of economic data.

Acknowledgments We thank the three reviewers for many
valuable comments.

REFERENCES

[1] D. Barath and J. Matas, “Graph-Cut RANSAC,” in CVPR’18,
2018, pp. 6733 – 6741.

[2] S. Basah, A. Bab-Hadiashar, and R. Hoseinnezhad, “Conditions
for motion-background segmentation using fundamental matrix,”
IET Comput. Vis., vol. 3, pp. 189–200, 2009.

[3] C. Beder and W. Förstner, “Direct solutions for computing
cylinders from minimal sets of 3D points,” in ECCV’10, volume
3952, Springer, 2010, pp. 135–146.

[4] J. W. Bian, W.-Y. Lin, Y. Matsushita, S. Yeung, T. D. Nguyen,
and M.-M. Cheng, “GMS: Grid-based motion statistics for fast,
ultra-robust feature correspondence,” in CVPR’17, 2017, pp.
4181 – 4190.

[5] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel,
S. Gumhold, and C. Rother, “DSAC - Differentiable RANSAC
for camera localization,” in CVPR’17, 2017, pp. 6684 – 6692.

[6] T.-J. Chin, Z. Cai, and F. Neumann, “Robust fitting in computer
vision: Easy or hard?,” in ECCV’18, 2018.

[7] J. Choi and G. Medioni, “StaRSaC: Stable random sample
consensus for parameter estimation,” in CVPR’09, 2009, pp. 675
– 682.

[8] S. Choi, T. Kim, and W. Yu, “Performance evaluation of
RANSAC family,” in BMVC’09, 2009, pp. 1 – 12.

[9] O. Chum and J. Matas, “Matching with PROSAC - Progressive
sample consensus,” in CVPR’05, volume I, 2005, pp. 220–226.

[10] O. Chum, J. Matas, and J. Kittler, “Locally optimized
RANSAC,” in 25th DAGM Symposium, 2003, pp. 236–243.

[11] D. Comaniciu and P. Meer, “Mean shift: A robust approach
toward feature space analysis,” IEEE Trans. Pattern Anal. Mach.
Intel., vol. 24, pp. 603–619, 2002.

[12] B. Efron and R. Tibshirani, An Introduction to the Bootstrap.
Chapman & Hall, 1993.

[13] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Al-
gorithm, theory, and applications,” IEEE Trans. Pattern Anal.
Mach. Intel., vol. 35, pp. 2765–2781, 2013.

[14] M. Farenzena, A. Fusiello, and R. Gherardi, “Structure-and-
motion pipeline on a hierarchical cluster tree,” in ICCV Work-
shops, 2009, pp. 1489–1496.

[15] M. A. Fischler and R. C. Bolles, “Random sample consensus:
A paradigm for model fitting with applications to image anal-
ysis and automated cartography,” Comm. Assoc. Comp. Mach,
vol. 24, pp. 381–395, 1981.

[16] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multi-
view stereopsis,” IEEE Trans. Pattern Anal. Mach. Intel., vol. 32,
pp. 1362–1376, 2010.

[17] R. I. Hartley, “Theory and practice of projective rectification,”
International J. Computer Vision, vol. 35, pp. 115–127, 1999.

[18] R. I. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision. Cambridge University Press, second edition,
2004.

[19] T. Hassner, L. Assif, and L. Wolf, “When standard RANSAC
is not enough: Cross-media visual matching with hypothesis
relevancy,” Machine Vision and Applications, vol. 25, pp. 971–
983, 2014.

[20] G. B. Hughes and M. Chraibi, “Calculating ellipse overlap
areas,” Comput. Visual Sci., vol. 15, pp. 291–301, 2012.

[21] H. Isack and Y. Boykov, “Energy-based geometric multi-model
fitting,” International J. of Computer Vision, vol. 97, pp. 123–
147, 2012.

[22] K. Kanatani, “Ellipse fitting with hyperaccuracy,” IEICE Trans.
Inf. & Syst., vol. E89-D, pp. 2653–2660, 2006.

[23] S. Korman and R. Litman, “Latent RANSAC,” in CVPR’18,
2018, pp. 6693 – 6702.

[24] N. Lazic, I. Givoni, B. Frey, and P. Aarabi, “FLoSS: Facility
location for subspace segmentation,” in ICCV’09, 2009, pp. 825–
832.

[25] H. Le, T.-J. Chin, and D. Suter, “An exact penalty method for
locally convergent maximum consensus,” in CVPR’17, 2017, pp.
1888 – 1896.

[26] R. Litman, S. Korman, A. Bronstein, and S. Avidan, “Inverting
RANSAC: Global model detection via inlier rate estimation,” in
CVPR’15, 2015, pp. 5243–5251.

[27] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International J. of Computer Vision, vol. 60, pp. 91–
110, 2004.

[28] L. Magri and A. Fusiello, “T-linkage: A continuous relaxation
of J-linkage for multi-model fitting,” in CVPR’14, 2014, pp.

Authorized licensed use limited to: Rutgers University. Downloaded on May 14,2020 at 15:23:17 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.2994190, IEEE
Transactions on Pattern Analysis and Machine Intelligence

16 YANG ET AL.: ROBUST ESTIMATION OF PARAMETRIC STRUCTURES

3954–3961.
[29] S. Mittal, S. Anand, and P. Meer, “Generalized projection-based

M-estimator,” IEEE Trans. Pattern Anal. Mach. Intel., vol. 34,
pp. 2351–2364, 2012.

[30] L. Moisan, P. Moulon, and P. Monasse, “Automatic homo-
graphic registration of a pair of images, with a contrario elimi-
nation of outliers,” Image Proc. Online, vol. 2, pp. 56–73, 2012.

[31] D. Morley and H. Foroosh, “Improving RANSAC-based seg-
mentation through CNN encapsulation,” in CVPR’17, 2017, pp.
6338 – 6347.

[32] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors
with automatic algorithm configuration,” in VISAPP’09, 2009,
pp. 331–340.

[33] T. T. Pham, T.-J. Chin, J. Yu, and D. Suter, “Simultaneous
sampling and multi-structure fitting with adaptive reversible
jump MCMC,” in NIPS’11, 2011, pp. 540–548.

[34] T. T. Pham, T.-J. Chin, J. Yu, and D. Suter, “The random cluster
model for robust geometric fitting,” IEEE Trans. Pattern Anal.
Mach. Intel., vol. 36, pp. 1658–1671, 2014.

[35] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J. Frahm,
“USAC: A universal framework for random sample consensus,”
IEEE Trans. Pattern Anal. Mach. Intel., vol. 35, pp. 2022–2038,
2013.

[36] R. Raguram, J.-M. Frahm, and M. Pollefeys, “A compara-
tive analysis of RANSAC techniques leading to adaptive real-
time random sample consensus,” in ECCV’08, volume 5303,
Springer, 2008, pp. 500–513.

[37] ReMake, “Autodesk.” https://www.autodesk.com/products/
remake/overview, 2015.

[38] F. Schaffalitzky and A. Zisserman, “Geometric grouping of
repeated elements within images,” in Shape, Contour and
Grouping in Computer Vision, Springer, 1999, pp. 165–181.

[39] J. L. Schönberger and J. M. Frahm, “Structure-from-motion
revisited,” in CVPR’16, 2016, pp. 4104–4113.
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