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Robust parametric estimation estimates a mathematical relation
* for the inliers objective function
* using a given algorithm
* with no training necessary.
But
* the user has to give threshold(s) before the estimation
* and the structures are not processes independently.

| Should be this way:
a set of 2D images

viewed in 3D and
segmented with B e
3D spheres without ; #its
task depended %
thresholds. R T




Input measurements y, = |¢;1 ¥z .- .yi)g]T. Inliers objective function

f(y,) is solved by linearization and elemental subsets.

The objective function f(y,) is interpreted as the linear relation
fly,)) »x/0—a i=1,...,n

The carrier vector x; contains both the y, and v; ;y; ;, (computer vision).
The [ unknown in f(y,) give rise to m variables in 8.

An elemental subset 1s the miminum number of points needed for the
solution of the m variables. For scalar f(y;) number of points equal m.

x?@—cxzo r=1,...,m.

elemental subset — 8, « Ambiguity is reduced if ||8|| = 1.



inliers projected on first image

example: Fundamental matrix between two 2D 1images uses
object point correspondences to solve for the 3 x 3 matrix F
fy)='y UF[zy 1]' y=@yzy]
oives eight carriers x= |z v ' ¢ xx’' zy 2'y fyy‘r]T
matrix ' — vector & and scalar o

x;0 —a=0 i=1...8 ||0]| =1 an elemental subset



example: 2D ellipse

original variables y = [z y|' are on the ellipse

Fy) = -y Qly—vy,) 1
if Q)18 2 x 2 positive definite symmetric matrix
y, is the ellipse center. y, — 01,05. Q — 03,04, 0.

The carrier vector x = [z y z°

vy y°]' gives
0125 + O2ys + 0327 + Oumiy; + Osy; —a =0 i=1.5
and a valid elemental subset must satisfy

m=5 49395_93,\/'0

If the inlier scale is given, both ellipses
will be entirely recovered only if all the
inlier points have similar noise. (Here not.)




RANdom SAmple Consensus RANSAC

Fischler, Bolles Communications of Association for Computing Machinery 1981

The user has to give before the estimation
M, the number of elemental subsets...
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...and the inlier scale.



example:

2D line estimation
elemental subset R .
has two points ' ;

Oz + 0y —a=0

RANSAC given: inlier scale; M number of trials
Repeat M times: (sufficiently large)
* choose an elemental subset
* find the linear model estimate
* assume the estimate valid for all n points
* distances less than the scale are inliers.

Largest consensus set gives the RANSAC estimate.

Total Least Squares (1L.S) with the inliers: éﬂS? &, If needed,

project back to the input space and find the original estimates.



RANSAC may fail
* if the scale is incorrectly guessed by the user

* if an image sequence have big changes of the scale
* if the outliers are asymmetric ==

045 +  Qutliers
Fitted line

04t
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¥l

* if there are multiple inlier structures

A single scale is not enough in many cases.



Multiple Input Structures with Robust Estimator
MISRE

Each structure (inlier or outlier) estimated independently.
Each structure has three steps:

* scale estimation

* refinement with mean shift

* compute the structure's density
When the remaining data is not enough for a structure: STOP

Sort the structures based on the decreasing densities.

The user decides on the number of detected inlier structures.



Building the linear relation for the estimation

The ! unknowns in the function f(y) have covariance ok IS
where o 1s unknown and different for each structure (iteration).

If f(y;) is a vector, y, have several carrier vectors ng] t= lowe s
Number of points required m, = [m /(| for @ and «.

Each column of the m x [ Jacobian matrix J! 3| have the derivatives
of the carrier vector in one original variable. [- | Ecjly Y;
m x m covariance of x. is 2C\ = 52J iy JI g, =1 ¢

example. ¢ =1 fundamental matrix _ . i,
1000z, y; O O

fiy)="v 1]F [z y 1]' il 01000 nggyg
Xily: — 1001 0x 0wy O

x=puz'w vz oy 2y yy”]T
00010 z; 0 g




example. { = 2
2D homography between two 2D images 1s a plane
correspondence found through a 3 x 3 matrix

H=[h; h; hy)T y=[zy 2 ¢]T

/ hT

T Il o, zyih , [z y 1)h
S A L B P Tl PRI
wy, h; | |1

—x —y —1 0 0 0 2z 2v 2 1111 _0
0 0 0 —z —y —1 vz vy v h2 a
g

Jacobian matrices J 1] J 12 are 9 x 4and o = 0.

xily;” " x|y,

_x[ll]T_

X[12]T h,

An elemental subset | ... hs | = 0 has 8 equations.

L
4
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XEWQ—:‘:};:U =1 .0l % .., e — B and o

andpm]ectsx”mtozz[]: HTB 1=1,...,n

Mahalanobis distance from « is dﬁ — 8 >
\/ 0'C¢
without the unknown o.

For each y, retain only the largest Mahalanobis distance

C; = arg max dgc] del — g, —

=Tl 1 \/BTE’}%B B

Input y; corresponds to the carrier vector x; in the estimation.




Scale estimation

Refinement with mean shift
Compute the structure's density

All MISRE estimators use the same two constants.

Per iteration M elemental subset trials are given by the user.

An iteration has n < ny datapoints
where np is the total number of datapoints.

First constant

Each iteration starts from n. points which 1s the larger between:
*0.05n7 (5%) from the total number of datapoints, or
* five times number of unknowns m in an elemental subset.

A second condition quick-in only when the data is relative small
and the elemental subset uses a large carrier vector.
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In each sequence the Mahalanobis distances are ascendingly ordered
di ¢=1.n andare j =1..M sequences.

v

The working sequence dj;.,) is the sequence with
minimum sum of the Mahalanobis distances

T

?é}-.? Z g[i](j) for the first n, points.
i—1

The corresponding elemental subset returns éw, Oty



example of how MISRE is built:

two ellipses nin= 200, nowt= 200.
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inlier scale ~ 2.5a,

first iteration

M = 2000 n.= 30
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number of datapoints nr = 200+200+200 = 600
starting from ne = 0.05x600 = 30 points



Mahalanobis distance
S,
=
——

Nyl ===

sorted point index i

Starting from point &, the n% (> 0.05n¢) points correspond to the
Mahalanobis distance Ad,, and have n; points.

Ad,, divides the working sequence 5[5] ) % = 1,...,n in equal parts.
Ad, have ny points in the k-th segment £ = 1,2, ...

The expansions are independent since each %
increases with 0.01ny (1%) relative to the previous n%.



Second constant

* If the average number of processed points in kK segments
Is larger than twice the number of points in the (k+7)-th
segment, the expansion terminates.

This condition is verified for k = 1,2, ... at each Ad,

k
1
E Z g > 2 nE11
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Ads, ks, = 8, 6 = 8.06 Adio, ke = 5,6 = 11.10

scale should be ~ 25 %5~ 12.5
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Region of interest is defined from n., corresponding to Ads
until the first % where the second constant already holds
from the beginning of the expansion.

Largest expansion gives the scale estimate
0 = MaXy—s%, . 4, ke, Ady

o = 12.54 1n the example.

ns points between o, £ 0.



Scale estimation

Refinement with mean shift

Compute the structure's density

Mean shift is an iterative procedure finding the modes
of the distribution function of a given window.

number of * ' *
. i
points -
s.  WINDOW 2 |
/0 ||t

| datapoints
1 quantized here

1 0l

Interested in the mode * closest to the point marked | for ¢y,
Convergence achieved after only a few iterations.

Z a



Setting up of the mean shift

| %(1 —u?) |ul <1

0 otherwise

Epanechnikov kernel

ow) = —K'(w?) = ~K'(w) = &' ((z — 2) B* (= - %))

J1—m 0xaxl glu) =1
H(ruj){ 0 u>1  glu)=0
6 defines B; = 620 'z, 14,0 5 =%0

From n; points choose another N = M /10 elemental subsets.



Mean shift is applied to all » points.
argmaxz ( z— %) B! (z—é})) z — &

Current value 1s 2, and all points 2; contribute equally
P Z?:l g (us) 2
T g (u)
il |2p1q — 25| < \/E glu;) =1
if |2o1q — 2| > \/E g(u;) =0

After N trials, the window having the most points 2; at
the convergence with g{u;) = 1 is the mode & = 24,4

ng points converge to .



Nonrobust total least squares (I'LS) estimates the structure

from all the n,; points

iy , ~tls R
%10 —0=0 i=1,..,ng — 8O at*stls

ng points between a4t + 5%

618 =12.37 ng = 219 in the example.
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Scale estimation
Refinement with mean shift

Compute the structure's density

The density for the structure is the ratio between the
number of points and the scale of the structure.

p = nst/a.ﬂs

p = 17.7 in the example

nst are removed from the input and the processing of the
next structure begins ..... until less than n. of points.



Sorting the structures

The detected structures are sorted in descending order

based on the densities. 00—
600, & Lot

500} -
red  greern blue '

e, poinds t 219 210 163 0 k..
T ESsegley 193¢ 08,4 FO87F 3000 -

dernsiiy | !By Tk Q328 00l

100§, -

00166 760300 400 500 650 300
Significant inliers structures have much smaller scales and
much larger densities.

The user has only to specify how many inlier structures

at the beginning are returned in the estimation.
Here retains the first two structures.



Why these constants?
ellipses: inliers 2x33% (elemental subset x 5 =4.17%) 100 trials
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M increasing till 1000, the output is better. We took 2000.
Higher M-s do not help the results in a statistical way.
Pre/post-processing, not in MISRE, could maybe improve only.



Summary of MISRE

For each structure:
Scale 15 the largest expansion in the region of interest.
Refinement returns n, points between 4 4+ 5%,
Density of the structure is p = n /6%,

Sorting by decreasing densities.

Separating the inlier structures from outliers requires the user

just to decide where the 6% increased a lot.

MISRE is as good as the RANSAC-type estimators if similar
noise corrupts all inliers and RANSAC is correctly tunes.
Superior when the noise is very different for each inlier structure.



Outliers

1 2/ MISRE with 500 outliers
'ﬂ‘a only the weakest disapp.

o A,
iy g

" = = v -
. i £ =g ‘r“’l LR ] .

0 100 200 300 400 500 600 700

MISRE degrades gradually when number of outliers increases
while the RANSAC-type estimators fail competely.
(Will be discussed at the end of the talk.)

The number outliers can exceed the number of inliers.
Processing times are based on i7-2617M with a 1.5GHz clock.



2D lines
Canny edge detection 8072 points. M = 1000

ne=404 t,=4.35 seconds First three structures are inliers.
(2732 points red, green, blue)
Outliers <30 times larger scale.(cyan)

(Later will see how multiple inlier types can be also detected.)



2D ellipses
Canny edge detection 4343 points.

ne=218 1=18.90 seconds First three structures are inliers.
(2285 points red, green, blue)
Outliers <100 times larger scale.

(not shown)



Fundamental matrices
Parts (moving) together in 3D give a structure in 2D. M = 5000

608 input pairs ne=8x5=40 t,=1.75 seconds
First two structures are inliers (508 pairs red/green).
Outliers <15 timers larger scale (blue).



2D homographies

Correspondences in 3D may not correspond to correspondences
in 2D for the homographies. M = 2000

F

1940 input pairs ne=97 t,=3.78 seconds
First four structures are inliers (1747 pairs red/green/blue/cyan).
Outliers <50 times larger scale (yellow).



Experiments with 3D point clouds

\ Reconstruction

=
4 &

— 35 -
P
R :

3D Object

ey, -
ey 68, 69,0, 1, 2, ...

* From a sequence of 2D images
* build 3D tracks covering small parts of the entire 3D scene
* which are fused together into a single 3D point cloud.

Structure from Motion algorithm (SfM)
MISRE used repeatedly during this 3D reconstruction.

Processing time starts after the 3D point cloud was estimated.



3D point cloud can also be generated with the
Autodesk professional program ReMake

iInput images in 2D give a 3D mesh model

but in ReMake the different surfaces in the data must be
selected before the estimation.

Sample 2Dimage 3D pointcloud Directplanefitting in
professional software



3D planes

Structure from Motion algorithm.

ne=1154. t,=7.04 seconds.
First six structures are inliers (21758 points all 6 colors).

Outliers much larger scale and smaller density.
(not shown)



3D spheres

x=[XY Z X2+v2+ 272" Autodesk ReMake M = 1000
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36 - 2D images give 10854 points in the 3D point cloud.

ne=543. tp=7.24 seconds.
First two structures are inliers (3504 points red/green).
Outliers have much larger scale and radius (black).



3D circular cylinders

Nine points solutionx = (X YV 7 X? XY XZ Y2 YZ 77"
1s valid for a cylinder when the elemental subsets have to satisty
additional relations resulting in only five degrees of freedom.

Autodesk ReMake M = 2000

22 - 2D images give 6500 points in the 3D point cloud

ne=325. t=12.65 seconds.
First two structures are inliers (2262 points red/green).
Outliers have much larger scale and no height (black).



3D point cloud gives two
spheres or three planes.
Post-processing of both
outputs together, after some
reallocation of points, solves
both tasks.

36 - 2D images

Better pre-processing can AT
\I__.' '__ VR R g

gt

increase the number of inliers..s ¥
Better post-processing can [+
recover more inlier struct. three planes

1.

both tasks



Pre and post processing (needing thresholds) are not in MISRE.

Significant MISRE inliers are returned (based on the two constants)

but the inlier structures can vary in multiple runs.
Universality comes with this caveat.

for example: two runs for the 2D ellipse.

red  green  blue  cyan

nr. pownts ;. 1068 GO0 h32 2066 o o © -::\

TLS scale: 218 176 146 843 K e e i G
denstty ;. 488 4 3922 3636 244 | / «\ £ sfﬁ; \1-.
N T S
red green blue cyan Y A o/

nr. potnts ;. 927 H62 26 2122 o Ll

T'LS scale: 1,39 173 210 10805 e
denstty : 667 3836 298 0,20

The inlier structures are the same, however the number of points
and the TLS scales are somewhat different.



Limitations of MISRE

Every robust estimator fails if too many outliers are present.

MISRE estimates each structure independently, therefore
at the beginning only the "weakest" inlier structure, the lowest
inlier density, become outliers.
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700

> M = 5000
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three ellipses, smallest nn=200 gaussian noise=9, Nou=350
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circle nin=200 n..=1500. Scale estimates correct around ~23.5
c, =10 Mean shift depends of the radius of the circle.
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MISRE, the Multiple Input Structures with Robust Estimator
estimates each structure independently.

MISRE has a simple set-up with the same two constants for
every estimation.

MISRE works for inlier structures with vastly different
standard deviations too.

Paper in IEEE PAMI "Early Access" number 9091905

Programs at https://github.com/MISRE



Thank You








