Syllabus: Many Body 2 Spring 2018

Jed Pixley

January 11, 2018

Course Description

Continuation of Many Body I with an emphasis on applications of many body techniques.

Course Requirements

- Homework 60%
- Paper 20%
- Talk 15%
- Class lecture 5%

The paper will be approximately 10 pages long on a many body topic of the students choice (suggestions will be given at a later date). Presentation will present the topics discussed in the paper. Students will also give one lecture throughout the course.

Books

- Coleman, "Introduction to Many Body Physics"
- Altland and Simmons "Condensed Matter Field Theory"
- Auerbach, "Interacting electrons and quantum magnetism"
- Goldenfeld, "Lectures on Phase Transitions and the Renormalization Group"
- Feynman, "Statistical Mechanics" and his PhD Thesis
- Negle and Orland, "Quantum Many-Particle Systems"
- Shankar, "Quantum Field Theory and Condensed Matter"

Course Content

- 1. Path Integrals for particles
 - Single Particle
 - Bosons and Fermions (coherent states and then construction of the path integral)
- 2. Applications: Collective Phenomena
 - Itinerant magnetism
 - Superfluids
 - Superconductors
- 3. Spin path integral
 - Application to the antiferromagnet and Haldane's conjecture in 1-D (spin-1/2 vs spin-1 chain)
- 4. Phase Transitions
 - Landau Theory
 - Classical ϕ^4 theory and RG
 - Transverse field Ising model: exact solution in 1D and quantum ϕ^4 theory
 - Bose-Hubbard model: Superfluid to insulator transition
 - Itinerant spin density wave transition ("Hertz-Millis-Moriya" theory)
 - Non-linear sigma Model (NL σ M)
- 5. Adventures in 1D
 - Bosonization
 - Kosterlitz-Thouless: Sine Gordon model (equivalence with XY model)
 - Kondo effect and scale invariance
 - Spins \rightarrow fermions \rightarrow bosons: Heisenberg chain compare with NL σ M
 - Spin-1 chain: AKLT point and matrix product states