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1. Introductory remarks
1.1. A brief historical interlude

Quantum antiferromagnets are an “economy’” class of strongly interacting elec-
tron fluid; despite their deceptive simplicity in the absence of charge motion, they
can display a rich phase behavior characteristic of complex many-body systems.
Indeed, since its theoretical conception [1,2] in the 1930s, guantum antiferromag-
netism has often served to sharpen and to develop our conceptual undersi‘.anding
of strongly correlated matter; the Bethe Ansatz [3), broken symmetry [4], semi-
classical “large-S” quantum mechanics [5,6], and frostration (7] are but a short
list of broad contributions that this field has made to date. In the strongly corre-
lated electron problem the delicate interplay between interactions and fluctuations
often leads to novel order, and here we shall explore this theme within a pure spin
context. _

The possible destabilization of long-range antiferromagnetic order is an old no-
tion, particularly as the staggered magnetization is not a conserved order param-
eter. In the days preceding neutron scattering it was widely believed that Bethe’s
exact solution of the spin-4 antiferromagnetic chain [3) could be philosophically
extended to higher dimensions, implying the absence of any ordered antiferro-
magnetic ground state. In 1951 neutron diffraction experiments demonstrated the
presence of Néel order in manganese oxide (8]; m the following year Anderson

[5] and Kubo [6] independently developed a semiclassical theory to explain these

results. Making a strong analogy with the quantum harmonic oscillator, Anderson
stressed the importance of the zero-point energy, which had been neglected in ear-
lier treatments. Within 2 leading-order expansion in (Z.5)~!, he showed that the
reduction.in the sublattice magnetization is

111 :
~ d — — -~ —
dM jd q {n(wq) + 28} o (wg ~ cq, ¢ — 0), (1.1}

where S 1s the spin; eq. (1.1) is analogous to the “equipartition” expressions
(%)em ~ 1/w? and {2?)qu ~ R/ (2w) for the classical and quantum harmonic os-
cillator, respectively. For a d-dimensional hypercubic lattice wg ~ g, so Néel order
15 possible at 7" = O for d 2 2. Simularly eq. {1.1) indicates that in one-dimension
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eading-order quantum corrections result in an infrared divergence, consistent with

3ethe’s result. With the rapid growth of neutron sources, many experiments on

'wo- and three-dimensional isotropic antiferromagnets have been performed; the
neasured magnetization shows excellent agreement with the zero-point spin re-
juction calculated 1n this fashion {9,10]. _

Despite the widespread success of spin-wave theory, there remain a number of
nagnetic insulators that defy description within this approach. In 1973 Ander-
ion noted the distinct absence of observed two-dimensional S = % Heisenberg
witiferromagnets, and remarked that in low-dimensional, low-spin frustrated sys-
erns quantumm fiuctuations might indeed destroy the Néel order [11]. The situation
:hanged dramatically in 1987 with the discovery of LaCuQ,, a 2D spin-% Heisen-
yerg antiferromagnet. This material has the unusual property, when doped, of go-
ng directly from a semimetallic to a superconducting state. Anderson immediately
xoposed that here large fluctuations might destroy the sublattice magnetization,
eading to a “spin-liquid” state; the addition of charge fluctuations would then lead
o a novel form of superconductivity [12].

Anderson’s suggestion has revived interest in an old question in magnetism:
:an a gapless phase be stabilized in the absence of long-range antiferromagnetic
swder? The most tecent attack on this problem is characterized by a “quantum
{uids™ approach to spin systems, thus liberating magnetism from a semiclassical
‘solid” framework (fig. 1). For the sake of completeness we note that the analogy
ietween antiferromagnetism and superfiuidity is not new, but has been previously
tressed only for long-wavelength modes {14-16}. The microscopic “two-fluids”
ierspective on antiferromagnetism brings several new methods to this probiem
e.g. gauge theories, large-N expansions, homotopy theory), tools successful in
ther correlated quantum systems; quantum antiferromagnets thus acquire a new
tatus as “economy” strongly interacting electron fluids.

The real motivation for this fresh approach 10 guantum antiferromagnetism
omes from expeniment; several real systems are characterized by short-range
pin correlations coexisting with low-energy magnetic excitations, thereby sug-
esting new forms of spin order. Of course, the most enticing materials exhibit-
1g this behavior are the cuprate superconductors, where charge doping of a Néel
ntiferromagnet {17] leads to novel superconducting and normal-state behavior.
lere, inelastic nentron {18) and nuclear-magnetic resonance experiments [19]
wdicate low-energy spin fluctuations, in seeming contradiction with the mea-
ared short spin correlation length [20]. Of course, charge doping introduces both
tatic and dynamic “frustration”, and is thus more complicated than the pure spin
10dels discussed here [21]; however, we shall see that even the behavior of a
rongly fluctuating spin fluid in the absence of charge fiuctuations is not straight-
yrward.

There 1s now a growing list of anomalous antlferromaonehc materials whose

New Outlooks and Old Dreams in Quantum Antiferromagnetism 501
(@)
normal fluid
j L7777 o
S ]
n
<: supertluid

{b)

Spin fluctuations 582

999

Ordered moment S

Fig. 1. A schematic representation of the contrast between (a) the fiuids and (b) the “rigid” semiclassical
approach (o antiferromagnetism. Reprinted from Ritchey [13).

novel features demand a new approach to magnetism. Traditionally a magnetic
insulator has been viewed as a rigid array of weakly interacting local moments, a
picture that is only valid in the limit of smali spin fluctuations. Table 1 shows a
number of magnetic “mystenes”, systems with very smail (if finite!) ordering tem-

-peratures despite the presence of strong antiferomagnetic correlations. Many of

these materials have structures that impose geomeirical constraints on the ground-
state spin configuration, thereby strongly enhancing the spin fluctuations. Roughly
speaking, the Curie~Weiss temperature 8w 1s an indication of the expected or-
dering temperature in the absence of such “frustration”; Ramirez et al. {22] have
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Table 1

A few mystenous magnetic materials. Here T refers to a magnetic ordering temperature.

Material Lattice —few (K] T*[K] Novel features
LiNiOy 2p 0 210 65 Strong Ising anisotropy, evidence
(S = %) for zero-point entropy and glassiness
VCl, 2D A 437 36 Evidence for vortex unbinding
(S = %) transition
GdyGag0yp 3D gamet 23 < 0.03 Absence of order in 3D AFM
5=
SrCrgGag0y9 2D L 492 35 Observed features of both
5=% spin glass and ordered AFM

characterized these enigmatic magnets by a large “frustration function”

Bew

fa= (12)

where T is the measured ordering temperature. Indications of “moment-free”
phases with possible textures in these unconventional magnets suggest the need
for 2 new fluids approach that can handle their partially ordered behavior.

1.2. Low-dimensionality and frustration: a recipe for strong fluctuations

How can spin fluctuations in Heisenberg magnets be enhanced? Could such strong
fluctuations promote “moment-free” spin ground states with new forms of mag-
netic order? Dimensionality plays a crucial role in this discussion; as d is de-
creased, the phase space available for long-wavelength fluctuations is enhanced.
At the lower critical dimension, long-wavelength fluctuations completely sup-
press classical antiferromagnetisin at all values of spin 5. This feature can be seen
clearly from the spin-wave expression for the moment reduction eq. (1.1), which
has contributions from both therrnal fluctuations,

dd
6M~T/—2q, - (13)
q "
and quantum 2ero-point motion,
d
SM ~ / %q (1.4)

that diverge as d — 2 and d — 1, respectively.
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The results may also be understood by a simple rescaling of the long-wavelength
action; here we assume that the presence of an ordered antiferromagnetic state
is determined by spin waves, so that only configurations with neighboring spins
differing infinitesimally from each other need consideration. In the simplest bi-
partite antiferromagnets, the long-wavelength dynamics are determined purely by
the gradients of the staggered magnetization in space and time, so that we may
approximate the classical Heisenberg Hamiltonian

H=J> 85; : (1.5)

(&7
by its continuum counterpart; the associated long-wavelength action is
H i
Se == == [ d%z(Vay 1.6
=T T3, (V7R (1.6)
where g = T/(2J5%a%"?) is a coupling constant, & is the lattice spacing, and 7 1s
a unit vector in the direction of the staggered magnetization. Since the dimension

of the coupling constant is 2 — d, a rescaling of length-scales

x—>:c’=% (b=1+dA) an

leads to a renormalized coupling constant

g—g" =gb* 2 =g[l+(d—2)dinA) (1.8)
or |
dg
—_ =(d- 1.9
o5 = @29 19

which indicates that de = 2 is the lower-critical dimension for classical anti-
ferromagnets. In a similar fashion, quantum antiferromagnets are described by
gradients of the order parameter in both space and time,

8
Sq = i_f dT/ddx [iz(aTﬁ)%(Vﬁ)z : (1.10)
2§ Jo -~ Le

which is a d + 1-dimensional field theory, with a coupling constant of dimension
2~ (d+1) = 1 — d; the Yower critical dimension of a quantum antiferromagnet 1s
thus one {(dq = 1), explaining the absence of an ordered moment in quantam spin
chains.

In these lectures we focus on two-dimensional quantum antiferromagnets. Be-
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cause they are in the vicinity of dg = 1 their zero-temperature long-wavelength
fluctuations are strong; they are thus good “hosts” for the development of ex-
otic spin ordering. Furthermore, because do = 2, short-wavelength thermal
fluctuations can induce discrete lattice symmetry-breaking unaccompanied by a
conventional magnetic transition, due to the finite nature of the spin correlation
length. Thus short-wavelength fluctuations assume a particular importance in two-
dimensional spin systems, a topic we shall discuss in sections 3 and 4.

The role of fluctuations is further enhanced in Jrustrated spin systems, where
‘he energy of each spin bond cannot be minimized simultaneously. A degenerate
zround-state manifold often results; anisotropic thermal and quantum fluctuations
san then select new ordered phases. This “order from disorder”, first discussed by
Villain [23], is a short-wavelength phenomenon and thus does not depend on the
sresence of long-range antiferromagnetic order [23-25). Frustration also modi-
ies the nature of the underlying order parameter, changing the homotopy group
associated with the aliowed defects (see fig. 2) [26). The order parameter for the
infrustrated 2D square Heisenberg model, for example, is a vector; spin vortices
e thus topologically unstable, since they can always relax by twisting out of the
Jlane into the third dimension (26]. By contrast, in the frustrated 2D triangular
tiferromagnet the order parameter is described by three orthogonal vectors; w
wists of this order parameter form “Z; vortices” that are topologically stable [27].
ndeed, a generalized Kosterlitz—Thouless topological transition, associated with
he binding of these defects, has been proposed by Kawamura and Miyashita for
he triangular case {27], and we shall return to this question in section 6.

In these lectures we hope to introduce the reader to the new “economy” ap-
roach to strongly correlated electron systems, focusing primarily on the case of
rustrated two-dimensional antiferromagnets. We begin with a general description
f the antiferromagnet as a quantum fluid, emphasizing the conceptual framework
or this picture. Spin currents, the Marshall sign theorem, and the importance of
he Onsager cavity method for strongly fluctuating spin systems are discussed be-
ore a more technical gauge-invariant treatment of quantum antiferromagnetism
s presented (section 3). Next we introduce the notion of “order from disorder”,
lemonstrating with a simple example how the interplay of ffuctuations and in-
eractions can promote the selection of new spin ground states in the absence of
onventicnal antiferromagnetic order (section 4). Fluctuation-suppression of the
ublattice magnetization leads to the possibility of exotic states at the “brink of
lisorder”; the “quantum zo0” of candidates (e.g. spin insuvlators, Laughlin spin lig-
ids, spin nematics) is reviewed in section 5. In section 6 we turn to a-particularly
hallenging and controversial example of a strongly fluctuating spin system: the
wo-dimensional Heisenberg kagomé antiferromagnet, which has its experimental
2alization in two magnetopiumbite materials. Here we present a case for why the
lassical system 1s nof a conventional magnet; the possibility of a (non-Abelian)
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Stable Z, vortex

Fig. 2. (a} Unstable versus (b} stable point defects in the square {unfrusirated) and the triangular (fros-
trated) two-dimensional Heisenberg antiferromagnets, respectively.

defect-mediated glass transition in this problem is discussed, with implications for
experiment. Finally, we end (section 7) with some conctuding remarks and many
open questions.

2. The antiferromagnet as a gnantom fluid: concepts

The renewed interest in strongly fluctuating two-dimensional Heisenberg models
demands a gauge-invariant approach to antiferromagnetism, one that encompasses
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the semiclassical results of spin-wave theory and survives the loss of 2 moment.
Initiating a new perspective to the problem, Anderson has proposed a variational
resonating valence bond (RVB) approach to Heisenberg spin systems [12), one
drawing close analogy between antiferromagnetism and helium-4. Figure 3 shows
the stark contrast between the RVB and the Néel states on a triangular lattice; it
is not at all obvious that the “fluids™ approach can recover the more conventional
results. In a seminal paper, Liang, Doucot, and Anderson (LDA) showed that an
RVB state with finite-range spin bonds can generate long-range antiferromagnetic
- order [28]; the “nodeless” nature of the RVB wavefunction yields a two-fluids

picture of magnetism. The antiferromagnet 1s now no longer treated as a rigid
magnetic structure, but as a quantum fluid. Before discussing this approach in
more detail, let us list a few questions that naturally arise in such an exercise:

(1} What new insights are to be gained from a “fluid” perspective of antifer-
romagnetism?

(2} What 1s a spin liguid and does spin flow exist? Is there a spin current?

(3} A “quantum fluid” approach to spin systems suggests many new types
of ground states, in analogy with the strongly correlated electron problem. For
example, are there spin apalogues of insulators, Fermi liquids, superfluids, and
Langhlin liquids? How and when are these possibilities realized?

(4) Are there spin textures analogous to those found in helium and in liguid
crystals?

These issues have been the focus of much recent research activity, and are cer-
tainly far from settled. Here we begin with a discussion of Marshall’s sign rule,
a key ingredient in the Liang-Doucot-Anderson demonstration (28] that an RVB
wavefunction can recover long-range antiferromagnetic order. The resulting form
of this wavefunction naturally leads to a “fluid” picture of antiferromagnetism.
Next we develop the notion of a spin current, discussing the continuity of spin flow
and the connection between broken spin rotation invariance and spin superfluidity.
A rotational-invariant treatment of magnetism must contain the essential physics
of spin fluctuations, and therefore must extend the concept of the Weiss field to
cases where the local moment vanishes. This has been done by Brout and Thomas
[29] in the context of disordered Ising magnets; they have applied Onsager’s idea
[30] of a non-orienting reaction field to spins. We end with a discussion of the On-
sager reaction field for strongly fluctuating Heisenberg magnets; its microscopic
realization is provided by the Schwinger boson approach, the central topic of the
next section. ' '

2.1. The Marshall sign rule

A crucial property of the ground-state wavefunction associated with the bipartite
antiferromagnet is its symmetry or “nodelessness”, a feature suggesting a bosonic
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Fig. 3. An illustration of the stark contrast between (a) the Néel and (b) the resonating valence bond
(RVB) states on the triangular lattice, where the shaded regions in (b} represent the singlet bonds
between the spins. The RYVB phase is a linear combination of ali such coverings of the lattice. Reprinted
from Ritchey [13].

representation and thus the possibility of condensation. Marshal} [31] noted that
under the basis trapsformation

(St (z,y), §%(z,p)) = ((-1)*T¥S4(z, 1), $%(z,9)) . @1

which rotates all spins on the A sublattice by 7, the Heisenberg Hamiltonian

H=7>5-§ . Q2
(CN))
becomes
H = gHg' =75 (8287 - 5+ - 5, 23)

(2,5
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where

St SJ' Tt oy +o; a;') (2.4)

in the usual fashion.

Marshall emphasized that all the ochhagonal components of the transformed
Hamiltonian are negative, so that its ground-state eigenvector is nodeless by
Frobenius’ theorem. Because this result plays a central role in our discussion, we
will outline the argument. Bneﬂy, the transformed Hamiltonian H' = [§)H], (7]
can be written

H; = €8s — hy; (hiy =0, i=173), 2.5)

where h;; are the off-diagonal elements. Let us consider any normalized state
veelor

By = i) 2.6)
and its nodeless counterpart

1) = [l 3. @7

Then the expectation value of the energy in the nodeless state £ = (%|H'|) is
always less than or equal to the energy in the “nodeful” state, since

B =lpil* =Y hiy {695 + ¥4}
(>3]
> alwsl? =Y 2has il | = E- 2.8)
i3

It follows that the ground-state eigenvector in the staggered reference frame is
nodeless, with only positive components. Let the basis states |t} = [{z;}) be
labelied by the coordinates {z;} of the down spins, then the ground state may be
written

= Z |P(@i)l (@11, #2055 Tivyay)- (2.9
{za1}

We would now like to transform back to the original spin coordinates. To do so,
the wavefunction of each down electron on the A sublattice must be multiplied by
e'm = —1, resulting in a ground-state wavefunction

Y(zs) = (1™ [(z), (2.10)
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where 1 4 refexs to the number of down spins on the A4 sublattice. The expression
(2.10) is known as the Marshall sign rule; it demonstrates that under z suitable
transformation the ground-state wavefunction is always nodeless, suggesting the
possibility of condensation into a single momentum state, thus providing a cor-
nerstone for the two-fluids approach to magnetism.

2.2. The Liang-Doucot-Anderson wavefunction

Liang, Doucot, and Anderson (LDA} notcd that the singlet ground state of the bi-
partite Heisenberg antiferromagnet could be represented as a linear superposition
of valence-bond states, corresponding to all singlet bond configurations on the lat-
tice [28]. Respecting Marshall’s sign rule, LDA. assoc;atcd a positive amplitude
fia — 73) with a singlet pair

|
63 =—7Ml; - ki) (GE€A jeB)
V2

between sites ¢ and j on the A and the B sublattices, respectively; the resulting
class of trial RVB wavefunctions are

Vv = 3 [] fGa = ja) (e Ja) @.11)

(forfed @

where the bond-strength distribution f(I) as a function of bond length (¢} is a vari-
ational parameter (fig. 4). Optimizing this LDA wavefunction {2.11) using a varia-
tional Monte Carlo algorithm (32] on large (180 x 180) two-dimensional lattices,
LDA found that the lowest-energy states were associated with power-law pair-
ing f({) ~ {7% for 2 < p < 3 and a staggered magnetic correlation function
C# = (=1)EW(S(AS(0)) with a spin correlation length of order the Jattice
size [28].

The Liang-Doucot-Anderson results indicate that a linear superposition of
finite-range singlet bonds can recover long-range antiferromagnetic order; this sit-
uation is reminiscent of helium-4, where short-range pairing of the helium atoms
leads to a rigid Bose condensate {33]. To make this analogy more transparent we
use a bosonic representation for the spins, originally due to Wigner and Schwinger
[34], but most recently developed by Arcvas and Auerbach {35]. Here, a spin S is
represented by a symmetric wavefunction of n — 28 spin—% bosons (fig. 5). More
formally, this “Schwinger boson” representation takes the form

S = bt gaa’bw"

2.12)
big b’éo’ - S}
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Fig. 4. A pictorial summary of the Liang-Doucot-Anderson trial wavefunctions; here the singlet
ground state of the bipartite antiferromagnet is représented as a linear superposition of valence-hond
states with positive bond weights.

where & = (¢, 0%, 0°) are the Pauli matrices; it permits us to regard a lattice of
spin S moments as a fluid of paired spin-3 bosons [36] with constant density per
site p = 2.5. From this perspective, a large-S classical magnet is the high-density
limit of quantum antiferromagnetism.

Let us now rewrite the LDA wavefunction in a second-quantized form. In the
Schwinger representation a singlet bond (2, 7} is created by the Bose pairing oper-
ator

Bl = oliol, - blbl, : 2.13)
which becomes a symmetric triplet spin pair in Marshall’s staggered reference
frame

ng — Bg} =gBL_gT —=3! pt : (2.14)

o jo
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In this Janguage, the nodeless LDA wavefunction is then

Y.t ioBt0) (2.15)

{in€A, jaEB} «

‘IJ;“-'B = g¥pyg =

We can reexpress eq. (2.15) in a form that clearly shows the nature of the spin
pairing; to do so, we introduce a “Gutzwiller” operator Pyg (25 = 1) that projects
out the wavefunction component with 2.5 bosons per site, and then exchange the
sum and the product in eq. (2.15), rewriting it as:

NS
Wgys o Pis (Z Fa - j)Bi;) [0}, (2.16

1,5

where IV is the number of lattice sites. The right side of eq. (2.16) appears as
the NV .Sth term in a series expansion of an exponential; it will be selected by the
projection operator, and eq. (2.16) can thus be rewritten in Jastrow form

Vivg X Pag exp (Z fa - j)B;f}) 0)
1,3

= P5[¥),
|Ts) = cxp(z fg-b;Tb*_ﬂ)lo), 217
J

where the Fourier transformation of
| oo
fq‘=ﬁz.ﬁﬂe T (?.18)
™

gives the bond strengths.
We define the pair of bosonic amplitudes that satisfy

ué - vé =1

Vg

7 = fy, 2.19
ug 7 (2.19)

yielding ug = [1 — f217'/%, vz = f3/[1 — f21'/*. The corresponding Bogoliubov
quasiparticle spin destruction operator

:‘l‘;-a = u{‘-,-b;-a — 'Ugrb_é'_a (2.20)
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a) 25 bosons

Pt

Nor.rnal_~ N
Fluid 7.

CONDENSATEIR

Fig. 5. The * Schwmge.r boson™ approach to magnetism. (a) A pictorial view of how a spin S is built
with 25 spin- 2 bosons. (b) A schematic view of the two-fluid picture; the normal fluid describes the
spin fluctuations while classical magnetism is the condensate.

has the following properties

[aq'a')An] = _nAn_l‘Uq"bé'm
ago explA] = — exp[A) vgbgs,

A= Zfa nhla 2.21)
and hence annihilates the unprojected LDA wavefunction
agy |[¥p) = 0. - (2.22)

This bosonic representation of the Liang—Doucof—Anderson wavefunction was
first discussed by Read and Sachdev {37].
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In the thermodynamic imit (N — 00) f3.— I, resulting in an infinite accu-

mulation of particles in the ¢ = 0 state ((bt) — /N &*); the LDA wavefunction
(2.17) can be divided into a normal and a “c]assmal component

[Wrve) = Pag|¥n}[Ec), (2.23)
with '

[T) = eXp{qu-b}b*_@}IO),

a#0

|¥c) = exp {\/NS“ by + bﬁll} |0}, (2.24)

where we note that condensation will occur at the wavevector § = (m, ) in the
untwisted reference frame [38].

The presence of a spin condensate will be very sensitive to the nature of the
spin pairing. Within this treatment, the value of the ordered moment is set by the
constraint {(n) = 2S. In the high-density limit, where Pbs in eq. (2.17) may be
ignored, this constraint may be written

2= Z (T p|bL, ba |V 5)

qa
e Zw(‘I’BIa-qda_ggI\PB) =% Z fﬁ‘ (2.25)

where we have rewritten the Schwinger bosons in terms of quasiparticle operators

byr —uqa +vqaa_q — _ (2.26)

_to evaluate the matrix element in eq. (2.25). To ensure proper normalization of

the LDA wavefunction, fg is determined by the mean-field condition (2.25). The
right-hand side of eq. (2.25) is clearly maximized when fy = 1;if 2.5 exceeds this
value, a macroscopic accupation of the ¢ = O state develops in the thermodynamic
Jimit (i.e. 3 ~ NS§*) to satisfy the constraint. The value of the ordered moment,
S*, is determined by \

dlq  f7

ST=5- emi =12

(2.27)

where §* and the fluctuation integral represent the condensate and normal flmd
contributions, respectively.
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Equation (2.27) indicates that the development of long-range antiferromagnetic
order is sensitive to both dimensionality and to the bond-distribution in momentum
space. For example a nearest-neighbor RVB state, first considered by Sutherland

. [39], is characterized by f7 ~ f2(1 ~ ¢?)as f — 1; thus the Aluctuation integral
1 eq. (2.27) diverges (~ In[1/(1 — %))y and any large value of S can be achieved
without the development of 2 ¢ = 0 condensate. Following LDA, one can also
choose a power-law bond strength f(I) ~ {~? and thus fe=1~gP % ford =2
the normal fluid integral is bounded for p < 4, implying that long-range pairing is
crucial for the development of a sublattice magnetization in two dimensions. This
is in agreement with the numerical results of LDA; they found an ordered state for
all p < 4, and achieved their lowest energies for 2 < p < 3. We note that in three
dimensions the fluctuation integral associated with a Sutherland dimer state is con-
vergent (S, ~ 1.57) even for f,=q = 1, suggesting that for § > S, the 3D Suther-
land RVB wavefunction develops long-range antiferromagnetic order (see table 2).

Table 2

RVB wavefunctions and long-range order.

f ' 4 Se

ez + ¢y +- ¢z 3 1.5(7)

(short range) ordered S > S¢
¢y + Cy 2 o0

{short range) never ordered

R Pcosi-R 2033 P<4s)

(long range) ordered for S =

1
2

From these simple arguments, we see that an ordered antiferromagnet can be
regarded as a two-component quantum fluid. We shall now extend the analogy
with the quantum fluid further, identifying the condensate with classical Néel an-
tiferromagretism and the “normal” fluid with fluctuations about this ordered state
(see fig. 5). In the classical large-S limit, the “normal” spin fiuid is only important
in low dimensions, whereas in frustrated, smatl-$ systems “order from disorder™”
interactions in the normal fluid can play an important role in selecting the low-
temperature spin ground state,

2.3. Spin currents and spin conductivity

A “fluids” approach to magnetism implies the presence of local spin flow; how
can we define a spin current if it cannot be measured directly? More generally,
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can we discuss a spin conductivity if there is no analogue of an electric field to
induce spin flow? To do so, we must regard the current as a response (o a sudden
change in boundary conditions. In conventional charged superfluids, for example,
where the Landau—Ginzburg free energy is

p=t f (T - gAP  (p = [T, (228)
the particle supercurrent is then

- 1 6F - -

(x) = ———— = ps[AV (z) — gA(z)), (2.29)

I q S A(x)

where p; is the superfluid density.
The free-energy functional (2.28) is gauge-invariant under the local transfor-
mation

&(z) — $(z) + {z),
Az) — A(z) + (E)Va(:c), (2.30)

indicating that a change in phase boundary conditions is physically equivalent to
a change m the vector potential. We can also impose a non-periodic boundary
condition ¢(L) = ¢(0) + A8 (¥(L) = €49 W(0)) on a torus of superfivid with
length L; it can be absorbed by a gauge transformation a(L) = —A# where the
associated vector potential satisfies

e L
Al = — / A(Fdry, (2.31)
ko Jo .

and such a change of boundary conditions is physically equivaient to a magnetic
fiux containing ® = (h/e)AF. This result follows directly from the local gauge
invariance associated with local continuity of flow, and thus is not restricted to the
case of superfluids. ‘ _

The boundary conditions can also be changed with time; this is gange-eguivalent
to a time-dependent vector potential or an electric field
A, Af .

=h—. : {2.32)

ot L
If this process is suddenly imposed at time t = O, creating an effective field pulse,
eq. (2.32) becomes

e, = —¢

eB(t) = h%é(ﬁ), {2.33)
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with a resulting particle-current pulse

) = 3,

. where g(w) = cr(w)/e2 is the particie conductivity, and does not depend on the
specific particle charge. A supercurrent is signaled by the development of a pole
of strength (g/e)p; at zero frequencies in the conductivity function.

This argument relies solely on particle conservation. In neutrai fluids, where
currents do not couple to the physical vector potential, one can introduce a ficti-
tious pure gauge vector potential as a book-keeping device [33]. The system’s re-
sponse to this fictitious gauge field is physically equivalent to that associated with
time-dependent boundary conditions, or to an external potentiaj gradient. The gen-
eralization of conductivity to such neutral systems is thus a xesponse to a suddenly
imposed change of boundary conditions.

Local continuity of flow is a key feature of fluidity; in a charged superfiuid it is
associated with a local gauge invariance. There, the invariance of the free energy
under the gauge transformation

T(x) — 7@ g

- 20 . -
(¢, A) — (¢ + a,A+V9) (2.34)
establishes the focal continuity equation

BFIB] _ 3ps(2) o =
W@ " ot +V -5z —0,

where W is the complex order parameter. :

A simular approach can be taken in quantum spin systems. Conventionally we
attribute a Heisenberg antiferromagnet with global spin conservation associated
with spin rotational invariance. However, the motion of spin is a continuous pro-
cess and there will be associated spin continuity equations relating the divergence
of spin currents to the precéssion of the local moments {38]. Following the neutral

superfluid analogy, the long-wavelength action [40,41] for the Heisenberg antifer-
romagnet can be written [38]

JSZ d ~ nd AND
I=T/dzz(vin+/&ixn), (2.35)

where M = S7 and A is a fictitious curi-free vector potential vsed for determin-
ing the spin currents. In analogy with the conventional superfluid, coherent spin
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currents result from the broken SU(2) rotational gauge invariance associated with
global spin conservation. These currents are then
- 87 R - )
= e =ISWARA V=Vt dix), 2.36)
4

I

and correspond to twisted spin configurations.

Let us now generalize this discussion to the case of lattice spin systems de-
scribed by Heisenberg models. The Heisenberg Hamiltonian must be rewritten in
a gauge-mnvariant form; for electrons on a lattice we have

' _ .
="ty exp (i / A- di‘) Wy s (237

. i 4
so that one might expect that analogously for spins on a lattice the Hamiltonian is

- - .
=3 J;5 exp (i / A- df) 5;. (2.38)

i

However, spins are vectors, where

[5%)ab = i€aud (2.39)
so that
[AFS™] = —(A; %), . (2.40)

and the gauge-1nvariant form of the Heisenberg Hamiltonian [38] is
j -~ -
H[A’ﬂ = % ZJZ'};S,; exp (— / Ay dxy % ) Sj . 241
. i

The resulting spin curent from & to 4 is

- oH
et = — —=
) A

= Ju(Sk % Si). (2.42)
A=0

In this language the spin continuity equation,

as;

T ij—m = Jir(Sk x )

=8 x = JuSk, (2.43)
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is equivalent to the equation for spin precession in the presence of a Weiss mnag-
netic field, the second term on the right-hand side of eq. (2.43).

We can expand the gauge-ipvariant form of the Heisenberg Hamiltonian (2.41)
tn powers of the spin vector potential

H{A]=H - Z A@jE + 3 Z AFDNEHD AP (D), (2.44)
where
0= - LS KiRSE - 1< S 1),
TICIER=
’ *H 2 | 73 23
Nig(® = — Yy Z J(BY R [8%& - A R)SP@& + L B)
~ 5P 5z - 1R). § (x + 1Ry (2.45}

The dertvative with respect to the spin vector potential yields the spin current
Ti=n-N-A (Mg =Ny (2.46)

Analogous to the superconducting case, the first term on the right-hand side (rhs)
of eq. (2.46) is the instantaneous “diamagnetic” response to an external twist field,
where the second “‘paramagnetic” contributior corresponds to the adiabatic relax-
ation of the imposed twist. The linear response to a spin vector potential is

Tiz) = — Z / YEE T - 7Y A

YE T — 1) = NHE6 ez - ) — (T ia)i))), (2.47)

where we have used the shorthand z = (F,7), 6°(2) = 6;6(7) and suppressed
the spin indices; here the spin stiffness is analogous to the London kernel for a
superconductor.

Are antiferromagnets truly spin superfluids? In a spin fluid with unbroken rota-
tional invariance, the diamagnetic and paramagnetic response terms in eq. (2.46)
exactly cancel at long times and distances, renormalizing the spin-wave stiffness
to zero. However, when this spin rotational symmetry is broken, spin-current fluc-
tuations incompletely screen the diamagnetic response; the rigidity of the wave-
function leads to a finite spin stiffness tensor. Does a finite spin stiffness imply spin
superfluidity? In general, no! Superfluid flow depends not only on the stiffness of
the ground-state wavefunction but also on the topological stability of vortices that
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permit a macroscopic circulating supercurrent. In a conventional superfluid, per-
sistent currents around a ring are associated with a phase change 2#n; here current
loss cannot occur in a continuous fashion, because the phase change around the
ring is a topological invariant. Similarly, the development of spin superflow de-
mands the topological stability of spin vortices; 1a this sense an zy magnet with a
U(1) order parameter is a true “spin superfluid”. The situation is more complicated
for Heisenberg spin systems: for uniaxial vector antiferromagnets {(O(3)), vortices
can “escape into the third dimension” [26], although it is possibie to have sta-
ble 27 defects for non-collinear antiferromagnets (SO(3)). However here, unlike
the U(1) case, a vortex is its own antiparticle and a state with a 47 order param-
eter twist can distort back into the ground state. In this sense, no macroscopic
spin currents are possibie: the topology of the order parameter actually suppresses
Macroscopic spin currents, and despite their finite superfluid stiffness Heisenberg
magnets are spin insulators (see fig. €). In practice, however, weak zy anisotropy
or finite boundaries stabilize such defects, and there is also the possibility of a
richer class of stable spin textures associated with higher homotopy groups.

2.4. The Onsager reaction field

Any treatment of strongly fluctuating antiferromagnetism that aims to recover con-
ventional semiclassical results must extend the concept of a Weiss field to cases
where the local moment vanishes. Such a generalization has been studied by Brout
and Thomas [29], who have adapted Onsager’s reaction field [30] to the spin prob-
lem. Specifically, a spin is only sensitive to the “cavity field” it would experience
at its own location, and the correlated polarization of its neighboring spins does
not play a role in its orientation. Following the treatment of Brout and Thomas
[29], the spin’s orienting field is the sum of the uniform Weiss and the “reaction”
((8.8;)) fields associated with the formation of an empty cavity at site i (fig. 7); the
second contribution is determined by removing the spin at site ¢ and computing
the resulting field. To compute this feedback effect, we suppose that the‘cavity”
spin at site ¢ has a small polarization {55;) which would have induced a Weiss
field B{k] = —Jki(égz-) at neighboring sites J in the absence of the cavity; thus
with the creation of the cavity these spins at j “feel” a change 1n their Weiss field
given by

§B™W (k) = — Bk} = Jx: 85, ' (2.48)
where J; is the coupling constant between sites £ and 7 (fig. 7). Equation (2.48)
then induces a change in magnetization at site j

<5Sj)cuvity - ZXjk 6§cavity[k1 = Xk Jkt’ (65?1_):::“&(:;J (2_49}

ki
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Fig. 6. A pictorial fepresentation of the link between a coherent spin current and twisted boundary
condirions. In an zy (U(1)) magnet J = —0.E(8)/08 is macroscopic and thus there are persistent

spin currents; this is not the case for the SO(3) helimagnet.

which, in turn, produces a Weiss field at the site of the cavity, given by

(6B’Eavil)') = _Jij(6§j>cavily‘ (2.50)
so that
(5§i>cu\rity - _zﬂ(sgi)ca\rily‘ : (251)
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where
2= 3 Joxonds = [ P@x@. (2:52)
ik 4

Here x(g} is the zero-frequency susceptibility of the antiferromagnet at wavevee-
tor g, and

/ /Bz @m? @39

is the momentum integral over the Brillouin zone. Thus, in the cavity of the sur-
rounding spins, the spin at site ¢ experiences a feedback field {B;)*% which is
proportional to the spin polarization at that site.

The comesponding energy per site associated with zero-point and thermal spin
fluctuations is then

= —5 Y (B - 8 = uS(S + . (2:54)

Cquation (2.54) permits us to relate the Onsager reaction field constant g with the
spin fluctuations in the system

1 - -
k= 55T /q JDE 5 Spu. (2.55)

In order to satisfy the fluctuation dissipation theorem

- -

(S-g- Sghu = / gf (3 + nlw)Im x(7, ) (2.56)

the Onsager reaction field constant must be adjusted self-consistently [29] to sat-
isfy both equations (2.52) and (2.55), the dynamic and static expressions for p.
Such self-consistency implies

ad
/ T = f J@ f ?“’ [4 + (W) Im x(F, w), @.57)
g q

where the susceptibility is computed with the Onsager feedback field B; = —2u8;
replacing the standard Weiss field. These equations are sufficient in their own right
for the study of strongly fluctuating magnets, and in principle any method can be
used to compute the dynamical susceptibility in the presence of the Onsager field.
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B
@

ij

Fig. 7. A pictorial summary of the Onsager reaction ficld in strongly fluctuating antiferromagaets. (a)
The orienting field on a spin (i) is the suin of the the uniform Weiss field (ii) and the cavity reaction field
(ii1). (b) The three sites with their associated magnetizations and fields used to compute the reaction
field within linear response theory.

In the approach to an antiferromagnetic transition the moments fluctuate more
and more slowly, and the Onsager field eventually freezes into a constant Weiss
exchange field.

From a more microscopic standpoint, the Onsager reaction field may be viewed
as a chemical potential for spin. If we regard the Onsager reaction field as the
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denvative of an effective Hamiltonian

_B;j = —2#51- = a—_, (2.58)

then it may included into the Hamiltonian as a term of the form

Hy==> p(r){S:- 8~ 55+ 1)}. (2.59)

Equation (2.59) is zero within a Gibbs ensemble of definite spin, but can be iden-
tified as the constraint term within the “grand-canonical” Schwinger boson ap-
proach. The partition function associated with eq: (2.59) is

Z = /d[,u,-] Te { exp —p3 (H + Z,uq;[.é';- .S — S5+ 1)])}. - (260)
Setting n; = 2.5;, we find that eq. (2.60) can be rewritten as
Z= /d[m] Tr { exp —ﬁ(H + ZM{S + 3 }n; - 25]) }
= fd[/\g Tr{exp —ﬁ(HJrZ/\,-[m 23])}, (2.61)

where A; = p:{5+ %), so that the constraint term can be rewritten in terms of the
reaction field. The corresponding mean-field equation

{np)a =28 (2.62)

is the microscapic counterpart of the cavity field feed-back equation (2.57) first
considered by Brout and Thomas [29]. Conceptually, the Schwinger boson ap-
proach provides a microscopic realization of the work of Brout and Thomas {29];
it models a spin system of definite S by a grand-canonical ensemble of spin bosons
moving in the background of a fluctuating Onsager reaction field, as we shall see
shortly.

3. The antiferromagnet as 2 quantum fluid: applications

In the last section we developed the conceptual framework for a quantum fluids
approach to magnetism, and now it is time to put these ideas to practical use. We
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begin with the simple example of the nearest-neighbor bipartite Heisenberg anti-
ferromagnet. The Onsager reaction field was fist applied to Heisenberg spin sys-
tems by Takahashi (42,43], who used it to extend spin-wave theory to finite tem-
peratures; later Hirsch and Tang (44] developed a similar technique for finite-size
lattices. Here we use the rotationally invariant Schwinger boson representation of
Arovas and Auerbach (35}, working within the operator mean-field approach first
studied by Sarker, Jayaprakash, Krishnamurthy and Ma [45]). The spin stiffness
and the spin correlation length are calculated as a spin-current response, with good
agreement with known scaling results. Next, we extend the two-fluids picture to
frustrated magnetism, indicating possible pitfalls in doing so. Since the technical
aspects of these developments have been well-documented elsewhere {35-38,46),
we will limit our remarks to those tools strictly necessary for the forthcoming dis-
cussion of enhanced fluctuations in frustrated magnetism; in particular, in the next
section we will use the pairing equations developed here to calculate the Isin g tran-
sition temperature associated with a fluctuation-stabilized order parameter that is
robust to the absence of long-range Néet order, :

Before plunging into the microscopics of the two-component fluid treatment
of magnetism, fet us briefly discuss how such a method encompasses the more
conventional semiclassical approach. From this perspective, spin-wave theory is
2 mean-field theory of the “down” spin boson; it models a spin system of definite
S by a Gibbs ensemble of spin bosons where the “up” spin boson has condensed.
In short, spin-wave theory represents the partition function

Z =Tt { Poags e7PH} (3.1)
by

= Tr"bl" e—ﬁHsp-.wm‘ ' (3.2)
where the constraint

blbr =25 ~ blb, (3.3)
is solved at the outset. By contrast, the Schwinger boson method represents a sys-
tem of fixed spin by a grand-canonical ensemble of bosons where (Sz) = 0; this
treatment is a mean-field theory of the constraint, where fluctuations in the associ-
ated Onsager reaction field become interactions. Since both “up” and “down” spin
bosons exist in uncondensed form, it has the possibility of treatin g states that break

the SU(2} spin rotational symmetry without the development of single-particle
condensation associated with moment-formation. '
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3.1. A rotationally invariant treatment of the bipartite magnet

We now turn to the bipartite Heisenberg antiferromagnet with the Hamiitonian

H=J7Y &-5;, (3.4)
5

where J is a nearest-neighbor exchange coupling. Conventionaily, this model has
been treated perturbatively around the “large-S” classically ordered Néel state
with bosonic spin deviation operators, a method that explicitly breaks the spin
rotational symmetry [5,6]. This spin-wave treatment can be recovered from a
Schwinger boson approach by eliminating one component of the Bose field us-
ing the constraint

blby =25 — blb,. | 35

Here the “up” spin direction is chosen to coincide with the direction of the magne-
tization at each site. Since a gauge can always be chosen so that the up spin field
1s real, the constraint then permits the replacement

bT
T \/28 —blby . (3.6)
by } — o

so that the physical spin operators become

S, = j(bbr ~ 8]b)) — S —blby,

Sy = bl — (1/25-513)1)51,

T . T

- =blb — (25 -dlbr). 3.7

This is the well-known Holstein—Primakoff representation; from this exercise we
see that by imposing the incompressibility constraint at the outset, conventional
spin-wave theory immediately breaks the SU(2) spin rotational symmetry of the
probiem.

As we discussed in the preceding section, a rotationally invariant treatment of
quantum antiferromagnetism demands that the Jocal environment of a single spin
is described by an Onsager reaction field; formally this reaction field appears as a
chemical potential that constrains the density of the spins,

H(T)=Ho+ » X;(r)[n; - 28). (33
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The associated partition function is
4
Z = /D[,\j] Te e~ fo HOVOT 3.9)

where the integral over the A fields imposes the constraint n; = 25 it is taken
in the complex plane along a line parailel to the imaginary axis. From a practi-
cal standpoint, the incompressibility condition n; = 25 is imposed on average
(i.e. {n;) = 25); from a path-integral approach the Onsager field is the value
of A;(r) at the saddie point of the constraint integral. Such an approximation is
clearly unreliable at small S, where fluétuations in the constraint field may become
increasingly important.

Let us now do a simple Schwinger boson mean-field analysis for the bipartite
antiferromagnet, a2 method first developed by Arovas and Auerbach [35]. We begin
by decoupling the original Hamiltonian in terms of singlet pairs

Bl =Ll —blpl,  (ieAjeB), (3.10)

where the spins ¢ and 7 are on the A and B sublattices, respectively. We transform
to a staggered spin reference frame
!O'Q_--ﬁj

— by

bjor 30 €

Bl — Bi; = bITbL OBl e AjeB) (A1)

by performing a 7 rotation on alt spins on the B sublattice; in this “Marshall”
frame, the singlet pairing field is symmetric. The Hamiltonian (3.4) can then be
written

H=1UY {@28%=BLBi;} +1> (n; —25). (3.12)
{3,7) b

Developing a mean-field theory in B;;, we do a Hubbard-Stratonovich factor-
ization of the interaction term of eq. (3.12), using a ficld

J
Bij ~ == {Bij) (3.13)

to represent the fluctuations in spin pairing at each bond. Formally, we introduce
the Gaussian identity -

_ LA J J
lzf’D[Az--,Aiﬂ]cxp —/ dT—(A--——BJ,) (A{-——Bi-)
7 ¥ o 7 CAE Tt i 7Y

(3.143
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into the path integral representation of the partition function, After expansion, the
factorized Hamiltonian takes the form

H:Z{[Aij8¢j+h.c.] + A‘JA”} ZA (n; —28).  (3.15)
(2.9)

Mean-field theory then replaces A; — A and A;; — A, where the average values
are determined by the stationarity of the mean-field free energy with respect to
small variations in both variables.

The corresponding mean-field Hamiltonian is then translationally invariant, and
in momentum space can be written

Huer = A Z(b1 bq‘[ + b_tﬂ_bf_q—l)

‘ZA{ 1ol + b-qubp) — No@2S + 1), (3.16)

where N; is the number of sites, and Ay = 2A 37, ;cosg. To diagonalize
Hypr, we make the Bogoliubov transformation

al, =ugl, — vz, G.17

which preserves the bosonic commutation properties of the creation operators, and '
yields the diagonalized Hamiltonian

ZN,A? '
gy = qua [qu %]-I\§A(2.S’+l)+ - (3.18)

with Z = 2d the number of nearest-neighbors per site. Substituting for the aqa,
we find that

=iy X
“ 2 qu-,
i A
’Ug—- = E - Eq- (‘319)
This harmonic-oscillator form of the Hamiltonian yields the free energy
F= ZTZIn[Q sinh(%ﬁqu}] + N [% - 225 + I)] . {3.20)

7
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By imposing the seif-consistency conditions

oF 2A

a“<‘%+7>=°=
oF _
N

we arTive at the mean-field equations

A 1 1
S:fq—{w—a[“(w”i] _5}‘
J o i
-7 /q o {n(w§}+§]. (3.22)

The first equation in eqs, {3.22} comes from the constraint. For d > 2 the
Schwinger boson field condenses at the Néel temperature. When A\* = (ZA)?,
the spectrum becomes gapless at § = 0, . For the sake of example, let Bose
condensation occur at § = 0, with {b;1} = (b;,) = /M/2 comesponding to a
staggered magnetization

(nj —28) =0 | : (3.21)

SR =(os Q- R,0,0). (3.23)

The occupancy and pairing fields now acquire an additional delta-function com-
ponent related to the Bose condensation
A i 1
(Nge) = w_é- [n(wq-) + 5] -3 + 650 M,
2A 1
— {n(w,;) + 5] +2Mézm, (3.24)

q

(Bz'tj) =

and the mean-field equations (3.22) must be rewritten as

1 A 1 1
S:MJFE/,?{JQ-[”(WHE]_E}’

Jf[a 1
A= {fq - [n(w,f-) + 5} + M}. (3.25)

In the limit § --» oo the condensate fraction completely dominates these integral
equations, ' '

A=2ZJS
S — oo,
A=J§

o]

-C:||
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and the low-energy spin excitations around § = 0 (Q) have the form wy = ¢g
{c|lg — Q|) with a spin-wave velocity

c=v2Z JS. (3.26)

In two dimensions the situation is particularly interesting, since here long-
wavelength thermal fluctuations have enough phase space to prevent conventional
magnetic ordering at any temperature. At low temperatures, the excitation spec-
trum has a smail finite gap

DTV = ATY = (ZAD), (327)

and wy = /AZ+ c?¢? in the vicinity of § = 0, which leads to a finite spin
correlation length £ = ¢/A (7). At low temperatures the constraint equation is

dominated by the thermal component of the integral in the vicinity of § ~ Q; with
the approximation n(w) ~ T /w, 10 logarithmic accuracy it becomes

- f @ry? q1+s 2 (3.28)

Setting ps = 2J52, we find that

ps 1, (€
T =l (a) (3.29)

or, to exponential accuracy,

4 ps
gm a eEXp (?) ’ (330)

a result consistent with that obtained from a scaling analysis of the equivalent
non-linear o-model [35,17].

Let us proceed a bit further, and study the spin stiffness within this framework.
et us twist the magnet by applying twisted boundary conditions about the z-axis.
In order to absorb these new boundary conditions into the Bose creation operators,
we must transform b* — bq Ao , where A — V@ is the twist vector potential
about the z- dlrcctson lhc tw1s£ed” Hamiltonian is then

Hyrr[A) = A (bLibar +b_pnb! 5)
7

=38y gl +boaba) — NS+ 1) (3.31)
q
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and the uniform z-axis spin current is
J= -V H[A) = T® 4 JO
(p) t
TP = Vg, AgbLb! o+ b_g1b7),
IR = VA AR G o+ b_gba). (3.32)
In analogy with the superfluid case, the two components of the current J® and
J @ are identified as the “paramagnetic” and diamagnetic response, respectively.
The spin stiffness is the linear spin-current tesponse of the spin fluid to the appli-

cation of a twist. If we writec F'(A] = —7'In Tr[exp (=3 Hyer)], and differentiate
with respect to A, then we find that

VepFiA] = Q% + QY (3.33)

where
Q) = (Jalw)Ip(—w))um (3.34)

is the “paramagnetic” response associated with the spin currents carried by spin
fluctuations and

QY = Z V25 A7{(B5b o +b_g1bq1))

is the instantanecus “diamagnetic” response of the entire spin fivid to the applica-
tion of a twist. As in other quantum fluids, the paramagnetic and diamagnetic spin

“currents associated with the norma} fluid will cancel shortly after the application
of a change of boundary conditions, leaving a residual stiffness associated with
the condensate. In the large-.S limat this residual stiffness is

Qe = ZV’?A ABLIG! ) +hed =275 (3.35)

In a finite-size system in the absence of true Bose condensation the spectral
weight associated with the spin condensate is spread out in a narrow region of
momentum space of radial extent Aq < (1/L). The associated stiffness is ap-
proximately

d? Ny (1
Q(ﬂa & fl - & v plg— [—2- + ﬂ(wq?)} \ (3.36)
q

ie-araryr QP g
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which yields
: d*g T
QW = pbap ™ bap (V2 A—q_/ s
af O aﬁ( af Q)q_o l<1/L (zﬂ)z (cq)z + Ag
T ¢
=—ln|l+—=]|. .
= n[ + Lz] (3.37)

Thus, as the system size L exceeds the spin correlation Jength, fluctuations in the
spin field drive the spin stiffness to zero. This phenomenon can be more quanti-
tatively studied in the context of non-linear o-models for antiferromagnets. The
quantity

T 447
pLy ~ In{l +€2/17

can be viewed as a coupling constant between spin fluctuations; when the spin
stiffness is large, spin-wave fluctuations are essentially non-interacting, whereas
when it is small, such is no fonger the case. In this respect, 2D spin fluctuations
are weakly interacting on length scales (L) less than &, but interact strongly for
L > & Within the quantum fluids approach, a2 more rigorous way of deriving this
result is to examine the momentum dependence of the spin-current response [38].

So, we see that the stiffness of a guantum antiferromagnet can be interpreted as
a spin-current response with the two-fluids perspective. As emphasized in the last
section, the presence of a spin stiffness does not imply spin supercurrents, a con-
dition that relies on the topological stability of spin vortices. Nonetheless, we can
learn about the stiffness of a quantum antiferromagnet by treating the spin-current
response to an external twist in a fashion analogous to that used in conventional
quantum fluids. Equations (3.32) indicate that the stiffness of a quantum antiferro-
magnet is essentially a Jocal response function; this link between the spin stiffness
and local spin-current fluctuations is a key consequence of the quantum fluids ap-
proach to magnetism. From a practical standpoint, this relationship is very useful
in numerical calculations of the stiffness in classical Heisenberg magnets. More
specifically, it is more accurate to monitor local current fluctuations, rather than
to compute the free energy as a function of external boundary conditions, which
requires several Monte Carlo runs and modified code. As ar additional check on
our quantum fluids approach, Ritchey [13] has used the local spin-current fluctua-
tions as a means to probe the stiffness of the classical two-dimensional Heisenberg
antiferromagnet on a square lattice; his measured spin stiffness, «v/T', is plotted as
a function of T and L in fig. 8. From this data he estimates the linear dependence
of v/T onln L to be

d(y/Ty 1 dty/T)
dinL ~ ImL dlns L

4= (3.38)

—0.12 (3.39)
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T/J=0.40

Fig. 8. Spin stiffness of the square-lattice antiferromagnet calculated by Ritchey [13] in Monte Carlo
simulations, where the solid lines are least-sguarces fits to the data,

from a least-squares fit, which is in good quantitative agreement with the Polyakov
scaling equation [47] for the O(3) non-linear o-model
dy/T) _ 1

T = ~3n ~ 016, (3.40)

thus providing further confidence in this type of analysis. We note that eq. (3.40)
assumes that the cubic comrections to the scaling are negligible, and thus we expect
numerical agreement to be exact only in the limit of v/7" — oo.

3.2. Frustrated magnetism from a two-fluids perspective

3.2.1. Difficulties in non-collinear spin systems
Anderson has always emphasized the singler nature of spin pairing in his fluids
approach to magnetism; from this standpoint the spin correlations wilt always be
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isotropic in character. For bipartite Jattices, Arovas and Auerbach (AA) [35] have
showed that a mean-field treatment of these singlet bonds is formally exact within
an SU({N) generalization; in this large- N limit pairing fluctuations are quenched
by the number of flavors. AA noted that if one relabels the Bose fields on the odd
sublattices and then permits an infinite number of spin variables, the bond opera-
tors behave in a semiclassical fashion. Following this prescription, the Heisenberg
Hamiltonian can be decoupled entirely using singlet pairs; for the ferromagnet

S;-8; = iDL Dy —5* (3.41)
and for the antiferromagnet

5;-8 =-1BLBi; + &, (3.42)
where

ng = bzabﬁf*‘-’ b
BL— =)o (3.43)

LAl Tt
are particle-hele and Cooper singlet pairing fields, respectively.

Clearly the Arovas—Auerbach prescription [35] will not work for non-collinear
spin systems, where both ferromagnetic and antiferromagnetic interactions are
present. How to extend this quantum fluids perspective to the case of incommen-
surate or frustrated spin structures? One group, led by Read and Sachdev (37] and
Yoshioka and Miyazaki [48], preserves the singlet character of the macroscopic
wavefunction, describing the microscopic interactions in terms of isotropic pair-
ing fields. Extending the Arovas—Auerbach decoupling scheme to non-collinear
magnets, Read and Sachdev [49) have introduced an additional flavor index to the
Schwinger bosor; the new singlet pair operator is now the sum of /N replicas

N
Bl — BYL =S B =l 7ol (3.44)
a=l1

where
JoRP — J(m\)(o’)\’) = 06, —gban s . (3.45)

which again behaves semiclassically in the large- NV limit; Yoshioka and Miyazaki
have treated the triangular lattice problem in a similar fashion [48]. However, in
both cases the mean-field spectrum has the general form

wg = 4/ X = AL, (3.46)
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which, unlike the AA dispersion for bipartite lattices, does not recover the semi-
classical result from spin-wave theory

wg = \/:r.% - A% (3.47)

In this approach there are no anisotropic fluctuations in the “normal” fluid by con-
struction; thus this method will not be sensitive to the formation of tensor spin
order in the absence of a sublattice magnetization.

By contrast, the approach we will describe here takes its cue from helium-
4; there, though in principle one could project out the singlet component of the
ground state, the important effects of anisotropy have been incorporated by in-
cluding microscopic triplet pairing {33]. Analogously, the fluctuation auisotropy
of non-collinear magnets can be emphasized by permitting both singlet and triplet
pairing in the normal fluid [38]. From another perspective, the presence of a twist
breaks inversion symmetry and thus violates parity; microscopically

Si x 85 = J(BLBy; +he), (3.48)

where BL- and B_Ij = b;fa@oz)agb!ﬁ are the singlet (see eq. (3.43)) and the triplet
pairing fields between sites ¢ and j. A unique decoupling of the Heisenberg Hamil-
tonian is performed in a “Marshall” reference frame, one with only even-parity
spin pairing fields; in the large-S limit the calculated dispersion relation agrees
with the semiclassical spin-wave theory result [38]. :

3.2.2. Gauge-fixing and the “Marshall” reference frame
In the previous section, we discussed a gauge-invariant forrulation of the Heisen-
berg model; let us now return to this topic to formally indicate the transformation
to the “Marshall” reference frame where the parity-violating twist vanishes. Phys-
ically, because any arbitrary magnetic configuration can be described by the ac-
tion of twist(s) on a locally ferromagnetic configuration, all calculations can be
performed in a twisted coordinate system where the magnet is treated as an even-
parity, triplet-paired Bose fluid. For simplicity, here we will consider an eguilib-
rium magnetic structure that is uniformly twisted (i.e. one twist), and our discus-
sion here follows closely our treatment of this topic elsewhere [38].

In a Lagrangian formalism, the partition function associated with the Heisen-
berg model is

pho+2inT

7 = d)\J /D[b] B—fﬁ('r)d'r,
Aa

Le=Lo+H,  Lo=Y {bla, = A + 25N}, (3.49)
J
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where H is the Hamiltonian in terms of Schwinger bosons. The fluctuating On-
sager potential A; imposes the constraints, generating local Onsager cavity fields.

Spin indices on the Bose fields have been suppressed (b; = (b}T, b} )2
Under an independent rotation of the spin basis at each site

by =g,
g; = eV/2;- (3.50)

the spin transforms under the adjoint representation of SU(2)

S, = 10t Gaphly = €797 G, (3.51)

The transformed Lagrangian is then £8 = Lo + HE, where

He =15 08 e A% 5, - ST B L 5 (3.52)
7 .

and primes have been dropped for clarity. The exponential e~ A% is shorthand
for the O(3) rotation matrix

(e—‘;.ij X )pq = (E_G‘i x 39_7 X )p'? . (353)

If we gauge transform the Bose fields b — b8 inside the path integral (3.49), .then
the Lagrangian becomes £ — L&, The integration measure is gauge-invariant,
Db} = D[b®], as is the partition function

ApH2in T
Z=28= / dx; / Db} o~ J ST (3.54)
A

1]

We can average over gauges, using a normalized weighting function EF(g):
/Dlg) F(g) = 1. We then write Z = [ dg F(g)Z8, or

Ao4-2iwT "
Z = X f Dig, b] F(g) e~ £0er (3.55)

)

We now select the weighting function that simplifies the decoupling procedure,
one that aliows us to work in a twisted reference frame with only even-parity spin
pairing. Formally, this is equivalent to integrating over the spin gauge fields and
imposing & gauge-fixing condition on the spin configurations

(S8 x 5% =o0. (3.56)
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The transformed Lagrangian now becomes
L8 = Lo+ HE+ > (Jysinby ki - Xig) - (8 x §p), (3.57)

where an integral over the Lagrange multipliers XU fixes the average gauge; in this

“Marshall” frame the twist vanishes and there exist only even- panty s$pin pairing
fields.

3.2.3. The mean-field decoupling procedure

The gauge-fixing condition described above ensures that at the saddle point the
Hamiltonian will contain no parity-mixing terms. We now make a pairing Ansatz
for the triplet Cooper and the singlet particle~hole pairing fields:

(BT) (bl Dap bl 55) = 2m5 K,

(Dé.) = (bﬂb‘ﬂ -+ ﬂb,ﬂ) = 20y, (3.58)
where & is the twist axis and 77 and oz are even functions of 7. In the large-S
classical limit (5 — 00}, these pairing ccarrelat:ons become ay = ng = Sb; +
O(1).

At the saddle point, the twisted Hamiltonian is then

H=353 Js{y™8- 5+ 4708 5 - 28BS - b, 359

i

where v = 31 £ cos( - }_?:;j)]. The terms in the Hamiltonian can now be
decoupled into even-parity pairs

Si-§; =1.Dl,D;;: -8,
S+ 85— 2(8; - kxS, by = §BYTBY - 57, (3.60)

where B('” k. .B';P Restricting our attention to zero-momentum pairing we
can write the coupling as a BCS Hamiltonian

Haes = § ) 1T DDy — 77 BY1BY) - INJ(G)S™ (3.61)
qT

Here IV is the number of sites and the pairing potentials are

Ty =4U@+ UG+ T +D+IG+d - s 36
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The subscript S denotes symmetrization with respect to ¢ and ¢’. Here, the first and
second terms are the pure ferromagnetic and antiferromagnetic pairing potentials,
respectively.

In order to study the mean-field theory associated with eq. (3.61) we make the
standard Ansatz

= (D}) 4B R) 15l

= (B}y e~ 451 (3.63)
Defining
hq = % Z ‘7;5<D
1 -
Ag=13" TnlBg) + X, (3.64)

the resulting mean-field Hamiltoniar is

Hyp =Y {(hg— M[blbgr +b_g1b! ] ~ A ﬂbﬂbf_q - +hel]}
g
+E. +2NXS + 3), (3.65)

where we chose & = 2, and

Bo =Y {AdT 17587 — kel T 0 hat — AN (@S (3.66)

e
is the spin condensate energy. The quasiparticle cnergies of Hyg are wz; =

\ !(}"1‘.‘7)2 - &3_., where ﬁ,; = hg — A, so the total mean-field free energy per unit
cell 1s

F =y 2T nf2sinh(}fwg)] + Be + NA2S + 1), (3.67)
g

Differentiating with respect to hy, Az, and A yields the mean-field equations
he= [ Tior,
7

g

s+4=[an, (3.68)
g
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. 2
where fq’ = [d%q/(2m)?, arlzd
(e, 2ng) = (DL, {BP 1) = [coth(} fug) fwg) (hz, Ag). (3.69)

For ferromagnets (§ = 0), the pairing potential 7~ vanishes, and eqs. (3.68)
reproduce Takahashi’s equations [42]; in the case of collinear antiferromagnets
EQ = (m,m) J* = 0, and eqs. (3.68) agree with the Arovas-Auerbach result
351.

It1s straightforward to recover the semiclassical dispersion relation in the large-
S, T = 0 limit of these equations; there the bosons condense at § = 0, and there
is a pole in the occupation functions ay ~ 77 ~ S*§;7 corresponding to a finite
magoetization 5*. As S — 0o, the pole dominates, and 5 /S — 1, so

hg=ST5%,
Bg=8T5, (3.70)

A adopts the smallest value consistent with wy = 0, vielding A = SJ(Q). Thus |

the dispersion in the § — oo limit is
wE = SHIQ - JQN{EIG+ Q)+ JG- 1 — I}, (3.71)

which is identical with the calculated spin-wave spectrum of the twisted magnet
[5C]. This result then gives us confidence in the technique; we are now ready to
proceed beyond the realm of conventionally ordered magnets. In the next section
we use eqs. (3.68) to determine the Ising transition temperature associated with a
fluctuation-generated order parameter that is robust to the absence of long-range
Neéel order; scaling arguments and numerical results agree with the predicted value
for T[sing-

4. Frustration from a distance: the long-wavelength consequences

Magnetic frustration is a short-wavelength phenomenon intimately connected with
the geometry of the host lattice. Does it affect the long-distance behavior of a spin
system? How does frustration “interact” with strong fluctuations? Conventionally
we associate fluctuations, both thermal and quantum, with disorder; for example,
the development of a sublattice magnetization is suppressed in a two-dimensional
Heisenberg antiferromagnet at finite temperatures. The role of fluctuations is often
enhanced in geometrically frustrated spin systems, where all spin bonds cannot be
satisfied simuitaneously due to the underlying lattice structure. In “weakly” frus-
trated antiferromagnets the energy associated with each elementary plaquette can
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be minimized; by contrast, “strongly” frustrated spin systems have a highly de-
generate ground-state manifold. Short-wavelength fluctuations now become very
imnportant [23-25]: the anisotropic fluctuation free energy may be minimized in se-
lected lattice symmetry breaking spin configurations, thus lifting the ground-state
degeneracy and possibly stabilizing new forms of spin order.

It is the interplay between strong fluctuations and competing interactions that
leads to this “order from disorder”, and in this section we shall discuss a spe-
cific example of this somewhat counterintuitive phenomenon. We begin with a
tong-wavelength description of two-dimensional non-cotlinear Heisenberg mag-
nets, following Polyakov’s method [{47] to determine the scaling equations. This
approach implicitly assumes that only long-wavelength fluctuations affect the spin
stiffness; next we discuss a specific example where, by contrast, fluctuations on
the length-scale of the lattice play a crucial role, leading to a fluctuation-stabilized
order parameter that can survive the loss of a sublattice magnetization. The rele-
vant Ising transition temperature is calculated using the guantum fluids approach,
and 1s confirmed by both scaling and numerical resuits.

4.1. The classical long-wavelength action

We begin with 4 discussion of the long-wavelength spin fluctuations in two-
dimensional Heisenberg spin systems. At finite temperatures, temporal quantum
fluctuations in these systems are incoherent on time scales £ ~ h/kgT and thus
the behavior of (finite temperature) 21D quantum antiferromagnets is governed by a
classical action with renormalized parameters that describe the slow spatial modes
of the order parameter. In a long-wavelength description of spin systems, we must
relate the spin order to an appropriate local response function; the most natural
choice is the local spin susceptibility. Broken local spin rotational symmetry re-
sults in an anisotropic local spin susceptibility, as described by the matrix

§*FB]

T §Be(z)8B¥z)’ @1

Xab(:l.') =

In a uniaxial (collinear) magnet, for example, the spin susceptibility parallel to the
magnetization axis 7A{z) vanishes, so that eq. (4.1) has the form

x**(z) = x[8°" — A%(z)A’(z)]. (4.2)

By contrast, in helical magnets the microscopic magnetization S(x) precesses in
space; it is given by

S(z) = Mlcos(G - © & + sin(@ - £) &1, (4.3)
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where Q is the magnetic vector, and &, and &, are two axes orthogonal to the
spin precession axis &;. Here the long-wavelength response is coarse-grained on
length scales greater than the magnetic pitch A = 21 /Q); the (coarse-grained)
susceptibility is anisotropic:

X = x1[8181 + &8] + x)és83, 4.4

with different values parallel (X)) and perpendicular () to the twist axis és.
There is 2 large class of possible tensor spin order parameters [51] that could also
lead to this behavior at long distances. Strictly speaking, our discussion is rot
confined to a conventional antiferromagnet with a staggered magnetization; we
only require the presence of a local order parameter that breaks spin rotational
symmetry. For simplicity we will use “antiferromagnet” in the broadest possible
sense, referring to spin systems where the SU(2) Heisenberg symmetry has been
broken without or with the development of a local moment. The details of the
microscopic order will, however, be important for the classification of allowed
defect structures [26); we shall return to this point in section 6. .

As we discussed earlier, the Jong-wavelength properties of a finite-temperature
quanturn spin system are determined classicaily by its slow spatial modes. These
modes, in turn, are related to the energy associated with slow variations in the
susceptibility orientation. At any spatial point, the local order can be described by

8u{z) = g(x)2,(0)  (a=1,2,3), 4.5)

where g(z) is an O(3) rotation matrix and &,(0) is aligned along the z, ¥, and z
axes, {€,(0}]) = 8,2, $o that the ath row of g represents the vector &,,

UL
Q(z):[..‘ & ] ‘ ' (4.6)

It is more convenient to express the rotation matrix g(x) in terms of the generators
of rotation. For vectors, these generators are in the adjoint representation, and we
write '

gx)=exp (8]  (@=but,), ' @7
where
[tr] o = €ars (4.8)

satisfics the SU(2) algebra [¢,,2,) = €,bct,. Multiplication by the matrix 8 has the
cffect of vector multiplication: 8b = 6 x b,s0 8 =4 x , and

9(z) = expld x ]. (4.9)
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The most general long-wavelength action for the antiferromagnet is

S— fl: 5> /dzz K, Vie, - Vida, (4.10)
(e=1,2,3)

where the quantities K, = k, /T are the rigidity of the order parameter about each
axis. Using the rotation matrix g{x) = (&), &, &3), we can rewrite eq. (4.10) more
compactly as

§=3 / &’z Tr [KVg™ @) Vig(x)], (4.11)

where K, = 6,1,K,; the form (4.11) of the long-wavelength action is called the
non-linear o-model.

The uniaxial limit of eq. (4.10), where K} = K3 = 0and K3 = I, is appropriate
for collinear antiferrornagnets; now eq. {(4.10) simplifies to a O(3) non-linear o-
model

S= %/dzx (VAY (A =é). (4.12)

Here, the energy is invariant to local rotations about &> due to the uniaxial sym-
metry present; this leads to a local gauge symmetry that must be treated separately
from the other rotation modes. We shall see that this uniaxial fixed point is repul-
sive, and that a general, non-collinear antiferromagnet scales towards an isotropic
limit where

§= % /dzx (V¢ ' Vg, (4.13)

with K = K5 = K5 = K. As an aside, we note that eq. (4.13) has both a “left”-
and a “right”~handed rotation symmetry {g(z) — hg(z) and g(z) — g{(z)h)}, and
is thus often called the SU(2) x SU(2) chiral model. The matrix ¢ can also be
expressed as an SU(2) matrix ¢ = ng + 17 - &, where (ng, %) is a four-dimensional
unit vector (n% + 7% = 1); in this way, one can show that eq. (4.13) is equivalent
to the O(4) non-linear o-model.

Using an analogy with tops, we can develop a very simple physical picture
of antiferromagnets at long-wavelengths. The three vectors €, (A = 1,2,3) are
“body axes” of the magnetic order parameter; they are a function of position and
time. As in the study of tops, we can “watch” the order parameter as a function
of time either in the lab frame or in a reference frame that moves with the body
axes. From this standpoint, the non-linear o-model (4.13) is very convenient, for
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it permits a simple transformation between these two frames of reference. For
example, a rotation of the order parameter in the lab frame corresponds to “left
multiplication” of g(z) by a fixed rotation matrix b,

g{zx) — hLg(x), (4.14)

a transformation which leaves the action invariant. Alternatively, one can rotate
the order parameter in the “body” frame by a “right multiplication”

9(z) — g@)hr, (4.13)

though this is only a symmetry of the antiferromagnet in the special case when the
stiffness tensor X 1s isotropic.

~ To fully exploit the antiferromagnet as 2 “top in space-time”, we must reexpress
the action in terms of angular velocities of the order parameter. We define the
angular velocity V, g(z}) = 9(Z)w,,, or

w, =@y X =97 @) V,g(@) = ~(V,.g ™ (z)g(x),

w, =wit,,
@, = wie(0), (4.16)

where the first identity follows from V(g™ ¢) = Vi(g~ g +9~' Vi(g) = 0. With
this definition V,8,(z) = ¢(z)[@,, X €,(0)], we can identify &* as the angular
velocity of the order parameter, measured in the reference frame of the body axes.

We can now recast the long-wavelength action of the antiferromagnet eq. (4.10)
as that of a top. Using eq. (4.16), we write eq. (4.11) as

S = %/dzx Tr (K ww,]. ' @17

Defining w; = & x , we have

- Tr [Kww) = = Tr [@ x (@ x K)
= Tr [[(@y - )1 -~ G K]
= &I, . (4.18)

where
I=Tc[K]1-K (4.19)
is the moment of inertia tensor; explicitly

Loy = Tabos, (4.20)
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where

Io=Ke+ K. (bfc#a) (4.21)

~ With these results, the action of the antiferromagnet takes on the simple form

S=1 f d*z I, [wl)?, (4.22)

where summation over a = (1,2,3) and & = (1, 2) is implied. The quantities I,
define the stiffness for twisting the order parameter about each of the principal
axes. In this form, the antiferromagnet is the simple generalization of a top from
one time dimension to two (space} dimensions.

Equation (4.22) can be regarded as a Landau—Ginzburg action for the long-
wavelength modes of the two-dimensional antiferromagnet. However, unlike in
neutral U(1) superfluids, the long-wavelength spin fluctuation modes are strongly
interacting due to the fundamentally non-Abelian nature of rotations. These spin-
wave interactions screen the stiffness to zero at long length-scales, thus disordering
the antiferromagnet. This phenomenon was first studied in detail by Polyakov [47],
who derived the scaling of the spin stiffness for the isotropic {and the uniaxial)
limit by successfully removing spin fluctuations of long and longer wavelength,
iteratively computing the stiffness associated with the screening induced by each
momentum shell. The general anisotropic case was first treated in the context of
two-dimensional gravity by Friedan {52). Independently, Polyakov and Wiegmann
(53] have shown its equivalence to the anisotropic Kondo model, whose scaling
equations were derived by Anderson and Yuval (54,4]. Most recently Azaria et al.
[55] have cast the general resuits of Friedan [52] into a form more appropriate to
the study of magnetism.

4.2. Polyakov scaling of the spin stiffness

The basic philosophy behind Polyakov scaling is to divide the spin fluctuations
into short- and long-wavelength components, integrating out the fast degrees of
freedom while maintaining the spin amplitude fixed; this is a “poor man’s scal-
ing” approach to magnetism [54,4]. Before generalizing this prescription to the
anisotropic case, we briefly review conventional Polyakov scaling for the uniaxial
limit. We then extend this method to non-collinear magnets; there, as we shail see,
there are two ways in which this decimation procedure can be followed depending
on whether one studies the scaling in the body-axis ot in the laboratory reference
frame. '
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J1-0% o
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N{X) = N/ 1 - % +d2ea(X)
Fig. 9. Diagram representing the short- ({24 }) and long- {fp) wavelength fluctuations in Polyakov's
scaling treatment of a fixed-amplitude unit vector.

4.2.1. The O(3) case : .

For O(3) (collinear) magnets, the general long-waﬁeiength action (4.10) reduces
t0

S = % f Pz (VAY (A= 8), (4.23)

where 7 = A4 is the staggered magnetization on sublattice A and the coupling
constant ¢ = T'/(2J8%) = 2/1. Following Berezinskii and Blank [56], the local
order can be decomposed into short- and long-wavelength degrees of freedom,

n=—1
(z) = Po(@)/1 — 6Xz) + Y $*(2)2a(a), (4.24)

a=]
which is displayed graphically in fig. 9; the ¢®{x) are the generators of the rotation
matrix in eq. (4.5) for the special O(3) case. Here Ap = &(0) is a slowly varying
vector that forms an orthonormal basis with the &,; the “fast” fluctuations, ¢*(x),
have a4 bandwidth given by A < |q] < A, where A and A are the bare and the
renormalized momentum cutoffs (to be determined from the scaling), respectively.
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Our immediate goal is to rewrite the action {4.23) in terms of these new fast and
slow degrees of freedom. We write the slow variation in Ay as

Y, fp = B2e,, | (4.25)
which is a fancy version of
Ae(T + AT) = 7o(F) + (At By) E.(7). (4.26)

We are only interested in the “fast” degrees of freedom ¢ to Gaussian order;
egs. (4.24) and (4.25) lead to

Vi =[V,6% + (1 — 3¢")Bi &, — [¢* B fio, 4.27)
where we have used the short-hand
Y, bo = V9> — A4, (4.28)
We can now write the action (4.23) to quadratic order in the “fast” fluctuations as
i R
S = ; f Pz {(V,4° + (V) + (¢°¢"e — *6°") BB, + O(97)}.
' {4.29)
In order to get the scaling equation we must evajuate $2¢? and ¢? in eq. (4.29);
because this is a Gaussian theory we can approximate them by their thermody-

namic averages {¢*$%) and {$). Assuming that ¢, and ¢;, are independent to
Gaussian order, we write

= A d*k 2\ cab _ G abéA
ot = [ oS e = et 30

where we have used (¢3) = g/k>. Therefore,

n—1 8A
(%) = (n = (@) = =9 431
and we get the scaling equation
1 1 n-2
%2 t dln A, (4.32)
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where 1/g and 1/ are the bare and renormalized coupling constants, respectively,
and we have used SA/A = dIn A. We can rewrite eq. {4.32) in the conventional
scaling form

o/gy _ 1, _ 433
3ma AT (4.33)
Qr as
oy 1 2
SN P SRPAN-3 43
AnA - A9 434

Physically eq. (4.33) tells us the scaling of the spin stiffness 1/g as afunction of n,
the number of spin components; it is unrenormalized for zy magnets (n = 2) but
scales to weak coupling in the Heisenberg case (n = 3). We can also obtain the
spin correlation length from eq. (4.33); 1t yields the “running” coupling constant

90
A) = —. (4.35)
I = T Toatn — 2727 In(A/A)
At the onset of strong-coupling (g = 1) we have the condition
A a
== 4.36
A% (4.36)

where a is the lattice cutoff. Equations (4.35) and (4.36) lead to the spin correlation
length

2
T 2J8 ] (437

¢ ~ aexp [n T

We see from eq. (4.37) that £ will always be finite at T # 0 for the Heisenberg
model, thus indicating that here long-wavelength thermal fluctuations will always
suppress the formation of disorder. By contrast, the spin correlations are power-
law in the zy case; stable defects (vortices) can then interact on long length-scales,
leading to the famous defect-binding transition of Kosterlitz and Thouless [57].

4.2.2. The anisotropic scaling equations

We now generalize Polyakov's method to the anisotropic antiferromagnet; a com-
plementary approach, using the e-expansion, has been discussed by Azaria ot al.
[55]. The order parameter for a general non-collinear magnet is a rotation matrix;
following the general prescription for Polyakov scaling, we would like to express
it as the product of two rotation matrices associated with the slow and fast spatial
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degrees of freedom. Unlike the O(3) case this renormalization procedure can be
implemented in more than one way, depending on whether one wants to measure
the stiffness in the lab or in the body-axis frame. For example, if we are interested
in the scaling of the stiffness due to a change of boundary conditions we must
measure it in the lab frame; then the fast degrees of freedom must be described
with reference to the body axes '

g(x) = go(z)h{z}. (438)

Alternatively, we may want to study the stiffness in the body frame; then we must
write the order parameter

gz} = h(z)go(2). (4.39)

The second procedure, i.e. eq. (4.39), resuits in a simpler pair of scaling equa-
tions; heuristically, this is because the body axes provide a more natural reference
frame for the low-energy modes that move with the “space-time top”. Numeri-
cally, however, this stiffness is more difficult to measure. In a classical magnet
with intrinsically uniaxial spin components there is no well-defined body axis;
the first renormalization procedure described above is necessary just to explicitly
integrate out the fast gauge rotations about the axis of magnetization.

Here, for the sake of simplicity, we will use the decomposition eq. (4.39); the
alternative procedure using eq. (4.38) is described in detail by Azaria et al. [55].
Using the decomposition eq. (4.38), we write the angular velocity matrix (4.16)
as

w, = g5 @0+,

o, =h"'V,h,

Q,= QO_IV#QO? (4.40)
so that the action (4.10) is

§5=1 /dz::: Tr [K (g "@,u00 + 2,)7], 4.41)
with the slow modes (§2,,) acting as an external field on the fast rotations (). We

can identify —ﬁ“ as spin vector potential, similar to that discussed in the last two
sections. The spin current is then

- aF - -
Jp = aﬁp =1 [{fu) + ),
Ju=97"2,9, (4.42)
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and the stiffness is

02F -
——— =18, — (3.7, 443
aQ#aQ,, w (J,uj ) ( )

which is a form very similar to that discussed in section 2. The second term in
eq. {(4.43) represents the “paramagnetic” current fluctuations; they renormalize the
spin stiffness, ultimately driving it to zero at finite-temnperatures and generating a
finite spin correlation length.

In order to compute the leading (one-loop) renormalization of the stiffnesses by
the spin-current fluctuations, we expand the fast fluctuations to Gaussian order

h=el=1+8+ 16"+ 0@,

o, = wit, = V.84 1[V,8,6],

ol = [V, 0+ 49,0 x ), 4.44)

and take the fast fluctuations to lie within a narrow-shell in momentum space ¢ €
(A, A -+ dA). We assume that go varies slowly on the spatial scale-of 1/A; for the
calculation of the fast fluctuations, it is approximated as a “constant” rotation that
commutes with the gradient operator. Formally

wy, = W'ty

95 ' @uge = (85 'tu80) 0% = tolgp)y00is (4.45)
so that

o, = 9% - {4.46)

Using eq. (4.44) and commuting the rotation matrix through the gradients we find
that

@y = (V8 + 37,8 x 61°, (4.47)
where

VP" = V,U- + gﬁgpg@_] k]
Y — gob. (4.48)

Since IQI < A, we will neglect the difference between ¥ and V in gy,

New Qutlooks and Old Dreams in Quantum Antiferromagnetism 549

Performing a Fourier transform on the angular variables, we can now express
the action to Gaussian order in the fluctuations.

S[B’,Q]:%/d 28, 1-8, +Za’ aM-é?-

[M.f]ab = qua + 1Q.ufa.bclrc9,; . (4.49)

We renormalize the action by integrating over the “fast” degrees of freedom,

exp (~Siemf) — ] dfey) e~ 518, (4.50)
to obtain
Stem[) = 1 / Pz, 1-Gy+ Y Tr(in M), (4.51)
.

To obtain the renormalized stiffness we next differentiate with respect to Q2

1 %S

Y lel) s jav
V a0eand Lo a6,
2 2
I =1,--a g 1
A o€, A+an) (2% ¢°
=1, — L L (b#c+a) .(4 52)
¢ ar L, ’ '
thus obtaining the scaling equation
dge l Yy

where g, = 1/1,; eq. (4.53) describes the renormalization of the (inverse) stiff-
ness by long-wavelength spin-current fluctuations.

Usually, a magnet will have at least one axis of symmetry with two equal stiff-
nesses, i.e. g = g2 and g3 = g). Now, the scaling {(4.53) simplifies:

dg. _ 993
din A 4’
i __@)

) 4.
dlnA 47 (4.34)
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Fig. 10. Scaling trajectories for anisatropic two-dimensional o-models.

There is even a first integral,

(g = () = €2, o (4.55)
that yields the explicit solution '
C Ap
= — — . RCH
g(A) = C'coth [47r In ( A ﬂ (4.56)

Equations (4.54) are the Anderson—Yuval scaling equations [54], first derived for
the anisotropic Kondo problem. Their scaling trajectories are displayed in fig. 10;
here we see that fluctuations reduce the stiffness, thus enhancing the degree of
1sotropy. At the spin correlation length,

£ =aexp [%‘T coth™! é] ~ae™C (o= AN, (4.57)
the system scales to strong coupling (g3 ~ O(1)); at distances ¢ > £ the fluctu-
ations act nonperturbatively, and the magnet is disordered. As an aside we note
that the Anderson—Yuval form of the scaling equations (4.26) is not entirely coin-
cident; Babujian and Tsvelik [58] have shown that the 2D non-linear o-model is
equivalent to the large-chanael limit of the (1-1- 1)-D multichannel Kondo problem,
so that the former can be solved exactly by the Bethe Ansatz technique.
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The renormalization procedure followed by Azara et al. [S5] produces addi-
tional terms in the scaling equations which account for the fluctuations of the body-
axis reference frame relative to the fixed coordinates. At first sight, it might seem
unusual that there are two possible renormalization procedures; clearly, both must
lead to the same results for physical quantities, as can be verified in perturbation
theory. Beyond perturbation theory, the general scale-dependent transformation
between the body-axis and laboratory reference frames is highly non-linear, and
thus the usefulness of each procedure depends on the chosen reference frame in
which one wishes to follow the renormalization-group flows.

‘We note that these equations (4.26) do nor allow us the study the cross-over
from biaxial to uniaxial behavior; in this limit the fluctuations about the symme-
try axis are unconstrained and must be factored out from the partition function
as a gauge degree of freedom. It is clear, then, that such a passage from O(3) to
SO(3) magnetism can only occur via a strong-coupling regime, for small devia-
tions from perfect O(3) behavior act as strong-coupling terms in the action that
cannot be gauged away. In the related Kondo problem, where the explicit strong-
coupling solution is known via the Bethe Ansatz, such a continuous passage to the
O(3) model has been performed by Weigman [59]. However, in the quantum case,
almost nothing is known about the transition from O(3)} to SO(3); several groups
have specuiated about a possible intermediary “spin-liquid” regime, though others
believe that such a disordered phase will be preempted by a first-order phase tran-
sition. This 1ssue will be discussed further in section 5, when we review various
“moment-free” phases proposed by the community.

4.3. Order from disorder.: a simple example

"The conventional scaling picture of magnetism incorporates afl fluctuation ef-

fects into an effective Landau-Ginzburg action for the long-wavelength modes
of the system. However, even in cases where such an action is well-defined, high-
frequency short-wavelength spin fluctuations can modify its behavior at long dis-
tances. The role of such short-wavelength fluctuations is particularly enhanced in
frustrated spin systems with large ground-state degeneracies; here Villain (23] has
observed that the associated fluctuation-free energy often selects spin configura-
tions that break the underlying fattice symmetry. In the quantuom case, these states
minimize their zero-point energy, thereby maximizing their number of zero modes.
This is somewhat counterintuitive: normally we associate stability with rigidity.
In frustrated systems, Villain has turned this standard argument on its head: he
has shown that the “most fiexible” spin configurations are least affected by the
presence of fluctuations, and thus outlast their more “rigid” counterparts in the
degenerate ground-state manifold [23].

Villain’s original discussion of fluctuation-induced ordering was confined to
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Ising magnets, and was subsequently extended to continuous spins by Shender
[60] and Henley [61]. In these systems, the presence of a continuous degeneracy
in the classical ground state Jeads to “false” zero modes, that are subsequently
lifted by fluctuations [60]. Such “exchange gaps”, in this case due to zero-point
fluctuations, have been observed in dynamical neutron studies on the spin-3 garnet
Fe,Caq(GeOy4)s; here the measured dispersion curves are reproduced by a simple
frustrated model, and the observed quantum gaps agree with a higher-order spin-
wave calculation [62]. Villain’s “order from disorder” provides a clear example of
how the interplay between fluctuations and competing interactions can, in princi-
ple, lead to new forms of spin order. Since the fluctuation-selection of spin states
plays a central role in the “quest” for exotic magnetism, we now examine this
curious phenomenon in the context of a simple example.
We turn to the two-dimensional frustrated square Heisenberg Hamultonian

H=n> 8-S+h> 85, (4.58)
i5 ik

with nearest- and next-nearest-neighbor couplings J; and Jp respectively; in the
limit p = J1/(2J) < 1 this simple model has a ground state with a continuous
global degeneracy [63). For 7 > 1 the classical ground state has conventional
Née) order, but when 1 < 1 the two sublattices become decoupled and can have
arbitrary angular orientation with respect to one another (see fig. 11}. Classically
this ground state (n > 1} has energy

E =58 Jh+2Jcosf+.J,—2J cos 8} = S*{—2.1}. 4.59)

The spin-wave spectrum, which is sensitive to short-wavelength fluctuations, sug-
gests that “order from disorder” effects could occur; in the limit < 1 it is given
by [25]

w(@,8)* = 4STYH{I1 + n{ccos g, + Bcos g,)1°
— [cos gzcosgy + nlacos gy + Fcos qx)]z}, {4.60)

where (&, 8) = (cos? 10, sin® 1) and 9 is the angle between the two-sublattices
(see fig. 12). The angle-dependent part of the classical fluctuation free energy,
SF(O) = F(8) — F(0) can be estimated to leading order by incorporating the
zero-temperature dispersion {4.60) into

w(d, 6}
_ 4.61
F(®) T?sz, (4.61)
which, upon integration, yields
SF(T,8) ~ —FE(T)(1 + cos’ §) (4.62)

for n < 1, where BE(T) = 0.6367°T.
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Fig. 11. The classical ground states for the 2D frustrated square Heisenberg antifercomagnet with (a)
n > land () n < 1, where p = Jy/J, is the ratio of the nearest- and next-nearesi-peighbor
couplings; note that in (b) the ground state has a continous degeneracy associated with the angolar
independence of the two sublattices (reprinted from Ritchey [13]). -

The fluctvation free energy (4.62) clearly favors spin configurations where
cosé == =+1 (fig. 12), thereby retaining a discrete two-fold degeneracy 1n the
ground-state manifold. It selects states that break Z4 Jattice symmetry; the spins are
ferromagnetically aligned (w ~ &%) in one lattice direction, thereby maximizing
the coupling between the two sublattices and minimizing the overall dispersion.
This behavior is easier to understand in the analogous ferromagnetic J;, J> model
(J\, J2 < 0). Here, zero-point motion is compietely eliminated when the two sub-

_ lattices are paraliel, forming a uniform ferromagnet. In the antiferromagnetic case

of interest, fluctuations can never be eliminated, but they are minimized in the
configuration that is maximally ferromagnetic. From a more technical standpoint,
the coupling between two antiferromagnetic sublattices enters as off-diagonal ma-
{rix elements in a standard spin-wave calculation; thus maximum coupling leads
to a minimization of the dispersion, and thus the free energy. Fluctuations favor
configurations with ¢ = L1, where

o =5 - &) (5 - 5)/28* (4.63)

is defined in terms of the four spins on a square plaquette.

4.3.1. Modified scaling arguments
The fluctuation free energy (4.62) suggests that a guadrupolar coupling term
1 2 (ﬁl * ﬁ2)2

__ 1 2)® 4.64
=241 9""Bg) .69
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PFig. 12. Fluctuation selection of ground states in the 21 frustrated square Heisenberg antiferrornagnet.
Note that although fluctuations Lift the continuous degeneracy of the classical manifold, a discrete Zy
degeneracy remains (reprinted from Ritchey (13]).

should be added to the classical action

I=— /dﬁ {Z(vm) + 29(Vgh - Viefiy — Vi - V, rw)}
1=1.2
(4.65)

derived from a gradient expansion in the usual fashion. The guadrupolar coupling
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term {4.64) selects configurations with ¢ = +1, and

T
= _— 4.66
" B0 (4.66)

is the wall thickness between o = +1 and ¢ = —1 configurations. Because this
discrete variable is stabilized by short-wavelength fluctuations it should be robust
to infrared divergences, and thus should survive to finite temperatures in the ab-
sence of ue long-range antiferromagnetic order. In particular, we expect that the
soft Ising order parameter ¢ will be finite if the wall thickness is less than the
spin correlation length; we expect an order—disorder transition at {(17) = £(£'). At
this temperature the energy barrier separatin g z-collinear (¢ = 1) and y-collinear
(o = —1) states is of height

&) (T)

E(T)

W =
ot a®  Jregs2

d*z = E(Ty>2 (4.67)

Roughly speaking the order-from-disorder transition temperature is determined by
the condition

WI) =1, (4.68)
which yields
2?1“}051
it el (4.68
= nmEay (4.69)

where we have estimated the spin correlation length by

ZTTJ')SQ
T-; 1

&~ aexp (4.70)
a reasonable assumption in the {arge-J; limit.

A Polyakov scaling treatment of the full action (4.65) indicates that there are
two distinet scaling regimes ia this model [25]. At high temperatures the wail
thickness (4.66) is much longer than the spin correlation length &; thus walls be-
tween different collinear regions are not defined, and the two sublattices are un-
locked. However, when ! 1s shorter than £ the quadrupolar coupling term (4.64)
becomes larger than eq. (4.65); eq. {4.64) results in a “quantum exchange gap”
A ~ (¢/lyr=g) for out-of-phase fluctuations, thereby locking the two sublattices
(see fig. 13) and stabilizing the soft Ising order parameter ¢ even in the absence of
a sublattice magnetization. The Ising transition is found from the condition ! ~ &,
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Fig. 13. The scaling behavior of the spin stiffness as a function of length scale in the frustrated square
Heisenberg model in the fimit of large J,. Inset: the Ising phase transition as a function of frustration.

and in the small-n limit the scaling prediction is in good agreement with the es-
timated value (4.69) above. Heuristically 7} can be described as a “spin-binding”
transition temperature; for T < T; the spin stiffness is 1/¢* = 2J(S*)* /7', where
S* = 285. Consequentially we expect that, in contrast with results for the O(3)
o-model [41,37), our conclusions should be stable against collective topologi-
cal effects. Since the size of the point defect {4 is much larger than that of an
Ising wall {, the effective spin in the Berry phase calculation must be §* = 25,
which 1s always an integer. When 5= is even there will be no effects, but when
S* is odd, the collective tunneling between different hedgehog configurations will
only serve to reinforce the two-fold degeneracy already driven by the fiuctuations.
Since S* is never half-integer, it appears that fluctuation-stabilized *“order from
disorder” suppresses the t0po]og1cally generated four-foid degenerate spin Peierls
states [25].
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4.3.2. The quantum fluids perspective

Within the quantum fiuids picture, the basic character of this “spin-binding” tran-
sition is determined by the constraint equation which self-consistently determines
the temperature-dependent quantum exchange gap; physically this phenomenon
is a result of fluctuation effects on the Onsager reaction field {38]. To see this, we
recall the pairing equations and the constraint

hq:/ J;]_,a@«,
7
:/ J—-ﬂ?q ]

S+l= /af, - @
7
where fq = [d%q/(27)* and
(2ag, 2ng) = (DL, (BEM)) = [coth(Bug/2)/wzl (hy, A, (4.72)

with w? = hZ — AZand hg = hg — A. We consider the Jow-temperature collinear
state with ferromagnetic correlations along the z-axis and Goldstone modes at
g =10,Q, with @ = (0, 7); for this case the pairing fields are
) - 4 Dyeca,
J{}q_,) = 4Jg[CnyCx!Cy—‘ + ecycy ], (4.73)
withe = J,/2hL) <« 1.

We would now like to determine the fluctuation-induced quantumn exchange gap
at §* = (r,0) and (m, 7). After the first iteration of the pairing equations (4.71)
itis

(DY = 2{hg.8hg. — 8A5.605.}
= 2hg. {(Bhg. — Sho) + (880 + 8D85.)} = ¢/l (4.74)
where we have used hz. = —Ag- and 8X = 8ho — 649; here 545 and dhiy are

the deviations from thc zero-temperature, infinite-spin values of these quantities.
Then we have

(A1) = 2R, { > IS~ Tagheg + (T + Jor ))nq} (475)
g .
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Equations (4.72), (4.73}, (4.75) and the dispersion relation

wi = SI@ - J@IBIE+ Q) + (G- A~ T}

= (4J25)[(1 + €ce)? — (Caty + €¢y)°] (4.76)
lead to
(A1)’ = 32e(1 — €)S(R)° / é:';z D, (4.77)
where
¢@; (G —Betealed -1 om, 478)

+
VO + el = (coey + €cy)?

a result identical with the 1/5? spin-wave result of Shender [60]. In the limit of
small ¢ we can expand eq. (4.78):

g 1/2 + &)1 + &) - 264c)
. A ) d’q o v 5Ly Y
(Ay)° =2(S + 3XJ0) / w2 [1 = (exey?]/?

=4.16(S + 1Y, (4.79)

to retrieve the expression found from a modified scaling analysis (23].

* ‘We thus expect spin fluctuations to accumulate in the vicinity these quantum ex-
change gaps and the true Goldstone modes in the large-S limit. If we approximate
the spectrum near these special points by

g - -52+A2 _’i=0v_: .
Wi = {co((i AT i L @80)
C-(q - Q’l) + ‘6‘0 + A] (Q‘L = Q*: (TI'., "T)))
where
Af = F/ETY = h(§ =0 — &G =07,
Al =h5.bhs —885.805. = /13, (4.81)

then in the large-S limit the finite-temperature constraint equation is

1 1 ¢/ ele .
St T &S [/ag +/, /—a3+a§} dz cothlzfz}, (452
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with z = ¢|§ — (J;; here a cutoff has been imposed on the momentum integrals

in the vicinity of the Goldstone modes and quantum exchange gaps. At high tem-
peratures, where Ay = 0, the spin correlation tength is

§=aexp %ﬂ, (4.83)

with coupling constant

1 5ST 1, 2Ta
- = + —Iln——.

e i =1l (4.84)

At low temperatures, defined by £ ~ lo, the out-of-phase “phason” modes are
frozen out, locking the two Néel sublattices on length scales greater than {o. Now
the spin fluctuations are concentrated solely in the neighborhood of the Goldstone
modes, effectively doubling the spin S of the system; the spin correlation length
is

2 :
& =loerp . @385)
where the renormalized coupling constant is
l
2T 4n (1 - lln_ﬂ) ‘ (436)
g* g 2T a

The “spin binding” just described will be accompanied by a lattice symmetry
breaking transition; within the quantum fluids framework, this will occur when
the pairing

Ay =200y +d85¢0z¢, (4.87)

is anisotropic due to the development of a finite Aj;note thateq. (4.87) is a general
expression for the Bose pairing field. The coefficient of ¢, in the generai pairing
expression (4.71) for Ay (where we have put in the specific pairing fields (4.73)
is

) e, Bg ‘ .
A=, /q 228 cotn(} ). (488,

Writing Az out in fuil and evaluating eq. (4.88) in the limit A.I - 0Ge T =T
we obtain

2 1 Gws
1 =f{0_y coth(3 fwg) + 2Bs¢zc;, 2 (M)}, (4.89;
| g

v AR -
wg 74N wg
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Fig. 14. The spin stiffness /7" of the J)-J; antiferromagnet withp = J; /(2J5) = 4]—0 determined
by Ritchey (13] from Monte Carlo simulations; /T is measured by probing the local spin-current
fluctuations.

where the differential is to be evaluated at Ay = 0, and 7} == (3,)~". For.small i
the integral in eq. (4.89) is dominated by the second term, and we find that

T dn J, 8%

S ——ln(ﬁrTi/JIS’l)’ (4.50)
which is very sirilar to that found from a modified scaling treatment; we note that
eq. (4.89) provides a more quantitative estimate of the Ising transition temperature
than the qualitative condition lo(7}) = £(T}) used before.

Perhaps the strongest evidence for a fluctuation-driven lattice symmetry break-
ing transition comes from numerical measurements of the spin stiffness; exploiting
a practical consequence of the quantum fluids approach, Ritchey {13) has probed
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its behavior on different length scales by monitoring the local spin-current fluctu-
ations. The spin stiffness of the fwo sublattices (1.e. y/T = 2/g) is measured; the
scaling equations predict that for 7' > T} (or alternatively for L < fand T < T},
where L is the system size and { the wall thickness)

diy/T) _ 1

dlnL =~ =« (491
whereas for T < T and systems sizes L > !

aty/TH i

dinL  2#’ (4.92)

when a gap develops in the “out-of-phase” phason mode, the two lattices become
locked (“spin binding”), and the effective spin stiffness is doubled. Figure 14
shows Ritchey’s results for 7 = %; there is certainly a crossover in the scal-
ing behavior of v/T at L = 1 ~ 8 for T' < Ti ~ 0.6J5. The estimated value of
the slope at short length scales and low temperatures in fig. 14, 0.30, is in good
agreement with 1/7 ~ 0.32 predicted in eq. (4.91); however, the slope at large
system sizes, 0.23, is larger than the 1/(27) ~ 0.16 in eq. (4.92), possibly indi-
cating the break-down of scaling on very long length scales. We note that neither
of the analytic approaches described in this section can probe the model at dis-
tances significantly longer than the spin correlation length; thus at this point the
true nature of the spin correlation length; thus at thus point the true nature of the
spin binding, i.e. transition or crossover, is still an open question.

5. A quantum zoo of exotic spin order

The fluids approach to quantum antiferromagnetism suggests many novel ground
states, thus reemphasizing that these pure spin systems are an “economy” class of
the strongly correlated electron problem. What are these various exotic phases, and
how and when are they realized? Of course, highly correlated eiectron fluids, even
in the absence of charge fluctuations, are generally very complicated; a mean-field
perspective, though far from exact, does give us a flavor for the possibilities. What
15 the best way to lower the collective energy of a spin system? Conservatively the
spins, viewed as particles, form a state associated with a highly symmetric wave-
function; this is the traditional antiferromagnet, a “‘spin superfluid”. Can these spin
bosons form a pair condensate in the absence of a moment? In the presence of very
strong fluctuations, a fermionic represeatation of the spirs may be more appropri-
ate; this is the original RVB perspective first discussed by Anderson [12] and later
extended by Baskaran, Zou, and Anderson (BZA) [64]. In two-dimensions parti-
cles are not restricted to fermion or boson statistics [65]; is there a spin analogue of



